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Abstract: Disturbance rejection of a Hard Disk Drive (HDD) enables a large amount of data
storage in a recent information society. The aim is to design a feedback controller which rejects
disturbances at multiple frequencies in HDDs. The disturbance rejection is achieved using
resonant filters which have a large peak at disturbance frequencies. The developed approach
enables the convex optimization of resonant filters with phase stabilization and stroke limitation
using frequency response data of a controlled system. The disturbance rejection performance of
the optimized resonant filters is validated in a dual-stage actuator HDD benchmark problem.
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1. INTRODUCTION

Increasing demand for storage capacity of data servers
in a recent information society leads to the importance
of the track-following performance in a Hard Disk Drive
(HDD) (Atsumi, 2016). To improve the track-following
performance, the feedback controller should be designed
to reject disturbances in HDDs.

Model-based approaches are traditionally developed such
as using adaptive control (Ohno and Hara, 2006; Pérez-
Arancibia et al., 2010; Shahsavari et al., 2015; Sun et al.,
2017), resonant filter (Atsumi et al., 2007), repetitive
control (Fujimoto, 2009; Chen and Tomizuka, 2014),
Youla–Kucera parameterization (Chen and Tomizuka,
2016), disturbance observer (Zheng et al., 2017), and cou-
pling controller (Yabui et al., 2020). They basically need a
modeling process of a controlled system that makes it diffi-
cult to consider model variations of mass-produced HDDs.
These approaches also need a heuristic tuning process.
Data-based approaches are also developed to recover dis-
advantages of model-based approaches such as using H∞
and H2 robust control (Bashash and Shariat, 2019; Potu
Surya Prakash and Horowitz, 2022). These approaches
only consider the gain stabilization and it can result in a
conservative controller design. Hardware constraints such
as maximum strokes also should be considered for actual
implementation.

Although important contributions have been made to
design feedback controllers for disturbance rejection in
HDDs, phase stabilization and stroke limitation are not
considered in the optimization of feedback controllers. In
this paper, the developed approach enables the structured
multiple resonant filter design considering phase stabiliza-
tion and stroke limitation.
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Fig. 1. Hard disk drive with a dual-stage actuator.

The main contributions of this paper are as follows.

(1) Resonant filters for a dual-input single-output system
are designed by iterative convex optimization.

(2) Model variations of HDDs are directly dealt with
multiple sets of frequency response data.

(3) Phase stabilization and stroke limitation are consid-
ered in optimization calculation.

2. PROBLEM FORMULATION

Fig. 1 illustrates the basic schematic of a dual-stage
actuator HDD. This HDD consists of a Voice Coil Motor
(VCM) and a PieZoelecTric (PZT) actuator. The objective
of this benchmark problem is to minimize the tracking
error of the magnetic head (Atsumi, 2022). The track-
following performance is evaluated in 3σ(yc) the worst
case of three times of standard deviation value of the
continuous-time magnetic head position in steady state
response for 1 s. The track pitch is Tp = 52.7 nm and
sampling time is Ts = 1/(7200/60)/420 ≃ 1.9841× 10−6 s.
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Fig. 2. Block diagram of a hard disk drive with a dual-stage actuator.

10
2

10
3

10
4

-40

0

40

10
2

10
3

10
4

-360

-180

0

10
2

10
3

10
4

-40

0

40

10
2

10
3

10
4

-360

-180

0

Fig. 3. Frequency responses of given open-loop systems.
Top: PZT actuator Gp. Bottom: VCM Gv.

Because of the hardware constraints, the output stroke of
the PZT actuator must be smaller than 50 nm.

Fig. 2 shows the block diagram of the dual-stage actuator
HDD with continuous-time control systems Pc, discrete-
time feedback controllers Cd, discrete-time multirate filters
Fm. The subscripts p and v denote a PZT actuator and
VCM, respectively. The continuous-time control system
has 9 cases of model variations and the subscript kc =
1, . . . , 9 denotes the index of the 9 cases. m ∈ N is the
number of multirate. Im is interpolator for m times up-
sampling. Hm is multirate zero-order-hold in m times up-
sample. S is sampler.

The frequency response data of the given open-loop con-
trolled systems Gp and Gv in Fig. 2 that consists of the
controlled systems and pre-designed feedback controllers
(Atsumi, 2022) is shown in Fig. 3. In this benchmark
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Fig. 4. Amplitude spectrum of output disturbances.

problem, the external disturbances consist of repeatable
run-out dRRO, rotational vibration df , and fan-induced
vibration dp. These three disturbances can be combined
to one output disturbance d equivalently that is given by

dkc
(jωkf

) = Pcv,kc
(jωkf

)df (jωkf
) + dp(jωkf

)− dRRO(jωkf
). (1)

The amplitude spectrum of the output disturbance d in 9
cases is shown in Fig. 4.

In this paper, the reference signal is r = 0 in all time and
the objective is designing the resonant filters Frp and Frv

for each actuator in addition to given open-loop controlled
system Gp and Gv to minimize the worst case of track-
following error against to the output disturbance d.

3. CONVEX OPTIMIZATION OF MULTIPLE
RESONANT FILTERS UNDER CONSTRAINTS

In this section, the optimization method of multiple reso-
nant filters for a dual-stage actuator HDD is formulated.
The structure of the designed resonant filters is presented.
The optimization problem that directly uses frequency
response data is formulated with conditions of robust
stability, robust performance, and hardware constraints.
The optimization problem is solved by iterative convex
optimization with sequential linearization.

3.1 Structure of designed resonant filters

To improve the track-following performance, disturbances
can be rejected by the resonant filters (Atsumi et al., 2007)
that have the same resonance frequency as the disturbance
frequencies because of the internal model principle. In this
paper, multiple resonant filters are designed in disturbance
frequencies to improve the track-following performance.
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The block diagram of the designed resonant filters with
multiple resonance frequencies is shown in Fig. 5. The
resonant filter in each actuator is defined as
Fr,ku
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= ρT

ku
ϕ(jωkf

), (2)
where the subscripts that correspond to each actuator is
ku ∈ {p, v}, the number of designed resonance frequency
is nr ∈ N, the index of the resonance frequency is
kr = 1, . . . , nr, the tuning parameter is ρ = [ρp,ρv] that
consists of ρku

∈ R2nr+1, the resonance angular frequency
is ωr,kr

, and the damping coefficient is ζr,kr
.

The designed resonant filter consists of the sum of the
resonant modes and phase compensators that are defined
as

F (s) =
κs2 + κψs

s2 + 2ζrωrs+ ω2
r

. (3)

Fig. 6 shows the vector locus using a resonant filter and
the coefficients κ and ψ represent the gain and phase of
each resonant mode.

3.2 Optimization problem formulation

In this paper, robust stability, robust performance, and
hardware constraints are considered in frequency response
data. For robust performance, the resonant filters are op-
timized to minimize the worst case of the error amplitude
spectrum. For hardware constraints, the stroke limitation
of the PZT actuator is considered that the maximum
amplitude spectrum of yp is less than the maximum value
with the given feedback controller. For robust stability,
the vector locus with resonant filters must be on the same
side against (−1, j0) and at the outside of the modulus
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Fig. 6. Vector locus using a resonant filter with modulus
margin and phase stabilization in Nyquist diagram.

margin. From these conditions, the optimization problem
is formulated as follows.

minimize
ρ

max
∀kc,∀kf

|ekc
(jωkf

)| (4a)

subject to
∀kc,∀kf

|yp,kc
(jωkf

)| ≤ yp,max (4b)

ws(jωkf
)|Skc

(jωkf
,ρ)| ≤ 1 (4c)

−π
2
≤ ∠

(
1 + Lkc

(jωkf
,ρ)
)
− ∠

(
1 +Gkc

(jωkf
)
)
≤ π

2
, (4d)

where ws is the weighting of the sensitivity function and
Gkc

(jωr) = Gp,kc
(jωkf

) +Gv,kc
(jωkf

), (5)
Lkc

(jωkf
,ρ) = Lp,kc

(jωkf
,ρp) + Lv,kc

(jωkf
,ρv), (6)

Lp,kc
(jωkf

,ρp) = Gp,kc
(jωkf

)Frp(jωkf
,ρp), (7)

Lv,kc(jωkf
,ρv) = Gv,kc(jωkf

)Frv(jωkf
,ρv), (8)

Skc(jωkf
,ρ) =

1

1 + Lkc
(jωkf

,ρ)
. (9)

3.3 Convex optimization using sequential linearization

In (4a), the objective function can be equivalently given
by

minimize
ρ

max
∀kc,∀kf

|ekc
(jωkf

)| ⇔ maximize
ρ

min
∀kc,∀kf

1

|ekc
(jωkf

)|

⇔ minimize
ρ

−
(

min
∀kc,∀kf

∣∣∣∣ 1

dkc(jωkf
)

(
1 + Lkc(jωkf

,ρ)
)∣∣∣∣), (10)

where the error frequency response data is given by
ekc(jωkf

) = Skc(jωkf
,ρ)dkc(jωkf

). (11)
In (4b), the amplitude spectrum of the output of the PZT
actuator is evaluated as

|yp,kc
(jωkf

)| =
∣∣∣∣Lp,kc

(jωkf
,ρp)dkc

(jωkf
)

1 + Lkc
(jωkf

,ρ)

∣∣∣∣ , (12)

and the maximum value with the given feedback controller
is given by

yp,max = max
∀kc,∀kf

∣∣∣∣Gp,kc
(jωkf

)dkc
(jωkf

)

1 +Gkc
(jωkf

)

∣∣∣∣ . (13)

In (4d), the angle of the vector locus is evaluated by atan2
function using the real and imaginary part of the vector
locus. From these analyses, the optimization problem is
given by (14).

The optimization problem (14) is nonlinear and non-
convex. Using sequential linearization, the optimization
problem can be calculated by the iterative convex opti-
mization and is given by (15).
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4. VERIFICATION OF DISTURBANCE REJECTION
PERFORMANCE

In this section, the verification of disturbance rejection
performance is conducted in a dual-stage actuator HDD
benchmark problem. The result shows that the resonant
filters are optimized with the conditions of robust stabil-
ity, robust performance, and hardware constraints. The
track-following performance with designed resonant filters
outperforms that without resonant filters.

4.1 Conditions

The frequency response data is used from 100Hz to
Nyquist frequency Fs/2 = 1/2Ts = 25.2 kHz. The fre-
quency response data is arranged at linearly even intervals
in every 1Hz and the number of data points is nf = 25101.
Nyquist diagram, sensitivity function, amplitude spectrum
of e, and amplitude spectrum of yp without resonant filters
are shown in Fig. 7, Fig. 8, Fig. 9, and Fig. 10. From Fig. 9,
the resonant filters are designed at eight frequencies with
vertical black dotted lines, and the dumping coefficients of
all resonant filters are set to ζr = 0.05. For the initial
condition, all tuning parameters are set to ρ = 0 and
Frp = Frv = 1. In the robust stability condition, the
modulus margin is set to 1/ws = 6dB.

4.2 Optimization results

The optimization of the resonant filter design is conducted
by YALMIP (Lofberg, 2004) and Mosek (Mosek, 2021)
until the improvement of the objective function from the
previous iteration becomes less than 0.1%. Nyquist dia-
gram, sensitivity function, amplitude spectrum of e, and
amplitude spectrum of yp with resonant filters are shown
in Fig. 11, Fig. 12, Fig. 13, and Fig. 14. The optimization
result shows that the resonant filters are designed with
conditions of robust stability, robust performance, and
hardware constraints in 9 cases of the controlled system.

4.3 Simulation results

The time domain simulation is conducted in a dual-
stage actuator HDD benchmark problem without and with
resonant filters in 9 cases of the controlled system. Fig. 15
shows the track-following performance. It shows that the
tracking errors with resonant filters are smaller than those
without resonant filters in all 9 cases. Fig. 16 shows the
maximum stroke in a PZT actuator. It shows that the
maximum stroke values with resonant filters are almost the
same as those without resonant filters and both controlled
systems satisfy the stroke limitation. As a result, the
controlled system with resonant filters outperforms that
without resonant filters.
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Fig. 7. Nyquist diagram without resonant filters.
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Fig. 10. Amplitude spectrum of yp without resonant filters.
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Fig. 11. Nyquist diagram with resonant filters.
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Fig. 12. Sensitivity function with resonant filters.
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Fig. 13. Amplitude spectrum of e with resonant filters.
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Fig. 14. Amplitude spectrum of yp with resonant filters.
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Fig. 15. Simulation results of track-following performance
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Fig. 16. Simulation results of maximum stroke in a PZT
actuator max|ycp|. × and ⃝ denote without and with
optimized resonant filters.

5. CONCLUSION

In this paper, the design method of optimal resonant
filters is developed to improve track-following performance
in a dual-stage actuator HDD. The resonant filters with
structured parameterization are optimized by iterative
convex optimization directly using the frequency response
data of the controlled system. Robust stability, robust
performance, and hardware constraints are considered for
the optimization calculation in 9 cases of the controlled
system. The disturbance rejection performance of the opti-
mized resonant filters is validated in a dual-stage actuator
HDD benchmark problem. Ongoing researches focus on
the usage of both frequency domain and time domain data,
designing other feedback controllers simultaneously, and
the optimal design of multirate filters.
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