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Abstract— Multirate feedforward control provides a perfect
tracking control for a desired state trajectory in ideal theo-
retical condition. In this study, we propose a state trajectory
generation method from a desired output trajectory for a
multi-input multi-output (MIMO) system using singular value
decomposition and time axis reversal. This method provides
perfect tracking control in MIMO systems for a desired
output trajectory. We apply this method to a MIMO high-
precision stage. This method improves the general applicability
of multirate feedforward control for a MIMO system.

I. INTRODUCTION

Multirate feedforward control is widely used for con-
trolling precise systems such as high-precision stages and
hard disk drives [1]. Multirate feedforward control solves
the problem of unstable zeros due to discretization by using
zero-order hold and provides a perfect tracking control (PTC)
[2]. The word “perfect tracking control” is defined as “the
plant output perfectly tracks the desired trajectory with zero
tracking error at every sampling point” [3].

High-precision stages are important for manufacturing
semiconductors and liquid crystal panels [4]. Their demand
in society is increasing annually [5]. Conventional high-
precision stages have one degree of freedom (DOF) and
are mechanically constrained except along the long stroke.
However, demand for more precise control in recent years
has spurred development of high-precision stages with six-
DOFs that are lifted by air bearings [6]. These systems are
controlled as a multi-input multi-output (MIMO) system. In
MIMO systems, there is a coupling problem between each
input and output. MIMO systems are typically controlled
by a single-input single-output (SISO) controller after being
decoupled with a precompensator [7]. In this method, perfect
tracking control cannot be achieved because the precompen-
sator does not consider unstable zeros due to the discretiza-
tion. When a plant has unstable zeros, perfect tracking cannot
be achieved by a single-rate control scheme [3]. Therefore,
several studies are conducted for the approximated plant
model inverse approaches in the single-rate control scheme
such as nonminimum-phase zeros ignore (NPZI) method [8],
zero-phase-error tracking controller (ZPETC) method [3] and
zero-magnitude-error tracking controller (ZMETC) method
[9]. For these reasons, a MIMO multirate feedforward con-
troller is required for perfect tracking control in a MIMO
system [10]. In multirate feedforward control for a MIMO
system, the controller design is not unique because it depends
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designing a matrix B from the generalized controllability
indices, and several types of controllers can be designed [11].

In multirate feedforward control, we can obtain a control
input that provides perfect tracking control for a desired state
trajectory [2]. Therefore, the desired state trajectory must be
generated from the desired output trajectory. In conventional
multirate feedforward control in the SISO system, the system
is represented in a controllable canonical form and the
desired state trajectory is generated by convolving the output
equation using a differential relationship between the state
variables [1]. In multirate forward control for a MIMO sys-
tem, not all state variables can be expressed in a differential
relation in some cases due to the existence of an off-diagonal
term in the matrix C of the output equation. In addition,
when the nominal plant has unstable zeros in continuous-time
domain, the inverse system becomes unstable. Therefore, the
continuous-time stable inversion [12] is studied. This method
provides perfect tracking at each sampling point, but high
oscillations occur in the inter-sampling behavior because this
method uses the inverse of discretization zeros [13], [14].
For this reason, the independent stable inversion of unstable
intrinsic and discretization zeros by a preactuation and a
multirate feedforward [15] is studied. In this method, the
stable inversion for the unstable intrinsic zeros is calculated
using a time axis reversal and imaginary axis reversal in
a continuous-time domain. Then, the stable inversion for
unstable discretization zeros is calculated using a multirate
feedforward. To deal with unstable intrinsic and discretiza-
tion zeros separately, inter-sampling oscillations becomes
smaller.

In this study, we propose a method for generating a
desired state trajectory from a desired output trajectory for
multirate forward control in a MIMO system using singular
value decomposition. In addition, we discuss the convolution
instability due to unstable zeros of the plant in continuous-
time domain or several calculation errors. In these cases, we
propose a calculation method that uses time axis reversal
[15]. In [15], SISO systems are only considered, but in this
paper, we expand a calculation method that uses time axis
reversal for MIMO systems.

We focus on two-DOFs in a six-DOF high-precision stage
with translation along the x axis and rotation around the
y axis, which is a dual-input dual-output system with a
coupling problem. We use the state trajectory generation
method using singular value decomposition and time axis
reversal. We also design a multirate feedforward controller
for the MIMO system. We verify the effectiveness of the
proposed method through simulation.



II. STATE TRAJECTORY GENERATION FOR SINGLE-INPUT
SINGLE-OUTPUT SYSTEM

The conventional method for generating a desired state
trajectory from a desired output trajectory in the SISO system
will be described below.

The transfer function of the plant is given by

P (s) =
B(s)

A(s)

=
bms

m + bm−1s
m−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0
. (1)

The state space representation of this plant in a controllable
canonical form is given by

d

dt


x1(t)
x2(t)

...
xn(t)

=


0 1 · · · 0
0 0 · · · 0

. . .
−a0 −a1 · · · −an−1



x1(t)
x2(t)

...
xn(t)

+


0
0
...
1

u(t), (2)

y(t)=
[
b0 b1 · · · bm 0 · · · 0

]

x1(t)
x2(t)

...
xn(t)

. (3)

Since each state variable has a differential relationship with
the state equation (2), convolution of the output equation (3)
in continuous-time domain gives the desired state trajectory
xd(t) =

[
x1d(t) x2d(t) · · · xnd(t)

]T
from the desired

output trajectory yd(t) as

x1d(t) = L−1

[
1

bmsm + · · ·+ b1s+ b0
yd(s)

]
. (4)

where L−1 is an inverse Laplace transform.

III. STATE TRAJECTORY GENERATION FOR MULTI-INPUT
MULTI-OUTPUT SYSTEM

The proposed method of generating the state trajectory
from the output trajectory in the MIMO system will be
described below. In this study, the plant is assumed to be
an m-input m-output nth order plant, where m < n and
rank(B) = m. This system does not have continuous-time
unstable zeros.

A. Definition of multi-input multi-output system

The state equation and the output equation for an m-input
m-output nth order plant are given by

ẋ(t) = Ax(t) + Bu(t), (5)
y(t) = Cx(t), (6)

where the state variables are x(t) ∈ Rn×1, each input is
u(t) ∈ Rm×1, each output is y(t) ∈ Rm×1, and the matrices
are A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n.

B. Singular value decomposition for multi-input multi-output
system

1) Singular value decomposition of B matrix: Singular
value decomposition of the matrix B is given by

B = UΣV H, (7)

where U ∈ Rn×n, Σ ∈ Rn×m, V ∈ Rm×m.
The elements of Σ are given by

Σ =

[
∆
O

]
,

∆ = diag(σi) (i = 1 · · ·m ∈ N),

where σi (i = 1, 2, . . . ,m ∈ N) are the singular values of
the matrix B.

Multiplying both sides of (7) by UH from the left yields

UHB = ΣV H

=

[
∆V H

O

]
. (8)

2) Laplace transform for state equation: The Laplace
transform of the state equation (5) is given by

sx(s) = Ax(s) + Bu(s). (9)

The state variable conversion of (9) using the transforma-
tion matrix UH as x̃(s) = UHx(s) is given by

s(UHx(s)) = (UHAU)(UHx(s)) + (UHB)u(s)

⇔ (sI −UHAU)x̃(s) = (UHB)u(s)

⇔W (s)x̃(s) =

[
∆V H

O

]
u(s). (10)

W (s) of (10) is represented as

W (s) =

[
Wu(s)
Wl(s)

]
, (11)

where W (s) = sI−UHAU , Wu(s) ∈ Cm×n, and Wl(s) ∈
C(n−m)×n.

From (10) and (11)[
Wu(s)
Wl(s)

]
x̃(s) =

[
∆V H

O

]
u(s). (12)

The extracted lower (n−m) rows of (12) are given by

Wl(s)x̃(s) = O. (13)

3) Laplace transform for output equation: The Laplace
transform of the output equation (6) is given by

y(s) = Cx(s). (14)

The state variable conversion of (14) using the transfor-
mation matrix UH as x̃(s) = UHx(s) is given by

y(s) = (CU)(UHx(s))

⇔ (CU)x̃(s) = y(s). (15)



4) State trajectory generation: The concatenate matrix
from (13) and (15) is given by[

CU
Wl(s)

]
x̃(s) =

[
y(s)
O

]
. (16)

From (16), the state trajectory x̃(s) from the output trajectory
y(s) in the MIMO system is given by

x̃(s) =

[
CU
Wl(s)

]−1 [
y(s)
O

]
. (17)

From the state variable conversion of (17) using the trans-
formation matrix U as x(s) = Ux̃(s), the state trajectory
x(s) from the output trajectory y(s) in the MIMO system
is given by

(Ux̃(s)) = U

[
CU
Wl(s)

]−1 [
y(s)
O

]
⇔ x(s) = U

[
CU
Wl(s)

]−1 [
y(s)
O

]
. (18)

By inverse Laplace transform of (18), the desired state
trajectory xd(t) can be obtained from the desired output
trajectory yd(t) in the MIMO system:

xd(t) = L−1

[
U

[
CU
Wl(s)

]−1 [
yd(s)
O

]]
. (19)

C. Time axis reversal for unstable inverse system
The desired state trajectory in (19) becomes unstable in

several cases depending on whether the plant has continuous-
time unstable zeros or several calculation errors. In this study,
we solve this problem using the state trajectory generation
method with time axis reversal [15]. We generate a stable
desired state trajectory that provides perfect tracking control.
In this study, it is assumed that the differential values of the
desired output trajectory are given up to n−1 differentiations.

1) Stable-unstable decomposition: Fij(s) defined in (20)
is decomposed into a stable part F st

ij (s) and an unstable part
F ust
ij (s) as follows:

U

[
CU
Wl(s)

]−1

= Fij(s) (i, j ∈ {1, 2, . . . , n}) (20)

= F st
ij (s) + F ust

ij (s), (21)

f st
ij (t) = L−1

[
F st
ij (s)

]
, (22)

f̄ust
ij (t) = L−1

[
F ust
ij (−s)

]
. (23)

Note that F ust
ij (−s) is stable.

2) Stable part state trajectory generation: The desired
state trajectory xst

d (t) for the stable part is forwardly gener-
ated as follows:

xst
d (t) =

[
xst

1d(t) xst
2d(t) · · · xst

nd(t)
]T

=

∫ t

−∞
f st
ij (t− τ)

[
yd(τ)
O

]
dτ. (24)

(24) can be written as

xst
d (t) =

∫ t

0

f st
ij (t− τ)

[
yd(τ)
O

]
dτ. (25)

assuming yd(t) = 0 when t < 0.

3) Unstable part state trajectory generation: The desired
state trajectory xust

d for the unstable part is generated by

xust
d (t) =

[
xust

1d (t) xust
2d (t) · · · xust

nd (t)
]T

=

∫ t̄

−∞
f̄ust
ij (t̄− τ̄)

[
yd(−τ̄)

O

]
dτ̄

∣∣∣∣∣
t̄=−t

. (26)

xust
d is calculated as follows. First, a convolution between the

time reversed desired output trajectory yd(−t̄) and the stable
signal f̄ust

ij (t) is calculated. Next, the time axis is reversed.
A mathematical proof is provided in [16].

4) State trajectory generation from stable-unstable parts:
The desired state trajectory xd(t) is obtained by

xd(t) = xst
d (t) + xust

d (t). (27)

IV. MULTIRATE FEEDFORWARD CONTROL FOR
MULTI-INPUT MULTI-OUTPUT SYSTEM

Multirate feedforward control provides PTC [2]. A digital
tracking control system typically has two samplers for the
reference signal r(t) and the output y(t), and one holder
on the input u(t), as shown in Fig. 1. Therefore, three time
periods exist: Tr, Ty , and Tu, which represent the periods of
r(t), y(t), and u(t), respectively. A larger Tr or Ty value is
defined as the frame period Tf .

A. Definition of multi-input multi-output system

In an m-input p-output nth order MIMO system, the state
equation (28) and the output equation (29) describing the
continuous-time plant are given by

ẋ(t) = Acx(t) + Bcu(t), (28)
y(t) = Ccx(t), (29)

Bc =
[
bc1 · · · bcm

]
, Cc =

[
cc1 · · · ccp

]T
.

where the plant state is x ∈ Rn, the plant input is u ∈ Rm,
and the plant output is y ∈ Rp.

B. Design of B matrix from generalized controllability in-
dices

The generalized controllability indices are defined as fol-
lows [10]:

Definition 1 (Generalized Controllability Indices): The
generalized controllability indices of (Ac,Bc) are defined
below for Ac ∈ Rn×n and Bc = [bc1, · · · , bcm] ∈ Rn×m,
respectively. If (Ac,Bc) is a controllable pair, n linearly
independent vectors including the linear combination can
be selected from

{bc1, · · · , bcm,Acbc1, · · · ,Acbcm, · · · ,An−1
c bcm}.

Setting ϕ as a set of these n vectors, σl and N are defined
by

σl = number{k|Ak−1
c bcl ∈ ϕ}, (30)

m∑
l=1

σl = n, (31)

N = max(σl). (32)



In the MIMO system, n (= plant order) vectors are
selected from the generalized controllability indices, and
the full row rank matrix B can be designed for almost
all discretized sampling periods1. Therefore, feedforward
controllers must be designed according to their different
forms.

C. Feedforward input generation from state trajectory

From (33), the control inputs uff [i] required for PTC are
given by (34).

x[i+ 1] = Ax[i] + Bu[i], (33)

uff [i] = B−1(I − z−1A)x[i+ 1], (34)

where the matrices A, x[i], u[i], z and Tf are given by

A = eAcTf , x[i] = x(iTf ), z = esTf , Tf = NTu,

u[i] =
[
u1[i] · · · um[i]

]T
=
[
u11[i] · · · u1σ1

[i] u21[i] · · · umσm
[i]
]T
.

A block diagram of the control system is shown in Fig. 1.
L is a discrete-time lifting operator [17]. L−1 outputs the
elements of the nth dimensional vector uff [i], which is input
at every period Tr, in the order from 1 to n by Tu = Tr/n.

V. SIMULATION

A. Modeling

In the simulation, we control the fine stage of the six-DOF
high-precision stage shown in Fig. 2(a). This fine stage is
supported by a six-DOF air bearing gravity canceller. In this
study, two-DOFs corresponding to translation x along the
x axis and pitching θy around the y axis are controlled, as
shown in Fig. 2(b).

The equations of motion for translation and pitching of
the stage are given by (35) and (36) [18].

(Mx1 +Mx2)ẍg1 + Cx1ẋg1 +Kx1xg1 +Mx2Lg2θ̈y= fx (35)
(Mx2L

2
g2 + Jθy)θ̈y + Cθy θ̇y +Kθyθy +Mx2Lg2(ẍg1 − gθy)= τy + fxLfx (36)

Convert xg1 to observable xm by (37).

xm(s) = xg1(s) + Lmθy(s) (37)

The parameters of the stage are shown in Table I.
aij , bik (i ∈ {2, 4}, j ∈ {1, 2, 3, 4}, k ∈ {1, 2}) from

the expressions (35), (36), and (37), (ẍm, θ̈y) explained by
(xm, ẋm, θy, θ̇y) are given by (38) and (39).

ẍm= a21xm + a22ẋm + a23θy + a24θ̇y + b21fx + b22τy (38)
θ̈y= a41xm + a42ẋm + a43θy + a44θ̇y + b41fx + b42τy (39)

The state equation (40) and the output equation (41) for the
continuous-time plant are given by

ẋ(t) = Acx(t) + Bcu(t), (40)
y(t) = Ccx(t), (41)

1This is possible because the controllability of a continuous-time system
is not preserved in the discrete system only if the two poles ηi andηj
have the same real parts, and the discretizing sampling period T satisfies
ηi = ηj + j 2kπ

T
(k = ±1,±2, . . .); furthermore, it is limited to only

several cases.

TABLE I
MODEL PARAMETERS.

Symbol Meaning Value
xm Measured position of the fine stage –
xg1 Position of the CoG of the planar air bearing and the air gyro –
xg2 Position of the CoG of the fine stage –
θy Measured attitude angle of the fine stage –
fx Input force of the fine stage in the x direction –
τy Input torque of the fine stage in the θy direction –
Mx1 Mass of the planar air bearing and the air gyro 0.077 kg
Cx1 Viscosity coefficient in the xg1 motion 430 N/(m/s)
Kx1 Spring coefficient in the xg1 motion 11000 N/m
Mx2 Mass of the fine stage 5.3 kg
Jθy Moment of inertia of the fine stage 0.10 kgm2

Cθy Viscosity coefficient of the fine stage in the θy motion 1.6 Nm/(rad/s)
Kθy Spring coefficient of the fine stage in the θy motion 1200 Nm/rad
Lm Distance between the measurement point of xm and the CoR −0.0050 m
Lg2 Distance between the CoR and the CoG of the fine stage −0.051 m
Lfx Distance between the CoR of the fine stage and the actuation point −0.50 m

where the vectors x(t), u(t), and y(t), and the matrices Ac,
Bc, and Cc are given by

x(t) =


xm
ẋm
θy
θ̇y

 , u(t) =

[
fx
τy

]
, y(t) =

[
xm
θy

]
,

Ac =


0 1 0 0
a21 a22 a23 a24

0 0 0 1
a41 a42 a43 a44

 , Cc =

[
1 0 0 0
0 0 1 0

]
,

Bc =


0 0
b21 b22

0 0
b41 b42

 =
[
bc1 bc2

]
.

By using the zero-order hold in the state equation (40)
and the output equation (41) for the continuous-time plant
with sampling period Tu, the state equation (42) and output
equation (43) for the discrete-time plant are given by

x[k + 1] = Asx[k] + Bsu[k], (42)
y[k] = Csx[k], (43)

where x[k], u[k], y[k], and Bs are given by

x[k] =


xm[k]
ẋm[k]
θy[k]

θ̇y[k]

 , u[k] =

[
fx[k]
τy[k]

]
, y[k] =

[
xm[k]
θy[k]

]
,

Bs =
[
bs1 bs2

]
.

B. State trajectory generation

In this study, we use a state equation and an output
equation in a balanced realization which is transformed
from the state equation (42) and the output equation (43)
for considering the numerical stability of the calculation in
a multirate feedforward controller design. We generate a
desired state trajectory from (19) using the balanced realized
plant model. If the filter Fij(s) (i, j ∈ {1, 2, . . . , n}) in
(20) becomes unstable, we divide it into stable and unstable
parts. We generate stable desired state trajectories by adding
a stable part (24) and an unstable part (26) together.



Fig. 1. Block diagram of the controller. S, H, and L denote a sampler, holder, and lifting operator [17], respectively, z and zs denote esTr and esTu ,
respectively.

(a) Photograph of the 6-DOF
high-precision stage.

(b) Coupling problem between xm and θy . (c) Block diagram of the
plant.

(d) MIMO multirate sampling con-
trol at the same interval. (σ1, σ2) =
(2, 2)

Fig. 2. Simulation details.

C. Design of multirate feedforward controller for multi-input
multi-output system

We design the matrix B from the generalized controlla-
bility indices:

{bs1, bs2,Asbs1,Asbs2,A
2
sbs1,A

2
sbs2,A

3
sbs1,A

3
sbs2} (44)

In this study, we design the matrix B as follows:

(σ1, σ2) = (2, 2) : B =
[
Asbs1 bs1 Asbs2 bs2

]
(45)

which is the most basic design because the number of each
input is the same in the frame period Tf . These multirate
inputs are shown in Fig. 2(d).

D. Condition

The trajectory xref
m is given by a seventh-order polynomial

from 0 µm to 100 µm over a 0 ms to 20 ms period. The
trajectory θref

y is also given by a seventh-order polynomial
from 0 µrad to 100 µrad over a 0 ms to 20 ms period. Tu =
200 µs, N = max(σ1, σ2) = 2 and Tr = 2Ty = 2Tu =
Tf . The feedback controller Cfb[zs] in Fig. 1 is 0 in the
simulation.

E. Simulation results

The simulation results are shown in Fig. 3. Magnified
views of the tracking error are shown in Fig. 4. The tracking
errors become 0 at every sampling period Tf , demonstrating
that perfect tracking control is achieved. Magnified views of
the input in −600 µs to 0 µs are shown in Fig. 5. Preactuation
occurs at a negative time, which means that perfect tracking
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Fig. 3. Simulation results of the proposed method (σ1, σ2) = (2, 2).

control is achieved even if the inverse system is unstable.
These results illustrate the effectiveness of the proposed
method.

VI. CONCLUSION

In this study, we proposed a state trajectory generation
method using singular value decomposition and a multirate
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Fig. 4. Magnified views of the tracking errors in the simulation results for
the proposed method (σ1, σ2) = (2, 2).
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Fig. 5. Magnified views of the inputs in the simulation results for the
proposed method (σ1, σ2) = (2, 2).

feedforward controller designed for a MIMO system. We
can use a multirate feedforward controller more generally
in MIMO systems using this method. We also discussed
the calculation method using time axis reversal when the
generated state trajectory is unstable due to unstable zeros
in continuous-time domain or several calculation errors. The
effectiveness of the proposed method was verified from a
simulation of a dual-input dual-output high-precision stage.
Future research will focus on comparing the effectiveness of
the proposed method in various cases where the plant has
unstable zeros.
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