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Abstract: Perfect tracking control method using multirate feedforward control is a very effective
control method in high-precision positioning systems since this method provides zero tracking
error for a nominal plant at every reference sampling point theoretically. When we design
a multirate feedforward controller for a multi-input multi-output system, it is known that
several types of controllers can be designed depending on how to select input multiplicities.
Although multirate feedforward controllers provide perfect tracking at every reference sampling
point theoretically, intersample behavior is different. In this paper, we propose the stable
state trajectory generation method and the guideline to design an optimal multi-input multi-
output multirate feedforward controller considering the 2-norm of control input and improve
the intersample behavior. The effectiveness of the proposed method is verified in the simulation.
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1. INTRODUCTION

Perfect tracking control (PTC) using multirate feedfor-
ward control is widely used for controlling precision po-
sitioning systems in industrial application fields such as
manufacturing semiconductors and flat panels, and con-
trolling a head of hard disk drives. Multirate feedfor-
ward control provides perfect tracking control [Fujimoto
et al. (2001)]. The word “perfect tracking control” is
defined as “the plant output perfectly tracks the de-
sired trajectory with zero tracking error at every sam-
pling point” [Tomizuka (1987)]. Perfect tracking cannot
be achieved by a single-rate control scheme because of
unstable zeros due to discretization of the plant using
zero-order hold [Tomizuka (1987)]. Therefore, several stud-
ies are conducted for the approximated plant model in-
verse approaches in the single-rate control scheme such as
nonminimum-phase zeros ignore (NPZI) method [Butter-
worth et al. (2012)], zero-phase-error tracking controller
(ZPETC) method [Tomizuka (1987)| and zero-magnitude-
error tracking controller (ZMETC) method [Wen and Pot-
said (2004)]. Multirate feedforward control solves the prob-
lem of discretization unstable zeros and provides perfect
tracking control [Fujimoto et al. (2001)].

Recently, many mechatronic systems are used in indus-
trial applications and the precision positioning systems
in these mechatronic systems are becoming multi-input
multi-output (MIMO) systems to improve performance
[Butler (2011)]. Because of coupling problems in each
axis, a sufficient control performance cannot be expected
for MIMO systems when the simple single-input single-
output (SISO) controllers are designed for each axis, re-
spectively. Therefore, to overcome coupling problems in

MIMO systems, it is necessary to treat controlled sys-
tems as MIMO systems and design MIMO feedforward
controllers. When the multirate feedforward controllers
are designed for MIMO systems, several kinds of con-
trollers can be designed depending on the selection of input
multiplicities [Fujimoto (2000)]. All designed multirate
feedforward controllers achieve perfect tracking control,
however, intersample performances are different depend-
ing on the controller designs [Mae et al. (2018)]. Perfect
tracking control is defined in the framework of a digital
control system [Fujimoto et al. (2001)]. Therefore, there
is no consideration of the tracking error between sampling
points. For this reason, even if several kinds of multirate
feedforward controllers for MIMO systems achieve perfect
tracking on sample points, the optimal controller can be
chosen from the view of the intersample behavior.

In this paper, we propose the state space representation us-
ing singular value decomposition which gathers continuous
time invariant zeros into the part of the state trajectory
generation. We solve the problem due to unstable invari-
ant zeros of the controlled system in the state trajectory
generation and improve the intersample behavior. We also
propose the guideline how to choose input multiplicities to
design the optimal MIMO multirate feedforward controller
from viewpoint of the 2-norm of control input. When the
2-norm of control input is too large, it is not suitable for
the mechatronic systems. We aim to make the 2-norm of
control input smaller and the smaller control input also
tend to the smaller tracking error between sampling points.

Conventionally, the intersample behavior is evaluated by
simulation results, but, it costs much more time when
many kinds of controllers can be designed. We propose



the guideline how to evaluate the 2-norm of control input
and choose an optimal controller before the simulation.
The effectiveness of the proposed method is verified in the
simulation of the two-inertia motor bench system.

2. STATE TRAJECTORY GENERATION FOR
MULTI-INPUT MULTI-OUTPUT SYSTEM

The proposed method of generating the state trajectory
from the output trajectory in the MIMO system will be
described below. Using a proposed state space represen-
tation, an intersample problem which is occurred by the
continuous time unstable invariant zeros is solved in the
part of a state trajectory generation. In this study, the
plant is assumed to be an m-input m-output nth order
plant, where m < n and rank(B) = m.

2.1 Definition of multi-input multi-output system

The state equation and the output equation for an m-input
m-output nth order plant are given by

x(t) = Az(t) + Bu(t), (1)
y(t) = Cz(t), (2)
where the state variables are x(t) € R™*! each input

is u(t) € R™*1, each output is y(t) € R™*!, and the
matrices are A € R"*", B € R"*™, and C € R™*"™,

2.2 State space representation of MIMO system

Singular value decomposition of B matriz  Singular value

decomposition of the matrix B is given by
B=UxV" (3)
where U € R"*™ X € R"*™ V € R™X"™,
The elements of 3 are given by
>~ o]
A =diag(o;) (i=1---m € N),

where o; (1 = 1,2,..
the matrix B.

Multiplying both sides of (3) by U from the left yields

.,m € N) are the singular values of

H
U'B=3xv" = [AX } : (4)
State wvariable conversion using matriv U~ The state
variable conversion from (A, B,C,D) to (A,B,C,D)

using the transformation matrix UM as #(s) = UMz(s)
is given by

A=U"AU, (5)
- AVH

B=U"B=3xvH= 6

|:O(n—m)><m:| ( )

C=cCu, (7)

D=D=0,m. (8)

Zero Separation using system matriz_ The system matrix
II(s) € RFm)x(ntm) of (A B, C, D) and W (s) € R"*"
are represented as

_ ASIBy (9)

Ti(s) = [ & b
A = Wu(s)}
A - I == W = ~ s
=W = [
where Wu(S) c (C”LX”, and ‘/ifl(s) c (C(n—m)xn.

(10)

The system (A,B,C,D) is represented by the system
matrix II(s) as follows:

o [3] = |5

II(s) is substituted each element as follows:

(11)

,VE/IL(‘E)L ,éYtl S ~( ) Omxm
Wi() 1Oty | [tr| = | Otnmpxmn. | - (12)
T Gemin | 1] |2

Since the system matrix II(s) is a square matrix of (n +
m) X (n+m), it is full rank if full row rank. The zeros of
the system are defined as the values s = z for which the
polynomial system matrix II(s) loses rank. When AV
is full rank, each line of the upper m rows is linearly
independent with other lines for Vs because of the right
side m columns. Therefore, the zeros of the system depend
on the lower and left side n x n elements of the system
matrix II(s). Then, the lower and left side n x n elements
of the system matrix are extracted as follows:

Wils) | z0s) = O(n—lem]
[ c ] Z(s) [ (s . (13)
Since multirate feedforward control solves the problems of
unstable invariant zeros due to discretization, the problems
of the continuous time unstable invariant zeros should
be solved in the part of the state trajectory generation.
Therefore, this state space realization is proposed for
that the part of the state trajectory generation has all
continuous time unstable invariant zero of the controlled
system.

State trajectory generation  The state trajectory &(s)
from the output trajectory y(s) in the MIMO system is
given by

H(s) = [Wz(s)]l {Ommpm] , (14)

y(s)

From the state variable conversion using the transforma-
tion matrix U as x(s) = U&Z(s), the state trajectory x(s)
from the output trajectory y(s) in the MIMO system is
given by

-1

c y(s)
ex(s)=U [Wgs)] B {O“;(’;)lxm] . (1)

By inverse Laplace transform, the desired state trajectory
24(t) can be obtained from the desired output trajectory
yq(t) in the MIMO system:

- -1
U [W(lj(’s)] [O(”—WLXWH . (16)

CBd(t> =L

Ya(s)




When the system has discretization unstable invariant
zeros, the desired state trajectories become unstable be-
cause the inverse system which appears in the (16) has
unstable poles. In this case, the convolution method with
time axis reversal [Ohnishi et al. (2019)] is used and stable
desired state trajectories with preactuation are generated.
The preactuation means that control input occurs from
negative time.

3. MULTIRATE FEEDFORWARD CONTROL FOR
MULTI-INPUT MULTI-OUTPUT SYSTEM

Multirate feedforward control provides perfect tracking
control [Fujimoto et al. (2001)]. A digital tracking control
system typically has two samplers for the reference signal
r(t) and the output y(¢), and one holder on the input u(t),
as shown in Fig. 1. Therefore, three time periods exist: T;.,
Ty, and T, which represent the periods of r(t), y(t), and
u(t), respectively. A larger T, or T, value is defined as the
frame period TY.

3.1 Definition of multi-input multi-output system
In an m-input p-output nth order MIMO system, the state

equation (17) and the output equation (18) describing the
continuous-time plant are given by

(1) = Avz(t) + Bou(t), (17)
y(t) = ch(t)’ (18)
Bc = [bcl to bcm] 5 Cc = [ccl e Ccp]Ta

where the plant state is € R™, the plant input is u € R™,
and the plant output is y € RP.

3.2 Design of B matriz from generalized controllability
indices

The generalized controllability indices are defined as fol-
lows [Fujimoto (2000)]:

Definition 1. (Generalized controllability indices).  The
generalized controllability indices of (A., B.) are defined
below for A, € R™*" and B. = [be1, -+ ,bem] € R™*™,
respectively. If (A, B.) is a controllable pair, n linearly
independent vectors including the linear combination can
be selected from

{bch e abcmaAcbch o

The generalized controllability indices are the sets of the
input multiplicities ¢;. The input multiplicities o; are
defined as follows:

: aAcbcmv e ;Ag_lbcm}

Definition 2. (Input multiplicities). Input multiplicities o;
are defined as the number of the input which comes from
the same input in the same frame period 7.

Setting ¢ as a set of these n vectors, o; and N are defined
by

o7 = number{k|A* b, € ¢}, (19)
Z g =n, (2())
=1

N = max(oy). (21)

In the MIMO system, n (= plantorder) vectors are se-
lected from the generalized controllability indices, and

the full row rank matrix B can be designed for almost
all discretized sampling periods ! . Therefore, feedforward
controllers must be designed according to their different
forms.

3.8 Feedforward input generation from state trajectory

From (22), the control inputs w[i] required for PTC are
given by (23).

xfi + 1] = Ax[i] + Buli], (22)
upplil = B~YI — 27t A)zfi + 1], (23)

where the matrices A, x[i], u[i], z and T are given by

A=c2Tr 0 gli] = x(iTy), z=eTr, Ty =NT,,
wli] = [ [i] -+ [i)]
= [uatli] - wioy [i] wz1li] - e, 1]

A block diagram of the control system is shown in Fig.
1. L is a discrete-time lifting operator [Chen and Francis
(1995)]. L1 outputs the elements of the nth dimensional
vector wyy[i], which is input at every period T, in the
order from 1 to n by T,, = T}./n.

3.4 Variety of MIMO multirate feedforward controllers

From these discussions, the multirate feedforward con-
trollers for MIMO systems can be designed for several
kinds depending on the selection of input multiplicities and
they have different types of B matrix. It is confirmed that
all designed controllers achieve perfect tracking control
[Mae et al. (2018)]. Therefore, it is a problem that which
controller design method is optimal for the controlled
system. In the definition of perfect tracking control, the
tracking error at the sampling point is only mentioned
because the multirate feedforward controller is designed
in the scheme of digital control. It is also necessary to
reduce the tracking error between sampling points for
the actual mechatronic applications. In this paper, we
discuss the optimal method of selecting input multiplicities
and constructing the B matrix for designing the optimal
MIMO multirate feedforward controller.

4. SELECTION OF INPUT MULTIPLICITIES

When the multirate feedforward controller is designed with
B chosen from the generalized controllability indices, the
control input part of the state equation (22) is represented
as follows:
xz[i + 1] = Az[i] + Buli]

< Buli] = x[i + 1] — Az[i]. (24)
The control input w[i] is represented by using the change
of state trajectory v[i] = x[i + 1] — Ax[i] as follows:

Buli] = v]i]

& uli] = B~ w[i]. (25)

1 This is possible because the controllability of a continuous-time
system is not preserved in the discrete system only if the two poles
n; and 7; have the same real parts, and the discretizing sampling
period T satisfies n; = n; +j2kT" (k = £1,42,...); furthermore, it
is limited to only several cases.
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Fig. 1. Block diagram of controllers and a plant: a state trajectory generation, a multirate feedforward controller, and
a singlerate feedback controller. S, H, and L denote a sampler, holder, and lifting operator [Chen and Francis

(1995)], respectively, z and z, denote e*T*

To evaluate the size of the control input, ||ul[i]||?> = v} +
-++ 4 u?2 is calculated as follows:

luldl* = v"E](B™) "B~ wli],

becomes the quadratic form of v[i].

(26)
and ||uli]||?
We define ||v]i]||? as 1 for considering the general desired
state trajectory as follows:
Iwlill|* = vi + - +vp = 1. (27)

When ||v[i]||? is 1, the range of ||u[i]||?* is determined by
the eigenvalue \;((B~1)TB™1) as follows:

Ao SNl <X (A S Aoy S-S A1) (28)
The eigenvalue \.;(BBT) has a relationship between the
eigenvalue \;((B~1)TB~1) as follows:

1
>\Ci - )\72
12

is determined by the eigenvalue

(29)

Then, the range of ||u[i]
Ai(BBT) as follows:

< 1112 <
S |[uld|]” < .
The singular value o.;(B) has a relationship between the
eigenvalue \.;(BBT) as follows:

0ci(B) =1/ Ai(BBT). (31)

Therefore, the range of the 2-norm of the control input
[|ulé]]|2 is determined by the singular value o.(B) as
follows:

A1 € A2 << A). (30)

< luli]ll2 <
Ocn cl

When the 2-norm of control input is too large, it is not
suitable for the mechatronic systems. Therefore, we design
the optimal MIMO multirate feedforward controller from
the viewpoint of the 2-norm of control input. To make
the upper bound of the 2-norm of control input ||w[i]||2
smaller, it is equal that the smallest singular value o1 (B)
makes larger. From this consideration, we should choose
the input multiplicity so that the smallest singular value
o.1(B) is the largest.

(Ucl S 0¢2 S e § Ucn)~ (32)

5. SIMULATION

In the simulation, we verify the proposed guideline how
to design the optimal MIMO multirate feedforward con-
troller. We compare with the size of o.1(B), the smallest
singular value of B, and the tracking errors in the simula-
tion.

and e*T«, respectively.

Fig. 2. Photograph of two inertia motor bench. In this pa-
per, the two inertia motor bench is modeled as a two-
input two-output system. The two inputs are motor
side torque 7, and load side torque 7;, respectively.
The two outputs are motor side angle 6, and load
side angle 6;, respectively.

5.1 Plant model

In this simulation, we control the two-inertia motor bench
system, shown in Fig. 2. The system is modeled as the two-
input two-output fourth order plant model. The transfer
function matrix G(s) of the plant is defined as (33). The
inputs u(t) = [u1(¢) uz(t)]T = [T (t) Tl(t)]T of the plant
model are motor side torque 7,, and load side torque
7;, respectively. The outputs y(t) = [yi(t) yg(t)]T =

[0 (t) 60 (t)]T of the plant model are motor side angle 6,,
and load side angle 6, respectively. The plant model has
coupling problem between each degree-of-freedom (DOF).
In these MIMO coupled systems, MIMO multirate feed-
forward controller is needed to achieve perfect tracking
control theoretically.

5.2 Controller design

We design several kinds of MIMO multirate feedforward
controller depending on the selection of input multi-
plicities. Three sets of input multiplicities (o1,02) =
(2,2),(3,1),(4,0) are used to design controllers. We design
the matrix B from (34) to (36).

0.1(B), the smallest singular value of B, is compared
with the simulation results in three kinds of controllers.
oc1(B) is calculated as Table 1. Considering from the size
of 0.1(B), the sets of input multiplicity (o1, 02) = (2,2) is
the best to design MIMO multirate feedforward controller
for this plant model G(s).

5.8 Conditions

The desired output trajectory yq(t) = [y14(t) ygd(t)]T =
67t (2) QfEf(t)]T is seventh-order polynomials. 6*¢f(¢) is



1 9.7 x 10%(s® + 1.1 x 10°)

1.1 x 108

G) = Zar 21 % 109 1.1 x 108 1.1 x 10%(s” + 9.6 x 10%) (33)
(017 02) = (27 2) B = [Asbsl bsl Asbs2 bs2} (34)
(0'1, 0'2) = (3, 1) : B = [Azbsl Asbsl bsl Azbsg + Asbsg + bsz] (35)
(0’1,0’2) = (4,0) : B = [Azzbgl Agbsl Asbsl bsl] (36)

from 0 to 100prad over a 0 to 0.1s period. €:°(t) is
from 0 to 100 prad over a 0 to 0.1s period. Ty = 12ms,
N = max(01,02) and Ty = NTy, = NT, = T,. In this
study, the actual plant G(s) and the nominal plant G,,(s)
is the same. Therefore, the feedback controller Cyy[z,] in
Fig. 1 dose not work in the simulation.

If the experiment is conducted in actual mechatronic
systems, a multirate feedforward controller is used with
a feedback controller as a two-degree-of-freedom control
system. A multirate feedforward controller handles the
tracking performance and a feedback controller handles
the rejection of the external disturbance and the modeling
erTor.

5.4 Simulation results

The control inputs w(t) = [u1(t) UQ(t)]T = [T (t) Tl(tﬂT
in the simulation are shown in Fig. 3. It is verified that,
when the smallest singular value of B is large, the control

inputs become small. The output y(¢) = [y1(t) yz(t)]T =

[0 (1) 91(t)]T in the simulation are shown in Fig. 4. The
tracking errors become 0 at every sampling period T,
demonstrating that perfect tracking control is achieved.
Note that the values of the control input w and the
output ¥ in (01,02) = (3,1) are too large compared with
(01,02) = (2,2),(4,0). Therefore, it can not be shown in
detail in this range of plot due to the calculation error.

To evaluate the intersample behavior in the simulation,
The root mean square and maximum absolute value of the
control inputs w(t) = [u1(t) ua(t)]" = [rm(t) 7(t)]" and
the tracking error e(t) = [e1(t) eg(t)]T = [eq,, (1) e, (t)]T
are listed in Table 1. Compared with o.;(B), the smallest
singular value of B, and the intersample behavior in the
simulation results, it is verified that the sets of input
multiplicity (o1,02) = (2,2) is the best to design MIMO
multirate feedforward controller for this plant model G(s).
The proposed method does not consider the specific cases
of the desired trajectories, but the trend of the optimal
controller can be evaluated by the proposed simple calcu-
lation method.

6. CONCLUSION

This paper proposes the guideline how to expand multirate
feedforward control to the MIMO systems. Noteworthy,
multirate feedforward control achieves perfect tracking
control at every sampling point. In the actual mechatronic
applications, however, intersample behavior is also a big
issue for tracking control. We solve the problem due to
unstable invariant zeros of the controlled system in the
state trajectory generation and improve the intersample
behavior. We also propose the guideline how to choose

input multiplicities to design the optimal MIMO multirate
feedforward controller from viewpoint of the 2-norm of
control input.

The state space representation is calculated using the
singular value decomposition of the B matrix. This repre-
sentation gathers the continuous time unstable invariant
zeros into a state trajectory generation part. The problem
of the discrete time unstable invariant zeros is solved in a
multirate feedforward control part. Therefore, the problem
of continuous and discrete time unstable invariant zeros
can be solved separately.

To design the optimal MIMO multirate feedforward con-
troller, we focus on the 2-norm of control input. When
2-norm of control input is too large, it is not suitable for
the mechatronic systems. We aim to make the 2-norm of
control input smaller and the smaller control input also
tend to the smaller tracking error between sampling points.
It is an easier way compared with doing the simulation
in all cases of the sets of input multiplicities. Using this
method, the optimal MIMO multirate feedforward con-
troller is designed which considers not only on tracking
error at the sampling point but also intersample behavior.
The effectiveness of the proposed method is verified in the
simulation.

The proposed method evaluates the 2-norm of control
input for the generalized desired state trajectory, but did
not think about the relationship between the control input
and the desired output trajectory in specific cases. The
2-norm of control input for the specific desired output
trajectory also can be calculated. An analysis of the
relationship between the plant and the desired output
trajectories, the experimental validation and considering
mechatronic constraints are future research.
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