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Abstract—Electricity price forecasting (EPF) is critical in
energy markets, particularly with the rise of renewable energy
sources (RES) in Japan, which can cause day-ahead spot prices
to drop to nearly zero JPY/kWh, impacting retailer profitability.
This study demonstrates that the Convolutional Neural Network-
Long Short-Term Memory (CNN-LSTM) model outperforms the
LSTM model in both prediction accuracy and computational
efficiency in Japan’s electricity spot market. A novel ensemble
learning strategy enhances both the robustness and accuracy
of the EPF model is proposed. Novel multimodal explanatory
variables, including electricity spot price, system price, discre-
tionary cost, sell bid amount, buy bid amount, total contracted
volume, actual power generation, actual solar power generation,
meteorological forecasts and calendar forecasts, alongside the
rolling features of spot prices, are utilized and verified. Fur-
thermore, a ”policy-versus-policy” approach addresses the zero-
inflated regression issue of the zero price prediction is proposed.
Our model, with a comprehensive feature integration, achieves
an RMSE of 5.66 JPY/kWh and an R2 of 0.729 during the test
range from 2022.01.01 to 2022.12.31. The paper also introduces a
novel method for estimating confidence intervals using ensemble
learning.

Index Terms—electricity price forecasting (EPF), renewable
energy source (RES), CNN-LSTM, ensemble learning, zero elec-
tricity spot price, confidence interval

I. INTRODUCTION

In recent years, the increased penetration of RES, particu-
larly from wind and solar sources, has introduced an unprece-
dented phenomenon in the US and EU electricity markets:
negative electricity spot prices [1], [2]. However, the situation
in Japan presents a distinct narrative. With the significant
introduction of solar and wind energy into the Japanese power
grid, the electricity wholesale spot markets have witnessed
prices approaching nearly zero, specifically at 0.01 JPY/kWh
(referred to as zero prices in the following sections of this
paper). The electricity spot prices in Kyushu region, Japan, is
depicted in Fig. 1(a). A closer look at the intermittent zero
prices is presented in Fig. 1(b). As evident from Fig. 1(a), the
emergence of considerable zero prices became prominent from
the year 2020 onwards, largely attributable to the rapid inte-
gration of RES. In this evolving energy landscape, day-ahead

electricity price forecasting (EPF) in electricity spot markets
has emerged as a paramount concern [3]. Statistical models
such as the Autoregressive Moving Average (ARMA) [4],
[5] and Autoregressive Integrated Moving Average (ARIMA)
[6]–[8] have been widely employed in EPF studies. While
these models provide foundational approaches, their inherent
linearity can pose challenges. The increased integration of
RES, along with factors like demand fluctuations, introduces
non-linear trends and sudden price anomalies that traditional
statistical models may struggle to capture accurately.

Moreover, as is shown in Fig. 1(b), after data normalization,
the considerable durations of zeros resulted by the zero prices
in the target variable create a zero-inflated regression problem
in machine learning. However, it is almost impossible for
most machine learning models, including Random Forest
(RF), Support Vector Regression (SVR), and neural networks,
to continuously output zeros. Traditional solutions for zero-
inflated regression problem usually requires two models: one
classification model to identify zero values and another regres-
sion model for non-zero values, which doubles the training
time and cost.

To address the challenges mentioned above, this paper’s
objective is to utilize multimodal data as novel features to
enhance electricity spot price forecasting (EPF) in Kyushu re-
gion, Japan, using LSTM and CNN-LSTM prediction models.
In addition, a novel ensemble learning approach is leveraged
to further enhance the prediction accuracy of LSTM and CNN-
LSTM due to the their inherent uncertainties. The performance
of the LSTM and CNN-LSTM in EPF is compared in terms
of both prediction accuracy and computation time. Moreover,
to shoot the zero-inflated problem in the JEPX spot market, a
novel ”policy versus policy” strategy is employed to forecast
the zero prices to half the computation time which traditional
two-stage method requires. Furthermore, a natural logarithm
transformation is utilized to improve the spot price’s Skewness
and Kurtosis to enhance prediction accuracy. Moreover, a
novel method for extracting meteorological forecast data by
utilizing Google Maps is introduced. Finally, an implication
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Figure 1. Kyushu electricity spot price [JPY/kWh] (a) and
zooming-in zero-inflated prices (b).

of a novel estimation method for the confidence interval of
EPF is demonstrated.

II. METHODOLOGY

A. LSTM and CNN-LSTM forecasting models

A LSTM model and CNN-LSTM model were designed
and employed for EPF and for comparison using the Python
Tensorflow keras library. The architectures of the LSTM and
CNN-LSTM models are delineated in Fig. 2, the hyperparam-
eters were selected empirically based on optimal performance.
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Figure 2. Schematic of the architectures of the (a) LSTM and
(b) CNN-LSTM models.

B. Ensemble learning strategy

Given the inherent variability of neural network models due
to their sensitivity to initial conditions and the stochastic nature
of their training, training the same neural network multiple
times and averaging the predictions can mitigate individual
model errors, leading to enhanced prediction performance, as
different models will not make identical errors on the test set
[9], [10]. Based on this understanding, an ensemble learning
approach was implemented. The CNN-LSTM and LSTM

models underwent multiple training iterations. Subsequently,
all individual predictions were aggregated using a simple
averaging method to construct the final ensemble prediction,
as depicted in (1), where N represents the total number
of predictions, and k denotes the index of each individual
prediction.

ŷensemble =
1

N

N∑
k=1

ŷk (1)

For clarity, the pseudo-code for the ensemble learning
procedure is outlined in Algorithm 1.

Algorithm 1 Ensemble Learning Procedure

1: Perform log transformation of the electricity spot price
using (9).

2: Normalize the training and test data.
3: for i = 1 to 30 do
4: Train the model to generate prediction ŷi.
5: end for
6: Restore the predicted values to their original scale (reverse

data normalization).
7: Apply the exponential transformation to the predicted

values using (10) (reverse of the log transformation).
8: Calculate the ensemble prediction ŷensemble using (1).
9: Calculate the zero price for ŷi and ŷensemble using (2).

C. ”Policy-versus-policy” zero prices forecasting strategy

In this study, we introduce a novel method to address the
zero-inflated regression problem of the EPF in JEPX spot
market. The solution begins with understanding the broader
trends in global electricity spot markets. As highlighted by
Seel et al. [1], an abundance of RES can lead to negative
electricity spot prices in the US and EU. Drawing from this,
we infer that negative pricing is a natural consequence of
RES abundance. In Japan, policy dictates that electricity spot
prices cannot drop below 0.01 JPY/kWh, thereby preventing
them from turning negative. Assuming that the circumstances
leading to negative prices in the US and EU are similar to those
in Japan, it is reasonable to infer that the explanatory variables
in both scenarios would exhibit similar patterns. Feeding
these Japanese explanatory variables into a machine learning
regression model would naturally produce negative prices, as
the model is not constrained by Japan’s minimum pricing
policy. Hence, by leveraging this premise, zero prices can be
forecast by translating any negative outputs from the model
to zeros, as indicated in Algorithm 1. This approach effec-
tively functions as a policy-versus-policy forecasting strategy,
reflecting real-world conditions. Equation (2) illustrates the
zero price calculation procedure.

ŷi = max(0, ŷi) (2)



D. Performance evaluation

Performance metrics, including root mean squared error
(RMSE) and the coefficient of determination (R2), were uti-
lized for evaluation. The computational formulae for RMSE
and R2 are specified in (3)-(4), respectively.

RMSE(y, ŷ) =

√∑n
t=1(yt − ŷt)2

n
(3)

R2(y, ŷ) = 1−
∑n

t=1(yt − ŷt)
2∑n

t=1(yt − ȳ)2
(4)

III. DATA PREPARATION

This study utilizes multimodal data for enhanced EPF,
including the actual total power generation, actual solar power
generation, spot price rolling features (minimum, maximum,
mean, and standard deviation), system spot price, discretionary
cost, sell bid amount, buy bid amount, total contracted volume,
meteorological forecast data, and calendar forecast data. The
overall data architecture and the corresponding time frame are
illustrated in Fig. 3. The input data are segmented by their
temporal deley into three green blocks. To maintain consis-
tency with the Japan Electric Power Exchange (JEPX) spot
price data, all input data were linearly interpolated to a time
resolution of 30 min. A 7-day moving window was applied
to the input data before being fed into the CNN-LSTM and
LSTM models. In the JEPX spot market, all transactions must
be finalized by the bidding deadline of 10:00 JST. To ensure an
accurate and comprehensive prediction process, ample time is
allocated for the execution and potential refinements of neural
network calculations. Given the computational requirements
and the complexities of the forecasting process, a 5-h buffer
before the deadline has been established. The forecasting time
point is set to 05:00 JST, covering the entire following day
from 00:00 JST to 23:30 JST, which includes 48 time frames
in total.

In this study, since photovoltaic (PV) power is the primary
RES in the Kyushu region due to its substantially greater in-
stalled capacity compared to wind power, features pertaining to
wind power are not incorporated into the current investigation.

A. Feature engineering

Feature engineering was conducted using a method that
involves calculating rolling statistics (minimum, maximum,
mean, and standard deviation) of the electricity spot price
with a rolling window. This method is crucial for capturing
temporal patterns and trends, which are essential for time
series feature extraction. The length of the rolling window
was chosen to be 24 h, i.e., w = 48. The equations for these
calculations are provided in (5)-(8).

Mint = min(yt−w+1, yt−w+2, ..., yt) (5)

Maxt = max(yt−w+1, yt−w+2, ..., yt) (6)

Meant =
1

w

t∑
i=t−w+1

yi (7)

Stdt =

√√√√ 1

w − 1

t∑
i=t−w+1

(yi − Meant)2 (8)
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Figure 3. Illustration of the data architecture with a 30-min
time interval, highlighting the time delays among different

data.

B. Electricity data

The electricity spot prices (JPY/kWh) at a 30-min reso-
lution, including the Kyushu regional spot price, system spot
price, discretionary cost, sell bid amount, buy bid amount, and
total contracted volume, from 00:00 JST to 23:30 JST (over a
7-day period), were downloaded from the Japan Electric Power
Exchange (JEPX) [11].

The distribution of the Kyushu region electricity spot prices,
as illustrated in Fig. 4(a), exhibits pronounced Skewness
and Kurtosis, indicating a non-normal distribution. Neural
network models typically assume that input data are normally
distributed or, at least, exhibit symmetry in their distribu-
tion since this facilitates the model’s learning process by
providing a standardized scale of input features. Deviations
from normality, such as Skewness and Kurtosis, can introduce
biases in the model’s predictions and affect the efficiency of
the learning algorithm. To mitigate these effects, a natural
logarithm transformation was applied to the electricity spot
prices, as detailed in Fig. 9. This transformation is a common
technique in statistical normalization that reduces the impact
of Skewness by compressing the scale of the distribution,
thereby enhancing symmetry and reducing the influence of
outliers. The effectiveness of the logarithmic transformation
is quantitatively evidenced by the reduction in Skewness and
Kurtosis of the price data, as outlined in Table I. Following the
model’s prediction output, an exponential back-transformation,
defined in (10), is applied to convert the forecasted values back
to their original scale.

y = loge(y + 1) (9)



y = ey − 1 (10)
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Figure 4. Distribution of Kyushu region’s electricity spot
prices (a) and the corresponding distribution after a natural

logarithm transformation (b).

TABLE I. Skewness and Kurtosis of the original electricity
spot price and the natural logarithm-transformed electricity

spot price.

Original Log-transformed

Skewness 8.77 -0.68
Kurtosis 123.00 3.81

The actual electricity generation data (MW) at a 30-min
resolution in the Kyushu region, including the actual power
generation and actual solar power generation over a 7-day
period from 05:00 JST to 05:30 JST, were downloaded from
the Organization for Cross-regional Coordination of Transmis-
sion Operators, Japan (OCCTO) [12]. These data were used
as input features and are depicted in the leftmost green block
in Fig. 3.

C. Meteorological forecast data

The meteorological forecast data of Kyushu region, includ-
ing the wind speed, air temperature, relative humidity, cloudi-
ness, precipitation, solar radiation, were downloaded from
the Japan Meteorological Business Support Center (JMBSC)
[13], as illustrated in the rightmost green block in Fig. 3.
The Kyushu region map was a rectangular screenshot from
Google Maps Styling Wizard [14]. The identification of the
land area from the Kyushu region map was conducted using
the Python OpenCV library [15] applied to the screenshot
image of Kyushu region from Google Maps. Fig. 5(a) displays
the original screenshot of the map for the Kyushu region.
In this step, pixels that are not within the defined blue

color range are identified as land. Subsequently, Fig. 5(b)
showcases the delineated land areas from Fig. 5(a), with red
dots marking these regions. After the identification of land,
the meteorological data of all the land area were averaged as
input features.

(a) (b)

Figure 5. Kyushu area map (a) and the identified land areas
(b). Map data: ©2024 Google, TMap Mobility.

D. Calendar forecast data

The calendar forecast data, by integrating the cyclic data and
culturally significant Japanese holidays, aimed to enhance the
EPF accuracy by accounting for the unique electricity con-
sumption behaviors associated with these special occasions,
covering a 7-day period from 00:00 JST to 23:30 JST, were
used as features, as illustrated in the rightmost green block in
Fig. 3.

1) Cyclic data: In this study, we employ sine and co-
sine transformations with periods corresponding to common
cyclical patterns: 1 day, 1 week, 3 months, and 1 year. Such
transformations have been acknowledged in foundational time
series literature as a robust method to encapsulate periodic
patterns in data [16]–[18]. The input features consist of the
sine and cosine waves representing 1 day, 1 week, 3 months
(seasonal effects), and 1 year. The sine and cosine waves with
a period of 1 year is shown in Fig. 6.
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Figure 6. Sine and cosine waves with a period of 1 year.

2) Holiday data: The holidays and non-holidays were
encoded into numerical labels 1 and 0, respectively.

E. Prediction approach

A One-time prediction schematic, shown in Fig. 7(b), is
used to validate the proposed features as it requires much
less training time compared with the day-by-day prediction



schematic shown in Fig. 7(a). In this scenario, the training
data spaned from April 1, 2016 — the date marking the full
liberalization of the electricity retail market — to December
31, 2021. The testing data encompass the period from January
1, 2022 to December 31, 2022. All the features proposed
in Section III has been validated for prediction accuracy
enhancement.

After validating the proposed features using the test data
which spans the entire 2022 year, the day-by-day prediction
approach was conducted using all proposed features to explore
the actual prediction accuracy in real-application scenarios, as
illustrated in Fig. 7(a), which shares the same test range in
the one-time prediction schematic. The training of the models
was conducted using two NVIDIA Quadro RTX 8000 GPUs
using the Python keras package in Windows OS.

Day i Day i+1・・・・・・ Day i+365

Training data Test data

・・・・・・

Data set

・・・・・・

Day i Day i+1・・・・・・

Data set

Day i+2 Day i+3 ・・・・・・

Training data Test data

Training data Test data

Training data Test data

(a)

(b)

Figure 7. Day-by-day prediction schematic (a) and one-time
prediction schematic (b).

IV. RESULTS AND DISCUSSION

A. Ensemble learning results

An ensemble learning technique was applied to each feature
set to generate ensemble predictions. Table II presents the
prediction accuracy and the computation time of the proposed
LSTM and CNN-LSTM models. According to Table II, the
CNN-LSTM only has half the computation time of the LSTM
for same training times of ensemble learning, while still
boasts higher prediction accuracy over the LSTM using less
computation time.

TABLE II. Prediction accuracy and computation time com-
parison.

Model Computation time Ensemble times R2 RMSE

LSTM 59 min 15 0.5782 7.062
LSTM 120 min 30 0.5821 7.028

CNN-LSTM 60 min 30 0.5825 7.027
CNN-LSTM 40 min 20 0.5824 7.031

The prediction results utilizing all the features using the
day-by-day prediction approach is depicted in Fig. 8. It is
noteworthy from Fig. 8 that each training iteration results in a
unique individual prediction on the test set, underscoring the
inherent uncertainty in the neural network training process.

The proposed ensemble learning approach effectively reduces
the variability inherent in individual model predictions. Al-
though some individual predictions may diverge markedly
from the actual electricity spot prices, the ensemble method,
described in (1), averages these forecasts to produce a more
reliable final prediction. The model is capable of predicting
zero prices, indicating the validity of the ”policy-versus-
policy” zero prices forecasting strategy. The ensemble learning
metrics for the day-by-day prediction approach using all the
proposed features is illustrated in Table III. By using the day-
by-day prediction approach, the prediction accuracy is much
improved compared with the one-time prediction approach.

TABLE III. Ensemble learning metrics for the day-by-day
prediction approach using all proposed features.

Metrics

RMSE R2

5.66 0.729

B. Implications for EPF’s confidence interval

In Fig. 8, it is noteworthy that when the ensemble learning
prediction accuracy is high, the 30 individual predictions
tend to highly overlap each other and also demonstrate high
prediction accuracy, as shown for the period 2022.05.09-
2022.05.14 in Fig. 8(b). Conversely, when the ensemble learn-
ing fails to predict the actual value accurately, the 30 individual
predictions tend to diverge from each other without overlaping.
The standard deviation of the 30 individual predictions at the
same time point is calculated and used to compute the Person
correlation efficient with the ensemble learning prediction
error at the same time point. The correlation efficient value
is 0.462, indicating a moderate correlation. By utilizing the
above-mentioned phenomenon, a novel confidence interval
estimation method for EPF can be developed in our future
work.

V. CONCLUSIONS AND FUTURE WORK

This study has proposed an innovative EPF framework that
utilizes multimodal data augmented by an ensemble learning
technique. The CNN-LSTM model is superior over the LSTM
model in both prediction accuracy and computation time. The
logarithm transform of the pre-processing for the electricity
spot price data has been shown crucial for EPF in the Japan
electricity spot market. A ”policy-versus-policy” strategy has
been proposed to solve the zero-inflated regression problem,
which halfs the computation time compared with traditional
two-stage method. By using the day-by-day prediction ap-
proach, the ensemble learning method achieved achieved a
RMSE and (R2) of 5.66 JPY/kWh and 0.728 over the test
range of the full year 2022. An implication for a novel
estimation method of the EPF’s confidence interval using the
ensemble learning approach has been proposed.
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Figure 8. Individual and ensemble predictions for the test range of May and September in 2022, using all the proposed
features and day-by-day prediction approach.
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