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Abstract—This paper proposes a novel electricity price forecast
method for demand responses (DRs) who participate in the
electricity market. The conventional forecast methods, especially
machine learning-based methods, tend to model the featured
training data by minimizing the mean-square-error (MSE). In
such methods, the loss function is defined to be the MSE.
However, due to the characteristics of the DRs, a forecast result
with a good MSE value is not necessarily more beneficial for
the DRs in a deregulated market environment. Alternatively,
the proposed method modifies the conventional loss function
to inclusively consider the gradient of the forecast data. The
loss function is designed in such a way as to improve the
Extremum Timing Accuracy (ETA), a profit-oriented criterion
of the forecast results so that the economic benefits of the
DRs can be further boosted. Forecast results on the clearing
price of the day-ahead energy wholesale market in Japan, the
JEPX spot market, by neural network with the proposed profit-
oriented loss function are tested. Performance comparison with
the conventional neural network forecast is also reported. It is
proved that the proposed forecast method increases the market
profit of the DR successfully.

Index Terms—Demand Responses, Electricity Market, Price
Forecast, Machine Learning, Neural Network

I. INTRODUCTION

In a competitive market environment nowadays, the gen-
eration side and the consumer side submit bids respectively
for selling and purchasing electricity to the trading pool and
the electricity price is decided when the market is cleared by
the market operator [1]. With the progressing of electricity
market deregulation and the increasing needs for external
resources to address the supply and demand imbalances caused
by renewable generation, the demand-side resources such as
DRs are welcomed to participate in the market.

Under such circumstances, the electricity prices might rise
or drop excessively depending on the actions of individual
participants [2]. Meanwhile, the price can only be known
when the market is cleared. Moreover, the existing markets
in the world are mostly in a day-ahead or hour-ahead scheme
to ensure real-time system operation due to the non-storable
nature of electricity. As a result, the prediction task might be
extremely complicated.
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However, the market price is crucial to the market par-
ticipants. Decision-making processes such as bidding strat-
egy optimization and self-operation scheduling relies highly
on the price information, thus many techniques have been
adopted to challenge the task. Among all, time-series models
capable of prediction based on the historic values without
extra information input is a cost-effective approach [3]. The
application of the auto-regressive integrated moving average
(ARIMA) model in electricity price forecasting can be found
in [4]. To further consider the the seasonal trend of market
price, the seasonal auto-regressive integrated moving average
(SARIMA) model is implemented in [5], [6]. Additionally,
signal analysis techniques such as the wavelet transform are
also applied to process the historical data for stochastic time-
series forecast [7].

The rapid development of machine learning has also pro-
vided new and attracting options. Machine learning based fore-
cast model can detect and extract correlations from enormous
data autonomously. Forecast method based sorely on neural
network can be found in [8]–[10], while combination with
stochastic time-series analysis is reported in [11], [12]. [13]–
[15] utilized deep learning networks featuring more sophis-
ticated convolution neural network (CNN) and long short-
term memory (LSTM) structure. Besides, a random forest
regression model is developed to forecast New York electricity
price in [16].

So far, most of the existing price forecast techniques only
focus on the numerical precision of every forecast point. 27
methods for electricity prices forecasting are compared in
terms of symmetric mean absolute percentage error (sMAPE)
in [17]. However, it is proved in [18] that numerical precision
of the forecast result is not an appropriate criterion for the DRs
in the aspect of economic benefits. The DRs are demand-side-
owned equipment and participating in the market is usually not
their priority. Hence the DRs are very sensitive economically.
The main contribution of this paper is proposing a novel
forecast method from an economic perspective. Such a forecast
method has not been seen in the existing literature.

The rest of this paper is organized as follows: Section II
introduces the profit-oriented forecast criterion for the DRs.
The novel loss function design is discussed in Section III.
Forecast simulation with the real historical price of the day-



ahead energy market in Japan is demonstrated to validate the
performance of the proposed forecast method in Section IV,
followed by the conclusion in Section V.

II. PROFIT-ORIENTED FORECAST CRITERION

The mean-square-error (MSE) is commonly used to evaluate
the forecast result by summing the square of the forecast
errors of all the forecast points. The smaller the MSE, the
closer the result is to the actual value and the better the
result is considered. Likewise, the mean-absolute-error (MAE),
sMAPE and the Huber Loss are also regular approaches for
regression tasks [17], [19]. All of these methods focus on the
numerical precision of every single forecast point. The concept
is very straightforward and intuitive since a good forecast
result should be as close to the actual values as possible. These
error-based evaluations are positive values whose scale might
vary with different datasets. To get a general impression of
how good a forecast it is without knowing the scale of the
actual datasets, the MSE is sometimes converted linearly to
the R-squared coefficient which is a unit value in most cases.
The forecast result is considered good when the R-squared
coefficient is close to 1.

For market participants like a generation company or an
electricity retailer, a precise forecast on every time step is
desired. The day-ahead generation plan or electricity pur-
chase/sell plan covers the whole day and needs to be scheduled
according to the forecast of the energy whole sell market price.
However, the situation is different for the DRs. It is first
reported in [20] that an EV aggregator gains 88.3% of the
theoretical maximum revenue from the frequency regulation
market during the parking time with a ’poor’ prediction whose
R-squared value is only 0.2. Typical DRs are household
equipment such as water heat pumps, electric vehicles (EVs),
or air conditioners with their own purposes and hence are
unlikely to participate in the market for a long time span.
Meanwhile, the capacity of an individual DR is very small
even when aggregated compared to other traditional resources
in the system. In a single-price auction market like most of
the actual energy spot markets in the world, the DR will only
act as a price taker and cannot affect the market price directly
as big generation or consumption resources do.

Given the above inherent characteristics of the DRs, the
conventional evaluation such as the MSE might not be ap-
propriate since it is sorely based on the sum of the error
of all the forecast points. The most critical information for
DRs from a profit perspective is the timing of the peak and
dip in the market price. The price peaks and dips are the
most profitable moments, thus the DRs should arrange their
schedule and participate in the market at that moment to utilize
it. Under such circumstances, the accuracy of the timing of the
price peak and dip should be taken into consideration when
evaluating a forecast result. The Extremum Timing Accuracy
(ETA) is proposed in [18] to evaluate the forecast results as
follows:

ETA =

∑
i∈LmaxF T (i)−

∑
i∈LminF T (i)∑

i∈LmaxA T (i)−
∑

i∈LminA T (i)
(1)

T is the actual price in the time series. Lmax and Lmin are
the indexes of the local maximum and local minimum point,
while F and A stand for the forecast result and the actual
price respectively. Like the R-squared coefficient, ETA is a
unit value with 1 indicating most profitable and 0 indicating
unprofitable.

An example of the application of the ETA is given here. Two
forecast results are shown in Fig. 1. At first sight, Prediction
2 seems to be the better prediction with an R-squared value
of 0.87 apparently, while the R-squared value of Prediction
1 is only 0.19. However, the timing of the highest and the
lowest price in Prediction 2 is completely wrong. For a simple
battery storage system that intends to purchase energy at a
low price and sell at a high price, only 0.62 profit can be
obtained. On the contrary, Prediction 1 is correct about the
timing of the highest and the lowest price and full profit can
be achieved. The ETA of Prediction 1 and Prediction 2 is 1
and 0.3 respectively, consistent with the profit calculation. The
details of the example are laid out in Table I. Conclusively, a
forecast result with a high ETA value can be regarded as more
profitable for DR operation scheduling.

Fig. 1. Example of price forecast result comparison.

TABLE I
OPERATION SCHEDULE AND PROFIT: AN EXAMPLE

Charge Time Discharge Time R2 ETA Profit
Actual 5 15 1 1 2

Prediction 1 5 15 0.19 1 2
Prediction 2 1 19 0.87 0.3 0.62

III. THE PROFIT-ORIENTED LOSS FUNCTION

All machine learning techniques require a loss function as a
learning target. Typically, the loss function is not only used to
evaluate the learning result, but the steepest gradient descent
of the loss function also guides the direction of the learning.
In deep neural networks, the gradient of the loss function with
respect to the learnable weights of the network is calculated
via backpropagation to update the network [21].



According to the discussion in Section II, a profit-oriented
forecast can be interpreted as producing a forecast result with
a high ETA value. The loss function of the profit-oriented
forecast should be implemented in a way that maximizes the
ETA value. One reason that MSE is frequently chosen as
the loss function is that its gradient can be calculated easily.
Unfortunately, the ETA defined in (1) is non-differentiable
since the definition includes the process of searching for
the local extremums. One solution is to find an analytic
continuation of the ETA. Denote Y (t) and T (t) to be the
forecast and actual value, the analytic continuation of the ETA
is expressed as:

ETA =

∑
t T (t)[2σ(k∇Y −ReLu(−∇Y −∇Y +))− 1]∑
t T (t)[2σ(k∇T−ReLu(−∇T−∇T+))− 1]

(2)

where
∇Y − = Y (t)− Y (t− 1) (3)

∇Y + = Y (t+ 1)− Y (t) (4)

∇T− = T (t)− T (t− 1) (5)

∇T+ = T (t+ 1)− T (t) (6)

σ is the sigmoid function and ReLu is the ReLu function.
k is a scaling coefficient. Equation (2) then becomes differen-
tiable.

However, the gradient of (2) is mainly zero. In fact, this
phenomenon is reasonable. The basic idea of ETA is to
evaluate the accuracy of the foretasted local maximum and
minimum timing, and the change in the non-local-extremum
point values will not affect the ETA since they are not involved
in the calculation of the ETA. To sum up, the ETA is a much
looser criterion than the MSE by definition. Therefore, even
though it is a good criterion for forecast result evaluation, it
cannot provide too much information and guidance for the
network training process.

The more practical solution is to alter the existing MSE loss
function without inserting ETA directly. As the overall trend
is more decisive than actual point values in ETA, the proposed
profit-oriented loss is given as:

L =
∑
t

(Y (t)−T (t))2+α
∑
t

[σ(β∇Y −)−σ(β∇T−)]2 (7)

α and β are two tuning parameters. The former part of (7)
is the conventional MSE loss function. The latter part is to
improve the ETA. The larger α is, the more significant the
ETA part in the overall loss function will be. ∇Y − and the
∇T− can be regarded as the derivatives of the forecast and the
actual price. The sigmoid function and the tuning parameter β
convert the derivatives of Y close to 1 when Y (t)−Y (t−1) >
0 and close to 0 when Y (t)− Y (t− 1) < 0. Through such a
design, there will be losses when the forecast Y and the actual
price T are moving in the opposite direction. If the moving
direction of Y and T is consistent, the timing of the local
extremums is expected to be the same, and the ETA would
increase in turn.

It is notable that by inserting the ETA part into the loss
function, the proposed loss function is trying to trade off some
degradation in MSE for the improvement of ETA. The trade-
off degree is controlled by the tuning parameter β. If β is too
big, the gradient of L will become mostly zeros, providing
no information for training. If β is chosen too small, only the
center part of the sigmoid function will be activated, which
is nearly linear. The ETA part then becomes equivalent to the
MSE of the derivative of Y (t), and the learning might be
directed to the minimization of MSE again, resulting in no
improvement of ETA.

IV. SIMULATION RESULTS

A 3-layer neural network is used to forecast the spot price of
the energy wholesale market in Japan: the JEPX spot market.
The JEPX spot market is a day-ahead single-price auction
market with a 30-minute time step. The market participants
need to submit the bid by 10:00 one day before [22]. The
structure of the neural network is illustrated in Fig. 2. The
proposed loss function in (7) is implemented in the regression
layer. The historical data from April 1st, 2022 to May 31st,
2023 is used as the training set. The focus of this paper is to
examine the performance of the proposed loss function. The
detailed design of the network structure is outside the topic of
this paper. The training and testing of the neural network is
completed in MATLAB 2023b.

Fig. 2. Structure of the Neural Network

The R-squared and ETA values with the proposed profit-
oriented loss function are shown in Fig. 3. The R-squared
and ETA values of the training result with the conventional
MSE loss function are 0.84 and 0.61 respectively, which are
denoted by the horizontal black lines for comparison. The ETA
is generally improved compared with the conventional MSE
loss function, but the extent of improvement depends on the
tuning parameters.

With the increase of α, the influence of the ETA part in
the loss function gradually expands and the ETA values rise.
However, the over-domination of the ETA part will also result
in a severe drop in the R-squared value. On the other hand,
β = 10 provides the best performance compared to other
values examined. As pointed out in Section III, the learning
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Fig. 3. The Training Result with Proposed Loss Function

is directed to optimize the MSE when β = 1. The ETA value
hardly improved and the R-squared value did not decline with
increasing α. When β is over 50, the sparsity of the loss
function gradient results in insufficient guidance for learning.
The improvement in ETA is limited compared to the β = 10
case.

Based on the above analysis, α = 25 and β = 10 are
used to forecast the JEPX spot price from June 1st, 2023
to November 15th, 2023. A fraction of the forecast results
are plotted in Fig. 4. Compared with the forecast using the
conventional MSE loss function represented by the red line,
the forecast result using the proposed method is less sharp
at the price peaks and dips. However, the DR cares more
about the timing of the peaks and dips rather than their exact
value. The deterioration of the MSE in these parts is traded for
the improvement in ETA. The ETA of the conventional MSE
forecast is only 0.57, while the ETA of the proposed method
is 0.61.

Actual

MSE Forecast

Proposed Forecast

Fig. 4. Forecast Result

The forecast results are provided for a simple demand-

side battery storage system that intends to purchase charging
power from the energy spot market and sell the power back
to the market by discharging power to gain profit. The daily
operation scheduling of the DR is described as an optimization
problem in (8):

maximize
State(t)

Pmax

∑
t

Y (t)State(t) (8a)

subject to SOC(t) = SOCinitial − Pmax∆t
∑
t

State(t),

(8b)
0 ≤ SOC(t) ≤ 1, (8c)

−
∑
t

State(t) ≤ n if State(t) < 0 (8d)

The DR aims at maximizing its one-day profit by the
objective function (8a) and the given forecast result Y (t).
Pmax is the maximum power output of the DR. State(t) ∈
[−1, 1] denotes the charging and discharging schedule to be
optimized. The state-of-charge (SOC) of the DR is calculated
by constraint (8b) and maintained by constraint (8c). To
prevent massive battery deterioration, the number of charging
cycles is limited by (8d) where n is the number of charging
cycles allowed per day. ∆t is the length of the market time-
step.

In this simulation, the DR’s capacity is 10MWh with a
maximum power output of 10MW. n = 2 charging cycles are
allowed per day. The optimization is executed on a daily basis
by Mixed Integer Linear Programming. The profit of the DR
is calculated as in (9) since the DR acts as a price-taker in the
market. State(t) is the optimized charging and discharging
schedule in (8) and T (t) is the actual spot price.

Profit = Pmax∆t
∑
t

T (t)State(t) (9)

The DR’s profit from June to October is shown in Table II.
The Oracle case is a case in which the DR predicts the
spot price perfectly, indicating the theoretical maximum profit.
The proposed forecast method boosts the total profit by 6%
compared with the conventional MSE forecast, reaching 70%
of the theoretical maximum value.

TABLE II
DR’S PROFIT (THOUSAND JPY)

June July August Sepetember October Total
Oracle 391.63 504.18 482.18 546.94 497.85 2422.78

MSE Forecast 247.48 278.30 300.00 366.96 416.03 1608.75
Proposed Forecast 263.60 314.74 305.69 396.26 425.58 1705.86

A detailed operation schedule on Fig. 5. The blue bars are
the bids for purchasing or selling energy submitted to the
market. The proposed forecast method is more precise about
the timing of the peak on 10:00 and the dip on 11:30 despite
that the peak and the dip are less obvious in terms of numerical
value. The MSE forecast predicts the same peak and dip earlier
than they actually are, leading to undesirable profit loss.
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Fig. 5. Operation Schedule on August 10th, 2023

V. CONCLUSIONS

This paper proposes a novel loss function for electricity
price forecasts. The proposed method is specifically designed
to consider the unique characteristics of the DRs. Unlike
the conventional loss functions for regression, the proposed
loss function involves the gradient of the forecast data and
endeavors to improve the profit-oriented criterion ETA by
trading off some performance in the aspect of MSE. A neural
network equipped with the proposed loss function is capable
of producing forecast results with higher ETA, and the DR’s
profit is successfully boosted compared with the conventional
forecast based on MSE.

The proposed loss function can not only be used in neural
networks but also in other machine learning forecasts such as
random forests regression. The performance analysis on deep
learning networks with the proposed loss function might also
be a potential future research direction.
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ing—arima model approach,” in 2011 8th International Conference on
the European Energy Market (EEM). IEEE, 2011, pp. 222–225.

[5] P. Rajan and K. V. Chandrakala, “Statistical model approach of electric-
ity price forecasting for indian electricity market,” in 2021 IEEE Madras
Section Conference (MASCON). IEEE, 2021, pp. 1–5.

[6] S. Cai and R. Matsuhashi, “Model predictive control for ev aggregators
participating in system frequency regulation market,” IEEE Access,
vol. 9, pp. 80 763–80 771, 2021.

[7] A. J. Conejo, M. A. Plazas, R. Espinola, and A. B. Molina, “Day-
ahead electricity price forecasting using the wavelet transform and arima
models,” IEEE transactions on power systems, vol. 20, no. 2, pp. 1035–
1042, 2005.

[8] D. Singhal and K. Swarup, “Electricity price forecasting using artificial
neural networks,” International Journal of Electrical Power & Energy
Systems, vol. 33, no. 3, pp. 550–555, 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0142061510002231

[9] D. Keles, J. Scelle, F. Paraschiv, and W. Fichtner, “Extended forecast
methods for day-ahead electricity spot prices applying artificial neural
networks,” Applied energy, vol. 162, pp. 218–230, 2016.

[10] D. Wang, H. Luo, O. Grunder, Y. Lin, and H. Guo, “Multi-step ahead
electricity price forecasting using a hybrid model based on two-layer
decomposition technique and bp neural network optimized by firefly
algorithm,” Applied Energy, vol. 190, pp. 390–407, 2017.

[11] N. Amjady and F. Keynia, “Day ahead price forecasting of electricity
markets by a mixed data model and hybrid forecast method,” Interna-
tional Journal of Electrical Power & Energy Systems, vol. 30, no. 9, pp.
533–546, 2008.

[12] J. C. R Filho, C. M. Affonso, and R. C. Oliveira, “Energy price
forecasting in the north brazilian market using nn-arima model and
explanatory variables,” in 2014 IEEE Symposium on Computational
Intelligence for Engineering Solutions (CIES). IEEE, 2014, pp. 171–
175.

[13] P.-H. Kuo and C.-J. Huang, “An electricity price forecasting model by
hybrid structured deep neural networks,” Sustainability, vol. 10, no. 4,
p. 1280, 2018.

[14] K. Wang, M. Yu, D. Niu, Y. Liang, S. Peng, and X. Xu, “Short-term
electricity price forecasting based on similarity day screening, two-
layer decomposition technique and bi-lstm neural network,” Applied Soft
Computing, vol. 136, p. 110018, 2023.

[15] F. H. Mohammadreza Heidarpanah and M. Fazeli, “Daily electricity
price forecasting using artificial intelligence models in the iranian elec-
tricity market,” Energy, vol. 263, p. 126011, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360544222028973

[16] J. Mei, D. He, R. Harley, T. Habetler, and G. Qu, “A random forest
method for real-time price forecasting in new york electricity market,”
in 2014 IEEE PES general meeting— conference & exposition. IEEE,
2014, pp. 1–5.

[17] J. Lago, F. De Ridder, and B. De Schutter, “Forecasting spot electricity
prices: Deep learning approaches and empirical comparison of tradi-
tional algorithms,” Applied Energy, vol. 221, pp. 386–405, 2018.

[18] S. Cai, M. Mae, and R. Matsuhashi, “A novel criterion of electricity
price forecast for demand-side responses participating in the electricity
market (under reviewing),” in 2024 20th International Conference on
the European Energy Market (EEM). IEEE, 2024.

[19] P. J. Huber, “Robust estimation of a location parameter,” in Break-
throughs in statistics: Methodology and distribution. Springer, 1992,
pp. 492–518.

[20] S. Cai and R. Matsuhashi, “Model predictive control for ev aggregators
participating in system frequency regulation market,” IEEE Access,
vol. 9, pp. 80 763–80 771, 2021.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533–536, 1986.

[22] Japan Electric Power eXchange Guide, Japan Electric Power Exchange,
2019. [Online]. Available: https://www.jepx.jp/electricpower/outline/
pdf/Guide 2.00.pdf

https://www.sciencedirect.com/science/article/pii/S0142061510002231
https://www.sciencedirect.com/science/article/pii/S0360544222028973
https://www.jepx.jp/electricpower/outline/pdf/Guide_2.00.pdf
https://www.jepx.jp/electricpower/outline/pdf/Guide_2.00.pdf

	I Introduction
	II Profit-Oriented Forecast Criterion
	III The Profit-Oriented Loss Function
	IV Simulation Results
	V Conclusions
	References

