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Abstract: Sampled-data control requires both on-sample and intersample performance in high-
precision mechatronic systems. The aim is to design a discrete-time linearly parameterized
feedforward controller to improve both on-sample and intersample performance in a multi-
modal motion system. The continuous-time performance is considered as state compatibility
by a multirate zero-order-hold differentiator. The developed approach enables the linearly
parameterized feedforward controller design for sampled-data systems with physically intuitive
tuning parameters. The performance improvement is validated by comparing the developed
approach with a conventional approach using a backward differentiator for a multi-modal motion
system.
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1. INTRODUCTION

Feedforward control is essential for reference tracking in in-
dustrial high-precision mechatronic systems such as semi-
conductor lithography systems (Steinbuch et al., 2021) and
high-speed scanners (Ito et al., 2019). The feedforward
controllers are usually implemented in digital hardware,
and the parameter of the feedforward controller is first
designed from the model of the controlled system, and
secondly tuned by experimental data. For intuitive tuning
of the feedforward controller, it is preferable that the
feedforward controller is represented by the parameters
with physical meaning.

The linearly parameterized feedforward control (Lam-
brechts et al., 2005) has an advantage because the tun-
ing process is physically intuitive. Model inversion based
feedforward controllers such as zero phase error tracking
control (Tomizuka and Sun, 2021) are widely used to im-
prove tracking performance. However, it is time-consuming
to identify the model of the controlled system and hard to
tune parameters manually.

The feedforward controller design for higher-order motion
systems has a challenge because of the model complexity
and it results in many non-intuitive parameters in the
feedforward controller. Industrial mechatronic systems are
modeled as the dominant rigid mode at a lower frequency
and several flexible modes at a higher frequency due
to limited mechanical stiffness (Gawronski, 2004). The

feedforward controller can be parameterized physically
intuitive using the modal characteristics.

The sampled-data characteristics should be considered in
the feedforward controller design because of the limitation
of the sampling frequency. The feedforward controllers are
usually implemented in discrete-time with sampler and
zero-order-hold (Chen and Francis, 1995). Several related
studies using the multirate feedforward control (Fujimoto
et al., 2001) are developed to improve intersample perfor-
mance by compensating for the oscillation of the Nyquist
frequency.

Although several linearly parameterized feedforward con-
trol approaches exist, the on-sample performance is mainly
discussed in conventional approaches and the sampled-
data characteristics with sampler and zero-order-hold are
not considered. The conventional linearly parameterized
feedforward control is designed by using the backward dif-
ferentiator (Lambrechts et al., 2005) and it is not compat-
ible with the states of the continuous-time motion system.
The pre-existing state tracking approaches for both on-
sample and intersample performance (van Zundert et al.,
2020) need the model of the controlled system based on
the system identification and they are not linearly param-
eterized in tuning parameters.

The main contribution of this paper is the linearly parame-
terized feedforward control approach considering sampled-
data characteristics to improve both on-sample and inter-
sample performance in multi-modal motion systems. The
contributions in this paper are the following:



Contribution 1. The multirate zero-order-hold differentia-
tor is developed to design the discrete-time basis functions
Ψ [k] that satisfy state compatibility for the continuous-
time reference r(t).
Contribution 2. The linearly parameterized feedforward
considering sampled-data characteristics is designed with
a multirate zero-order-hold differentiator and both on-
sample and intersample performance improvement is ex-
perimentally validated in a multi-modal motion system.

The outline is as follows. In Section 2, the problem that
is considered in this paper is formulated. In Section 3,
the design method of the feedforward controller using
the multirate zero-order-hold differentiator is developed,
constituting Contribution 1. In Section 4, the advantage
of the approach is demonstrated in the experiment with a
multi-modal motion system, constituting Contribution 2.
In Section 5, conclusions are presented.

2. PROBLEM FORMULATION

In this section, the problem to improve continuous-time
tracking performance is formulated. First, the require-
ments in this paper are described. Second, the reference
tracking problem is defined in intersample performance.
Third, the low-order feedforward control approach is inves-
tigated for reference tracking in a multi-modal motion sys-
tem. Fourth, the low-order feedforward control approach
is implemented in discrete-time. Finally, the problem in
the conventional approach is described.

2.1 Problem description

In this paper, the feedforward controller is designed with
respect to the following requirements:
Requirement 1. The feedforward controller is linearly pa-
rameterized with physical parameters for intuitive tuning.
Requirement 2. The sampled-data characteristics with
sampler and zero-order-hold are considered in the feedfor-
ward controller design.
Requirement 3. The designed feedforward controller can
be applied to multi-modal motion systems.

To improve both on-sample and intersample performance,
the main problem in the linearly parameterized feedfor-
ward controller is the discrete-time basis function design
that is compatible with the continuous-time reference r(t)
considering sampled-data characteristics.

2.2 Reference tracking for intersample performance

The considered tracking control configuration is shown in
Fig. 1, with reference r(t) ∈ R, control input u(t) ∈ R,
and output y(t) ∈ R. The continuous-time linear time-
invariant system G is controlled by the sampled-data
controller that consists of feedforward controller F (θ),
feedback controller K, sampler S, and zero-order-hold H,
where sampler and zero-order-hold are defined as follows:
Definition 1. (Sampler). The sampler S with sampling
time Ts is defined as

S : r(t) 7→ r[k], r[k] = r(kTs). (1)
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Fig. 1. Tracking control diagram. The continuous-time
system G is controlled by the feedforward controller
F (θ) and the discrete-time feedback controller K with
sampler S and zero-order-hold H. The objective is to
minimize the continuous-time error e(t). The solid and
dotted lines denote the continuous-time and discrete-
time signals, respectively.

Definition 2. (Zero-order-hold). The zero-order-hold H
with sampling time Ts is defined as
H : u[k] 7→ u(t), u(kTs + τ) = u[k], τ = [0, Ts). (2)

The control objective in this paper is to minimize the
continuous-time error e(t). Traditionally, the conventional
discrete-time controller only focuses on the on-sample per-
formance with the discrete-time error e[k]. To improve the
continuous-time error e(t), both on-sample and intersam-
ple performance should be considered.

2.3 Low-order feedforward for multi-modal motion system

The goal of the feedforward controller design is to extend
the rigid mode behavior over a frequency range as high
as possible. Note that the controlled system and the
controllers are assumed to be the continuous-time system
only in this subsection.

Industrial mechatronic systems consist of the dominant
rigid mode at a lower frequency and several flexible
modes at a higher frequency due to limited mechanical
stiffness. The continuous-time single-input single-output
multi-modal motion system is defined as

Gc(s) =
1

ms2
+

nfl∑
i=1

ki
m(s2 + 2ζiωis+ ω2

i )
, (3)

where m is the total mass of the system, nfl is the
number of the flexible modes. The resonance frequency,
the damping coefficient, and the mode gain at the ith mode
are ωi, ζi, and ki ∈ {−1, 1}, respectively.

To compensate for both rigid mode and flexible modes, the
traditional acceleration feedforward is extended with the
additional snap feedforward (Boerlage et al., 2004), and
the ideal feedforward controller F ∗(s) is defined as

F ∗(s) = ms2 +D∗(s)s4, (4)
where D∗(s) is the coefficient of the snap feedforward.

The objective of the feedforward F ∗(s) is to minimize the
closed-loop error given by

e(s) = S(s)r(s)− S(s)Gc(s)F
∗(s)r(s), (5)

where S(s) denotes the sensitivity function and is defined
as

S(s) = (1 +Gc(s)K(s))−1. (6)
It results in F ∗(s) = G−1

c (s) and D∗(s) is given by

D∗(s) = G−1
c (s)

1

s4
−m

1

s2
. (7)
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Fig. 2. Linearly parameterized feedforward with accelera-
tion and snap.

Assuming the reference trajectory in the mechatronic
systems mainly contains the low-frequency components,
the low-frequency contribution of the snap feedforward is
given by

D = lim
s→0

D∗(s) = lim
s→0

(
G−1

c (s)
1

s4
−m

1

s2

)
=

−m
∑nfl

i=1 ki
∏

j ̸=i ω
2
j∏nfl

i=1 ω
2
i

. (8)

Finally, the low-order feedforward controller with acceler-
ation and snap is given by

F (s) = ms2 +Ds4, (9)
where m and D are the tuning parameters in acceleration
and snap.

2.4 Feedforward implementation with basis functions

The feedforward controller design method is discussed
above in continuous-time. However, the controllers are
implemented to digital hardware in discrete-time. As a re-
sult, the continuous-time differentiator s used in the feed-
forward controller is conventionally replaced by ξ which
consists of the discrete-time differentiator and sampler S.

The linearly parameterized feedforward with acceleration
and snap is shown in Fig. 2. The feedforward controller
F (θ) from the continuous-time reference r(t) to design the
discrete-time feedforward input uff [k] is defined as

F (θ) =
[
ξ2 ξ4

] [θa
θs

]
, (10)

where θ = [θa θs]
T are the tuning parameters in accelera-

tion and snap.

Finally, the discrete-time feedforward input uff [k] with
acceleration and snap is given by

uff [k] = F (θ)r(t) = Ψ [k]θ = [Ψa[k] Ψs[k]]

[
θa
θs

]
, (11)

where Ψ [k] = [Ψa[k] Ψs[k]] =
[
ξ2 ξ4

]
r(t) are the discrete-

time basis functions that are compatible with the accel-
eration and snap of the continuous-time reference r(t),
respectively.

2.5 Feedforward with acceleration and snap using
conventional backward differentiator

In the conventional approach (Lambrechts et al., 2005),
the discrete-time basis functions are designed by the
continuous-time reference r(t) and the backward differen-
tiator that is given by

ξnbd =

(
1− z−1

Ts

)n

z
n
2 S, (12)
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Fig. 3. Basis functions of acceleration and snap with a
backward differentiator. The solid and dotted lines
denote the continuous-time and discrete-time signals,
respectively.

where z = esTs is the shift operator defined as z−nr[k] =
r[k − n]. It is assumed that n is even and the z

n
2 de-

notes the phase compensation. When n is odd, the phase
compensation consists of the half sample shift z

1
2 and the

approximation of averaging the current and previous value
is considered (Lambrechts et al., 2005).

The basis function design in acceleration and snap with
backward differentiator is shown in Fig. 3 and the basis
functions are given by

Ψbd[k] =
[
ξ2bd ξ4bd

]
r(t)

=

[(
1− z−1

Ts

)2

zr[k]

(
1− z−1

Ts

)4

z2r[k]

]
, (13)

where r[k] = Sr(t).
Finally, the discrete-time feedforward input uff [k] with
backward differentiator is given by

uff [k] = Ψbd[k]θ, (14)

where θ = [θa θs]
T is the tuning parameter.

Although the on-sample performance is mainly discussed
in the conventional approach using the backward differen-
tiator, the sampled-data characteristics with sampler and
zero-order-hold are not considered.

3. LINEARLY PARAMETERIZED FEEDFORWARD
CONTROLLER DESIGN USING MULTIRATE

ZERO-ORDER-HOLD DIFFERENTIATOR

In this section, the linearly parameterized feedforward
controller design method considering sampled-data charac-
teristics is presented. The improvement of both on-sample
and intersample performance is based on the state com-
patibility in a sampled-data system with zero-order-hold
and integrators. The basis functions are designed by the
multirate zero-order-hold differentiator. The approach is
applied to the low-order feedforward controller design with
acceleration and snap for multi-modal motion systems. It
results in Contribution 1.

3.1 State compatibility of differentiator in sampled-data
system with zero-order-hold and integrators

The continuous-time differentiator s used in the feedfor-
ward controller should be replaced by the sampled-data
differentiator ξ defined as follows:
Definition 3. (Sampled-data differentiator). The nth or-
der sampled-data differentiator ξn with sampling time Ts

is the conversion from the continuous-time signal r(t) to
the discrete-time signal Ψn[k] that is compatible with the
nth order derivative of r(t) and defined as

Ψn[k] = ξnr(t). (15)



In the n samples lifted system, the exact state tracking
can be achieved in every n samples using such as a
minimum-time dead-beat control (Goodwin et al., 2000)
and multirate feedforward control (Fujimoto et al., 2001).
In such cases, the states in every n samples are given by
the multirate sampler defined as follows:
Definition 4. (Multirate sampler). The multirate sampler
Sn in every n samples with sampling time Ts is defined as

Sn : r(t) 7→ r[in], r[in] = r(knTs). (16)

The state-space representation of the continuous-time nth

order integrator in the controllable canonical form is given
by

(
1

s

)n

= Hnc
s
=

[
Anc bnc
cnc 0

]
=


0 1 0 0 0

0
. . .

. . . 0
...

0 0
. . . 1 0

0 0 0 0 1
1 0 · · · 0 0

 , (17)

where Anc ∈ Rn×n, bnc ∈ Rn×1, and cnc ∈ R1×n. To
improve both on-sample and intersample performance in
sampled-data systems with zero-order-hold and integra-
tors, the basis functions used in the linearly parameterized
feedforward controller should satisfy the state compatibil-
ity defined as follows:
Definition 5. (State compatibility). The discrete-time sig-
nal Ψn[k] compatible with the nth order derivative signal
of the continuous-time signal r(t) satisfies state compat-
ibility if the output through the system consisted of the
continuous-time (n − m)th order integrator H(n−m)c and
zero-order-hold H is equal to the continuous-time mth

order derivative signal of r(t) in every n samples sampled
by multirate sampler Sn and defined as

Sn
dm

dtm
r(t) = SnH(n−m)cHΨn[k], (18)

where m = 0, 1, . . . , n− 1.

3.2 Multirate zero-order-hold differentiator for
intersample performance

To improve the intersample performance in the discrete-
time system, the states of the reference trajectory are
considered. The multirate zero-order-hold differentiator is
designed by the inverse of the continuous-time integrator
discretized by sampler and zero-order-hold to satisfy the
state compatibility. In this paper, it is assumed that the
continuous-time reference r(t) is class Cn−1 and differen-
tiable at least n− 1 times.

To satisfy the n states compatibility in every n samples,
the lifted signal is considered using the lifted operator
defined as follows:
Definition 6. (Lifting operator). The lifting operator Ln

in every n samples is defined as
Ln : u[k] 7→ u[in], (19)

where
u[in] = [u[nin] u[nin + 1] · · · u[nin + (n− 1)]]

T ∈ Rn.
(20)

The n sample lifted system is defined as follows:

Definition 7. (Lifted system). Consider a discrete-time
system Hd

z
= Cd(zI − Ad)

−1Bd + Dd. The relation
between the input and the output in the n sample lifted
system of Hd is given by

y[in] = Lny[k] = (LnHdL−1
n )(Lnu[k]) = Hdu[in], (21)

where
y[in] = [y[nin] y[nin + 1] · · · y[nin + (n− 1)]]

T ∈ Rn,

(22)
and the lifted system Hd is defined as

Hd
zn

= LnHdL−1
n =

[
Ad Bd

Cd Dd

]

=



An
d An−1

d Bd An−2
d Bd · · · AdBd Bd

Cd Dd O · · · · · · O

CdAd CdBd Dd
. . .

...
...

...
. . .

. . .
. . .

...

CdA
n−2
d CdA

n−3
d Bd CdA

n−4
d Bd

. . . Dd O
CdA

n−1
d CdA

n−2
d Bd CdA

n−3
d Bd · · · CdBd Dd


.

(23)

Considering the states in discrete-time, the nth order
integrator that is discretized by sampler and zero-order-
hold is given by

Hnd
z
= SHncH =

[
And bnd
cnd 0

]
=

[
eAncTs A−1

nc (e
AncTs − I)bnc

cnc 0

]
. (24)

To design the inverse of the nth order integrator discretized
by sampler and zero-order-hold, the n sample lifted system
is given by

Hnd
zn

= LnHndL−1
n =

[
And Bnd

Cnd Dnd

]
, (25)

and in state-space representation defined as
xn[in + 1] = Andxn[in] +Bndu[in] (26)

y[in] = Cndxn[in] +Dndu[in] (27)
where

xn[in] = [x0[in] x1[in] · · · xn−1[in]]
T ∈ Rn. (28)

Satisfying the state compatibility, the relationship between
the reference and the states is given by

rn[in] = xn[in], (29)
where

rn[in] = Sn

[
1

d

dt
· · · dn−1

dtn−1

]T
r(t)

= [r0[in] r1[in] · · · rn−1[in]]
T ∈ Rn. (30)

From the discussions above, the multirate zero-order-hold
differentiator is given as follows:
Theorem 1. (Multirate zero-order-hold differentiator.)
From (26) and (29), considering the inverse of the
continuous-time nth order integrator discretized by sam-
pler and zero-order-hold using the multirate feedforward
control (Fujimoto et al., 2001), the nth order multirate
zero-order-hold differentiator that satisfies the state com-
patibility is given by
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Fig. 4. Basis functions of acceleration and snap using
multirate zero-order-hold differentiator. The solid line
denotes the continuous-time signal. The dotted, high-
frequency dashed and low-frequency dashed lines de-
note the discrete-time signal sampled by Ts, 2Ts, and
4Ts, respectively.

ξnmr = L−1
n B−1

nd (z
nIn −And)Sn

[
1

d

dt
· · · dn−1

dtn−1

]T
.

(31)
Proof 1. See Definition 5 and Fujimoto et al. (2001). □

3.3 Feedforward with acceleration and snap using multirate
zero-order-hold differentiator

To design the feedforward controller with acceleration and
snap, the lifted systems of the double integrator and the
4th integrator discretized by zero-order-hold are given by

H2d
z2

= L2SH2cHL−1
2 =

[
A2d B2d

C2d D2d

]
, (32)

H4d
z4

= L4SH4cHL−1
4 =

[
A4d B4d

C4d D4d

]
, (33)

where the continuous-time double integrator H2c and 4th

integrator H4c are represented in controllable canonical
form, respectively.

The basis function design using multirate zero-order-hold
differentiator is shown in Fig. 4 and the basis functions are
given by

Ψmr[k] =
[
ξ2mr ξ4mr

]
r(t)

=

[
L−1
2 B−1

2d (z
2I2 −A2d)r2[i2]

L−1
4 B−1

4d (z
4I4 −A4d)r4[i4]

]T
. (34)

Finally, the discrete-time feedforward input uff [k] using
the multirate zero-order-hold differentiator is given by

uff [k] = Ψmr[k]θ, (35)

where θ = [θa θs]
T is the tuning parameter.

4. APPLICATION IN MULTI-MODAL MOTION
SYSTEM

In this section, the approach in Section 3 is applied to
a multi-modal motion system. The experimental results
demonstrate the performance improvement in both rigid
and flexible modes. It results in Contribution 2.

4.1 Setup

The experimental setup of the two-inertia system is shown
in Fig. 5. The system is modeled as the multi-modal
representation and given by

u y

Fig. 5. Experimental setup of a two-inertia system con-
nected via a flexible shaft. The motor on the left side
is used as an input u and the encoder on the right
side is used as an output y, respectively.
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Fig. 6. Bode diagram of experimental setup: frequency
response data ( ), continuous-time model Gc ( ),
and discrete-time model Gd ( ). Nyquist frequency
is shown in a black dotted line ( ).

Gc(s) = Grb(s) +Gfl(s) (36)

=
1

ms2
+

k

m(s2 + 2ζωs+ ω2)
, (37)

where m = 0.0004, k = −1, ζ = 0.01, and ω = 2π × 54
rad/s.

The frequency response data, the continuous-time model
Gc, and the discrete-time model Gd are shown in Fig. 6.
Note that these models are not directly used for the
feedforward controller design but only used for the physical
analysis.

4.2 Conditions

The continuous-time reference r(t) is the 4th order poly-
nomial trajectory shown in Fig. 7. The sampling time of
the discrete-time controller is Ts = 5ms. The continuous-
time output y(t) is obtained by higher sampling frequency
in every 250 µs only for evaluation of the continuous-time
error e(t).

The approach using the multirate zero-order-hold differen-
tiator ξmr is compared to that using the backward differ-
entiator ξbd. The feedforward controller with acceleration
and snap is used in the experiment. The same viscous fric-
tion compensation with the basis function ṙ[k] = S d

dtr(t) is
used in each method. The tuning parameters are optimized
by the norm-optimal iterative learning control with several
iterative experiments (Bolder et al., 2014).
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Fig. 7. Continuous-time 4th order polynomial trajectory
reference: position r(t), acceleration r̈(t), and snap
˙̇ ˙̇r (t).
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Fig. 8. Tracking error e(t) in experiment with Ψ =
[ṙ, Ψa, Ψs]: using backward differentiator ( ) and
multirate zero-order-hold differentiator ( ). The
feedforward using the multirate zero-order-hold dif-
ferentiator outperforms that using the backward dif-
ferentiator in both rigid and flexible modes.

4.3 Experimental validation

The continuous-time error e(t) in the experimental result
is shown in Fig. 8. The tracking performance using the
multirate zero-order-hold differentiator is improved in two
points compared to that using the backward differentiator.
First, the acceleration feedforward compensates for rigid
dynamics correctly and the error during acceleration and
deacceleration periods of the reference becomes smaller.
Second, the snap feedforward compensates flexible dynam-
ics correctly and the error because of the mechanical reso-
nance becomes smaller. The results demonstrate that the
feedforward using the multirate zero-order-hold differen-
tiator outperforms that using the backward differentiator
in both rigid and flexible modes.

5. CONCLUSION

The low-order feedforward control approach considering
the sampled-data characteristics is developed to improve
both on-sample and intersample performance for reference
tracking in multi-modal motion systems. The feedforward
controller is linearly parameterized and the basis functions
are designed using the multirate zero-order-hold differen-
tiator for the state compatibility to the continuous-time
reference. Application to the multi-modal motion system
demonstrates a significant improvement in tracking per-
formance compared to the conventional approach in the
experiment. Ongoing research focuses on learning the tun-
ing parameters from the experimental data, rational ba-
sis functions considering the sampled-data characteristics,
and extension to the multi-input multi-output systems.
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