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Abstract: In high-precision positioning systems such as scanning machines, the feedback
controller tuning needs a lot of time and skills. In particular, a feedback controller tuning
with six-degree-of-freedoms (x, y, θz, z, θx, θy) is difficult because of the numbers of controller
parameters in each axis. The feedback controllers designed as single-input single-output
controllers in each axis may not achieve sufficient performance in multi-input multi-output
systems, and stability may not be satisfied because of a coupling problem between each axis.
The repetitive disturbance makes the performance worse in a constant velocity scanning motion,
and they are conventionally rejected by a peak filter in other applications of high-precision
systems such as a hard disk drive. In this paper, we propose a tuning method of a peak filter
to suppress a repetitive disturbance which satisfies robust stability conditions for six-degree-
of-freedom systems by using convex optimization. The effectiveness of the proposed method is
verified by the error in the constant velocity scanning motion.

Keywords: Concave-convex procedure, Data based tuning, Frequency responses, Disturbance
rejection, Peak filter, Feedback control, MIMO system

1. INTRODUCTION

In high-precision motion control systems in industries,
the cost of tuning controllers becomes very large due to
mass productions and demands of a factory automation.
In particular, the high-precision scanning systems such as
manufacturing semiconductors and liquid crystal panels
need much cost of tuning controllers because of the neces-
sity of achieving very small tracking errors and growing
needs of PCs and smartphones.

In these applications, the high-precision stages have 6
degrees of freedoms (6-DOFs) (x, y, θz, z, θx, θy) to achieve
high-precision tracking performance [Butler (2011); Oomen
(2018); Mae et al. (2019)]. Therefore, these stages be-
come multi-input multi-output (MIMO) systems, and the
number of controller parameters in each axis becomes
enormous. MIMO systems are difficult to model due to a
coupling problem between each axis and modeling errors
occur frequently. Therefore, it is desirable to tune the
controller from not the model but the frequency response
data obtained by the experiment directly. Several opti-
mization methods for tuning controller parameters from
frequency response data are proposed, such as genetic
algorithm [Tang et al. (2001)], Nelder-Mead method [Lee
et al. (1985)], particle swarm optimization [Gaing (2004)].
Especially, the methods based on convex optimization are
proposed such as loop shaping method [Karimi and Gal-

dos (2010)], bundle method [Do and Artieres (2012); Ki-
tayoshi and Fujimoto (2019)], and sequential linearization
method [Hast et al. (2013); Shinoda et al. (2017); Ohnishi
(2019)] using Concave-Convex Procedure (CCCP) [Yuille
and Rangarajan (2003)]. Concave-Convex Procedure has
a characteristic that the solution will converge to a saddle
point or a local minimum. Even though, when we design
controllers of MIMO systems, Concave-Convex Procedure
is preferable because MIMO systems are difficult to model
and this method can be used to the frequency response
data, directly.

In these high-precision scan stages, disturbances due to the
motor cogging and the vibration from the ground deterio-
rate the tracking performance. These disturbances should
be suppressed by feedback control. Several disturbances
such as the cogging of the motor have repetitive character-
istics. Previous studies show that repetitive disturbances
are effectively suppressed by using a peak filter with the
same frequency as the repetitive disturbance frequency,
mainly in the hard disk drive field [Atsumi et al. (2007)].
On the other hand, multi-axis high-precision scan stages
have a risk to become unstable because a coupling problem
between each axis occur due to other axis controllers that
are high gained by peak filter. Therefore, peak filters have
not been used for multi-axis high-precision stages so far.



From these backgrounds, this paper proposes an auto-
tuning method of a peak filter in order to suppress repet-
itive disturbance of multi-axis high-precision scan stages
which satisfies robust stability conditions including a cou-
pling problem between each axis of MIMO systems by
using convex optimization.

2. STRUCTURE OF CONTROLLED SYSTEM

2.1 Details of plant

We think about a 6-input 6-output high-precision scan
stage with 6-DOFs (x, y, θz, z, θx, θy). We consider sup-
pressing repetitive disturbance by using peak filters in a
constant velocity region such as a scan motion. In this
paper, we mainly handle the translation along the x axis
which is the main stroke of the stage.

2.2 Details of controller

The block diagram of the controlled system is shown in
Fig. 1. The block P , F and C denote a plant, a peak
filter, and given fixed controllers respectively. In order to
simplify the controller structure, F and C are designed
only for diagonal terms. Details of the controller structure
are shown in Fig. 2. The given fixed controllersC consist of
PID controllers, disturbance observers, phase lead filters,
and notch filters. In this paper, the parameters of C are
fixed, and the peak filter F is designed to be added to the
original controlled system.

2.3 Repetitive disturbance rejection using peak filter

In high-precision positioning systems such as a hard disk
drive, a repetitive disturbance d shown in Fig. 3 is sup-
pressed by the peak filter FPeak which has the same fre-
quency to the repetitive disturbance frequency according
to the internal model principle [Atsumi et al. (2007)]. In
this paper, we design a peak filter to suppress repetitive
disturbances for a multi-axis high-precision scan stages in
which a peak filter has not been used because the MIMO
systems whose gain becomes high by the peak filter may
be unstable due to a coupling problem between each axis.

The peak filter designed in this paper is shown in (1).

FPeak(jω, ρ, η) =
s2 + 2ρωs+ ω2

s2 + 2ηωs+ ω2
=
Fn(jω, ρ)

Fd(jω, η)

(0 ≤ η < ρ ≤ 1) (1)
ω is the resonant frequency of the peak filter. ρ and η are
the damping coefficients, and ρ must be larger than η. It
is noted that when ρ is smaller than η it becomes a notch
filter.

3. AUTO TUNING METHOD OF PEAK FILTER
USING CONVEX OPTIMIZATION

In order to evaluate robust stability conditions for the
frequency response data of the system, Nyquist diagram is
used. In this paper, the gain and phase margins are treated
as a circle condition and coupling effects are evaluated
by using generalized Gershgorin bands on the Nyquist
diagram for each axis, as shown in Fig. 4.

3.1 Robust controller design with circle condition of gain
mergin and phase margin

The center (−σ, 0j) and radius rm of a circle condition
on the Nyquist diagram can be calculated from the gain
margin gm and the phase margin Φm, as shown in (2) and
(3) [Maeda and Iwasaki (2014)].

σ =
g2m − 1

2gm(gm cos Φm − 1)
(2)

rm =
(gm − 1)2 + 2gm(1− cos Φm)

2gm(gm cos Φm − 1)
(3)

When the controller is stable and the open-loop frequency
response does not cross the circle condition on the Nyquist
diagram, the controller satisfies robust stability conditions
for the gain margin gm and the phase margin Φm.

3.2 Robust controller design with generalized Gershgorin
bands for MIMO system

The feedback controller may become unstable due to
a coupling problem between each axis even when the
controller satisfies the stability condition for each axis. In
this paper, we evaluate the coupling effect in the open-loop
frequency response of MIMO systems by using generalized
Gershgorin bands [Rosenbrock (1969); Araki and Nwokah
(1975); Sebe (1996)].

P , C, and F which denote a plant, a peak filter, and
given fixed controllers are defined as (4), (5), and (6),
respectively. The parameters of peak filter ρ and η are
also defined as (7) and (8), respectively.

P (jωk) = Pij(jωk) (i, j = 1, 2, . . . , n) (4)

C(jωk) =

{
Ci(jωk) (i = j)

0 (i 6= j)
(i, j = 1, 2, . . . , n)

(5)

F (jωk,ρ,η) =

{
Fni

(jωk,ρi)

Fdi
(jωk,ηi)

(i = j)

0 (i 6= j)
(i, j = 1, 2, . . . , n)

(6)

ρ = [ρ1 ρ2 · · · ρn]
T (7)

η = [η1 η2 · · · ηn]
T (8)

It is noted that the numbers of inputs and outputs of the
plant are both n in this paper.

The interaction index λ of the plant P is calculated in
(9) as the maximum eigenvalue of the matrix M which is
defined as (10).
λ(jωk) = max(|eig(jωk|M)|) (9)

M(jωk) =

{
0 (i = j)∣∣∣Pij(jωk)
Pjj(jωk)

∣∣∣ (i 6= j)
(i, j = 1, 2, . . . , n) (10)

The open-loop frequency response data at each frequency
on the Nyquist diagram of each axis can move within the
radius rgi which is defined as (11) when MIMO plants have
a coupling problem between each axis.

rgi(jωk) = λ(jωk)

∣∣∣∣Pii(jωk)Fni
(jωk, ρ)Ci(jωk)

Fdi(jωk, η)

∣∣∣∣
(i, j = 1, 2, . . . , n) (11)
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Fig. 1. Block diagram of 6-DOF controlled system.
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Fig. 3. Block diagram of controlled system with peak filter.
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Fig. 4. Circle condition of gain margin, phase margin and
generalized Gershgorin bands.

The multiple circles in which the open-loop frequency re-
sponse data can move are called as generalized Gershgorin
bands. When the controller is stable and generalized Ger-
shgorin bands do not include the point of (−1, 0j) on the
Nyquist diagram, the system satisfies a stability condition
for MIMO systems with a coupling problem between each
axis.

3.3 Design of weighting function of sensitivity function

The sensitivity function S, defined as (12), should be small
in the main frequency range of the disturbance because it
is the transfer function from disturbance d, defined as (13),
to error e, defined as (14), in Fig. 1.

S(jωk) = (I + P (jωk)C(jωk))−1

= Sij(jωk) (i, j = 1, 2, . . . , n) (12)

d(jωk) = [d1(jωk) d2(jωk) · · · dn(jωk)]
T (13)

e(jωk) = [e1(jωk) e2(jωk) · · · en(jωk)]
T (14)

In this paper, the frequency spectrum of the disturbance
in the constant velocity region is calculated from the
frequency spectrum of the error by the inverse of the
sensitivity function, as shown in (15).

d(jωk) = S−1(jωk)e(jωk) (15)

Then, the weighting functions of the sensitivity function
WS , defined as (16), is designed by adjusting the frequency
spectrum of the disturbance by the scaling parameter αi
as shown in (17) [Atsumi and Messner (2012)].

WS(jωk) = [WS1
(jωk) WS2

(jωk) · · · WSn
(jωk)]

T (16)
|WSi(jωk)| = αi|di(jωk)| (i = 1, 2, . . . , n) (17)

We design the controller so that the sensitivity function
S satisfies the robust stability condition (18) for the
weighting function of the sensitivity function WS for each
axis.

|Sii(jωk)WSi(jωk)| ≤ 1 (i = 1, 2, . . . , n) (18)

The weighting function of the sensitivity function WS are
designed from the frequency spectrum of the disturbance.
The controller is tuned so that the sensitivity function
satisfies a robust stability condition for larger scaling
parameters αi.

3.4 Optimization problem formulation

From the considerations above, the optimization problem
of designing a peak filter which satisfies robust stability
conditions for MIMO systems can be described from (19)
to (23).



maximize
ρi,ηi

αi (i = 1, 2, . . . , n) (19)

subject to
∀k

rm −
∣∣∣∣Pii(jωk)Ci(jωk)Fni(jωk, ρi)

Fdi(jωk, ηi)
+ σ

∣∣∣∣ ≤ 0 (20)

rgi(jωk)−
∣∣∣∣Pii(jωk)Ci(jωk)Fni

(jωk, ρi)

Fdi(jωk, ηi)
+ 1

∣∣∣∣ ≤ 0 (21)

|WSi
(jωk)| −

∣∣∣∣Pii(jωk)Ci(jωk)Fni
(jωk, ρi)

Fdi(jωk, ηi)
+ 1

∣∣∣∣ ≤ 0 (22)

0 ≤ ηi ≤ ηmax
i < ρmin

i ≤ ρi ≤ 1 (23)

3.5 Concave-Convex Procedure (CCCP)

The constraints of (20), (21), and (22) are concave func-
tions because they are the difference of the convex func-
tions, respectively. Therefore, they are not solved as convex
optimization. In addition, it is also the problem that the
peak filter has tuning parameters not only in the numer-
ator but also in the denominator. In this paper, we use a
sequential linearization method by using Concave-Convex
Procedure with tuning parameters in the numerator and
the denominator is used to transform from the concave op-
timization problem into the convex optimization problem
[Nakamura et al. (2017)].

First, we consider a constraint of the circle condition (20).
We multiply the denominator |Fd(jωk, η)| on both sides of
(20), and we get (24). Second, we consider a first-order
approximation of the difference term in (24), and we get
the convex optimization problem (25).

The same procedure is applied to a constraint of the
robust stability condition for MIMO systems (21) and a
constraint of sensitivity functions (22). First, we multiply
the denominator |Fd(jωk, η)| on both sides of (21) and (22),
and we get (26) and (28), respectively. Second, we consider
a first-order approximation of the difference term in (26)
and (28), and we get the convex optimization problem (27)
and (29), respectively.

By using the sequential linearization method, it is possible
to transform from a concave optimization problem into a
convex optimization problem. It is noted that ρil−1

and
ηil−1

are the parameters of the optimization results in
the previous iteration, and this optimization problem can
be solved as a convex optimization problem by iterative
calculations. In this paper, we use a dichotomy method as
an iterative algorithm.

4. SIMULATION EVALUATION

The controllers can be designed independently at each axis
for MIMO systems by using the proposed method. In this
paper, we consider tuning a peak filter to reject a repetitive
disturbance in the translation along the x axis which is the
main stroke of the stage.

4.1 Condition of optimization

The number of the frequency response data of the plant
is 1000. The data are arranged at logarithmically even
intervals in the range of 1 Hz to 500 Hz. In the robust

stability condition for MIMO system (21), we consider
generalized Gershgorin bands only in the frequency range
fc/2 ≤ f < 2fc, when fc is the gain cross over frequency
of the open-loop transfer function without using the peak
filter and the stability condition is most affected in this
frequency range, so that the controllers should not be
designed too conservative. In other frequencies, the inter-
ference index set to λ(jωk) = 0. The gain margin and the
phase margin are set to 4 dB and 20 deg, respectively. This
condition is satisfied in the controller without a peak filter.

The number of designed peak filters is one, and the
resonant frequency ω of the peak filter is set to a constant
frequency in which the power spectra of the error at each
axis is the maximum. In this paper, we design the peak
filter only in the translation along the x axis which is the
main stroke of the stage, and the peak filters in other
DOFs are set to 1. The resonant frequency ωx of the
peak filter in the translation along the x axis is set to
ωx = 44.9 rad/s (fx = 6.67 Hz). The parameters of the
given fixed controllers C are fixed. From the difference
of the error spectrum at the peak and the low frequency,
the gain of peak filter should be larger than 60 dB = 103.
Therefore, the parameter constraints of the peak filter (23)
is set to the range in ρmin

x = 1×10−6 and ηmax
x = 1×10−9,

and the initial value of each parameter is set to ρinix = 1×
10−6 and ηinix = 0, respectively. A Nyquist diagram using
the initial peak filter is shown in Fig. 5.

The dichotomy method is used to solve the convex
optimization problem sequentially linearized by using
Concave-Convex Procedure in the range of αmin

x ≤ αx ≤
αmax
x . The range of αx is set to αmin

x = 1 × 105 and
αmax
x = 1×107. The sensitivity function and the weighting

fuction of the sensitivity function are shown in Fig. 6.
The iterative optimization by the dichotomy method is
repeated until αng

x

αok
x
× 100 = 1 %, when αok

x and αng
x are

defined as the value of αx in the feasible and infeasible solu-
tions, respectively. The optimization problem is calculated
by using YALMIP [Lofberg (2004)] and Mosek [MosekApS
(2019)].

4.2 Peak filter design

The parameters of the optimal peak filter and the evalua-
tion function are designed as ρoptx = 0.0065, ηoptx = 0, and
αopt
x = 941113, respectively.

The Nyquist diagram with the optimal peak filter is shown
in Fig. 7. It is confirmed that the designed controller
satisfies the robust stability conditions.

The sensitivity function and the weighting function of
the sensitivity function with the optimal peak filter are
shown in Fig. 8. It is confirmed that the controller gain
at the frequency with the maximum disturbance spectrum
becomes high due to using the peak filter, and the gain of
the sensitivity function becomes low.

4.3 Evaluation of repetitive disturbance rejection

The performance of the high-precision scan stage in a
constant velocity scanning motion is evaluated by the
difference between the maximum value and the minimum
value of the error. The error with the peak filter eopt is



rm|Fdi(jωk, ηi)| − |Pii(jωk)Ci(jωk)Fni
(jωk, ρi) + σFdi(jωk, ηi)| ≤ 0 (i = 1, 2, . . . , n) (24)

rm|Fdi(jωk, ηil)|

− Re

(
(Pii(jωk)Ci(jωk)Fni

(jωk, ρil−1
) + σFdi(jωk, ηil−1

))∗

|Pii(jωk)Ci(jωk)Fni
(jωk, ρil−1

) + σFdi(jωk, ηil−1
)|

(Pii(jωk)Ci(jωk)Fni
(jωk, ρil) + σFdi(jωk, ηil))

)
≤ 0

(i = 1, 2, . . . , n) (25)

rgi(jωk)|Fdi(jωk, ηi)| − |Pii(jωk)Ci(jωk)Fni
(jωk, ρi) + Fdi(jωk, ηi)| ≤ 0 (i = 1, 2, . . . , n) (26)

rgi(jωk)|Fdi(jωk, ηi)|

− Re

(
(Pii(jωk)Ci(jωk)Fni

(jωk, ρil−1
) + Fdi(jωk, ηil−1

))∗

|Pii(jωk)Ci(jωk)Fni
(jωk, ρil−1

) + Fdi(jωk, ηil−1
)|

(Pii(jωk)Ci(jωk)Fni
(jωk, ρil) + Fdi(jωk, ηil))

)
≤ 0

(i = 1, 2, . . . , n) (27)

|WSi(jωk)Fdi(jωk, ηi)| − |Pii(jωk)Fni(jωk, ρi)Ci(jωk) + Fdi(jωk, ηi)| ≤ 0 (i = 1, 2, . . . , n) (28)
|WSi

(jωk)Fdi(jωk, ηi)|

− Re

(
(Pii(jωk)Fni(jωk, ρil−1

)Ci(jωk) + Fdi(jωk, ηil−1
))∗

|Pii(jωk)Fni
(jωk, ρil−1

)Ci(jωk) + Fdi(jωk, ηil−1
)|

(Pii(jωk)Fni(jωk, ρil)Ci(jωk) + Fdi(jωk, ηil))

)
≤ 0

(i = 1, 2, . . . , n) (29)
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calculated from the error without the peak filter e, as
shown in (30).

eopt(jωk) =Sopt(jωk)S−1(jωk)e(jωk)

=(I + P (jωk)F (jωk,ρ,η)C(jωk))−1

(I + P (jωk)C(jωk))e(jωk) (30)

A comparison of the error without and with the peak filter
in the translation along the x axis in a constant velocity
region is shown in Fig. 9. It is confirmed that the difference
between the maximum and minimum errors is reduced.

0 2 4 6 8
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Fig. 9. Position error ex in translation along x axis without
and with peak filter in constant velocity region.

A comparison of the power spectra of the error without
and with the peak filter in the translation along the x
axis in a constant velocity region is shown in Fig. 10. It is
confirmed that the error around 6.67 Hz which is the peak
frequency of the error power spectra is reduced.

The difference between the maximum and minimum errors
in 6-DOFs (x, y, θz, z, θx, θy) are shown in Table 1. The
difference between the maximum and minimum error in
the translation along the x axis is reduced about 37 %,
while those of other DOFs are changed about 1 %. It is
confirmed that the error in the translation along the x axis
can be reduced without affecting other DOFs. From the
evaluation above, the effectiveness of the proposed method
is verified.

5. CONCLUSION

In this paper, we proposed a method of tuning a peak filter
automatically to reject repetitive disturbances by using
convex optimization for a multi-axis high-precision scan
stage in a constant velocity scanning motions. By using the
circle condition of the gain margin and the phase margin
and generalized Gershgorin bands of the MIMO system,
a designed controller satisfied robust stability conditions
for a multi-input multi-output system with a coupling
problem between each axis. In addition, the weighting
function of the sensitivity function is designed from the



Table 1. Peak to peak error without and with peak filter in constant velocity region.

Axis ex [m] ey [m] eθz [rad] ez [m] eθx [rad] eθy [rad]

w/o FPeak 4.65× 10−6 8.74× 10−7 8.48× 10−7 6.85× 10−6 1.16× 10−6 1.06× 10−5

w/ FPeak 2.92× 10−6 8.85× 10−7 8.48× 10−7 6.86× 10−6 1.15× 10−6 1.06× 10−5
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Fig. 10. Power spectra of position error ex in translation
along x axis without and with peak filter in constant
velocity region.

disturbance spectrum calculated from the error spectrum
so that the actual characteristic of the disturbance is con-
sidered. The concave optimization problem is transformed
into the concave optimization problem with the iterative
calculation by the sequential linearization method using
Concave-Convex Procedure. The peak filter which satisfies
the robust stability conditions for the MIMO system is
designed in the translation along the x axis, automatically,
and the reduction of the error in the translation along the
x axis is confirmed by the simulation.

The problems of the initial value dependency and the
avoidance from the local optimum in Concave-Convex Pro-
cedure, selection of the number of the peak filter, tuning
the resonant frequency ω of the peak filter, overall opti-
mization including other controllers are future research.
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