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Abstract—This paper proposes a novel profit-oriented criterion
for evaluating electricity price forecasts used by demand-side
response (DR) participants in electricity markets. Typically, DR
participants must predict market prices and schedule their bids
and operations accordingly. Previous research has shown that
a profit-oriented evaluation, focused on accurately identifying
price peaks and dips, offers greater economic benefits for DR
participants than conventional metrics such as mean-squared
error (MSE) or R-squared coefficient. However, the existing
criterion does not account for the charging/discharging time
of the DR resources, which can reduce accuracy for resources
with relatively long response times. To address this limitation,
the proposed approach incorporates a moving average filter
according to the specific charging/discharging time of each re-
source. The refined profit-oriented criterion is applied to evaluate
seven forecasting methods on day-ahead energy market prices in
Japan’s JEPX spot market. The amendment enhances the profit-
oriented criterion’s effectiveness, especially for resources with
extended charging/discharging durations.

Index Terms—Demand-side Responses, Electricity Market,
Price Forecast, ARIMA models, Deep Learning

I. INTRODUCTION

Electricity market deregulation has further expanded oppor-
tunities for DR participation. In these deregulated markets,
both generators and consumers can trade electricity through
competitive bidding, while ancillary services like frequency
regulation are procured via auctions to meet operational needs.
As a result, accurate market price forecasting plays a crucial
role in shaping market participants’ bidding strategies and
operational planning.

Numerous forecasting approaches have been explored, rang-
ing from time-series models, such as ARIMA and SARIMA
[1], [2], to advanced machine learning techniques. Neural
networks, hybrid models, and algorithms like LSTM and CNN
have demonstrated their ability to capture complex patterns in
electricity price data [3]-[5]. Despite the diversity of methods,
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most focus on numerical accuracy using conventional metrics
such as sSMAPE, MSE, and R-squared values [6], [7].

For market participants like generation companies and re-
tailers, precise point forecasts are essential for day-ahead
scheduling and trading. However, DRs have different require-
ments. As shown in [8], an EV aggregator achieved 88.3% of
the theoretical maximum revenue despite relying on a forecast
with a low R-squared value of 0.2. Typical DRs, including EVs
and air conditioners, operate for short durations and contribute
limited capacity compared to conventional resources. Further-
more, as price takers in single-price auction markets, DRs
cannot influence market prices due to their limited capacity.

Evaluating forecast performance based on actual profits
provides the most intuitive and accurate measure but requires
detailed DR modeling and market simulations. Moreover, these
results are case-specific. A general and convenient profit-
oriented criterion is needed to help DRs identify profitable
forecasting methods and develop profit-oriented forecast mod-
els.

The rest of this paper is organized as follows: Section II
identifies the limitations of the original profit-oriented criterion
and introduces the proposed method to address the issue.
Section III demonstrates the effectiveness of the proposed
method through simulations using real historical day-ahead
energy market prices in Japan. Finally, the conclusions are
drawn in Section IV.

II. EXTREMUM TIMING ACCURACY
A. Original Form

Conventional evaluation metrics like MSE may not ade-
quately reflect the unique characteristics of DRs. These metrics
emphasize the aggregate error across all forecast points, which
often fails to align with the operational priorities of DRs, such
as:

o Limited participation duration

o Small-scale operations as price-takers

From a profit-driven perspective, the key priority for DRs
is accurately pinpointing the timing of market price peaks



and dips, as these moments present the highest profit po-
tential. Consequently, DRs should focus on scheduling their
operations to take full advantage of these opportunities. In
this regard, the ability to forecast peak and dip timings with
precision becomes a crucial performance metric. To address
this requirement, the authors in [9] introduced the Extremum
Timing Accuracy (ETA) metric, designed to evaluate forecast
performance by specifically accounting for the accuracy of
predicting the timing of price peaks and dips:

ZieLmaxY T(Z) - ZieLminY T(Z)
ZiELmaxT T(Z) - ZiGLminT T(Z)

Here, Lmax and Lmin denote the indexes of local maxima
and minima, while Y and T refer to the forecasted and
actual price time series, respectively. Similar to the R-squared
coefficient, ETA is a normalized metric ranging from O to 1,
with 1 indicating maximum profitability and 0 representing
no profitability. Additionally, the numerator of (1) alone can
serve as a performance measure, while the denominator is used
solely for scaling ETA to a unit value.

An example demonstrating the application of ETA is pre-
sented here. Consider a battery storage system as the target
DR, operated to charge during low-price periods and discharge
during high-price periods based on forecast results. The battery
requires one time-step for a full charge or discharge and
is restricted to a single charging cycle to minimize battery
degradation. The DR forecasts the actual price in a single-
price market and submits bids as a price taker, ensuring that
the bids are accepted by the market. The system’s profit is
then calculated based on the actual clearing prices.

Fig.1 compares two forecast results, with additional details
summarized in Table I. At first glance, Prediction 2 appears
superior, achieving an R-squared value of 0.87 compared to
the much lower R-squared value of 0.19 for Prediction 1.
However, Prediction 2 fails to accurately capture the timing of
the highest and lowest prices, leading to a profit of only 0.62.
In contrast, Prediction 1, despite its lower R-squared value,
correctly identifies the timing of price peaks and dips. This
accuracy enables the system to achieve its full profit potential.
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Fig. 1. Example of price forecast result comparison.

TABLE I
DR’S OPERATION SCHEDULE AND PROFIT
Charge Time | Discharge Time | Profit | R?
Actual 5 15 2 1
Prediction 1 5 15 2 0.19
Prediction 2 1 19 0.62 0.87

The ETA values for Prediction 1 and Prediction 2 are 1 and
0.31, respectively, corresponding to their profit outcomes. The
calculation process is detailed in Table II. For the denominator,
the actual price’s local maximum and minimum indices are
15 and 5, respectively, resulting in a denominator value of
T(15) —T(5) = 2 — 0 = 2. For Prediction 1, the local
maximum and minimum indices match those of the actual
price, making the numerator equal to 2. Thus, the ETA for
Prediction 1 is 1. In contrast, Prediction 2 identifies the local
maximum and minimum indices as 19 and 1, respectively, with
the numerator calculated as 7'(19) — T'(1). Despite achieving
a high R-squared value of 0.87, Prediction 2 fails to correctly
identify the timing of the price peaks and dips, leading to
a much lower ETA of 0.31. This low ETA reflects poor
accuracy in predicting extremum timings, proving Prediction
2 unsuitable for DR operations.

The alignment between ETA values and actual profit out-
comes underscores its validity as a profit-oriented evaluation
metric. With ETA, DRs can efficiently identify the most prof-
itable forecast without the need to develop complex operation
models or perform simulations to calculate and compare actual
profits directly.

TABLE 11
ETA CALCULATION

Lmaz | T(2) | Lmin | T(2) ETA
Prediction 1 15 2 5 0 =T-1
Prediction 2 19 131 1 069 | LE=089 =031

B. Considering Charging Duration

The above original form of ETA does not account for the
charging duration of DRs. However, as the charging duration
increases, it becomes important to consider not only the
accuracy of the exact extremum point but also a certain range
around it. To address this limitation, a symmetric moving
average filter is applied to both the forecasted prices, Y, and
the actual prices, T', before calculating the ETA:

ZiGLmax‘*7 CZj‘(l) - ZiGLmin)7 CZ:—‘(Z)
ZiELmaxT T(Z) - ZieLminT T<Z)

Y and T are the forecast result and the actual price
smoothed by the moving average filter. The window length
of the filter is the length of the charging duration.

By neglecting small, high-frequency perturbations in real-
world prices, the price at which the DR charges can be
approximated by a convex curve with a single minimum point.

ETA = )



Conversely, the price at which the DR discharges can be
approximated by a concave curve with a single maximum
point. Taking the charging scenario as an example, a DR with
a charging duration of k time-steps will operate at the k lowest
values on the curve.

By applying the moving average filter, all price information
within the range of interest to the DR is effectively captured
and consolidated into the new extremum point. The theorem
supporting this statement, along with its proof, is provided
in the Appendix. Additionally, the moving average process
smooths out small high-frequency perturbations, leaving only
the significant peaks and dips in the price data that are most
critical for the DRs.

The ETA values that account for the DR’s charging duration
in the previous example are presented in Table III. The profit
ratio is the ratio of the profit achieved using the given forecast
to the profit achievable with a perfect price forecast. When
the charging duration is 1 time-step, the moving average
window length is also set to 1, equivalent to not applying any
moving average. Under this circumstance, the ETA matches
the original ETA that does not consider the charging duration.
As the charging duration increases, the ETA adjusted for
the charging duration aligns perfectly with the profit ratio,
demonstrating improved evaluation performance compared to
the original ETA.

TABLE III
ETA VALUES CONSIDERING CHARGING DURATION
Charging Duration 1 2 3 4 5
ETA 0.310 | 0.459 | 0.588 | 0.710 | 0.811
Profit Ratio 0.309 | 0460 | 0.588 | 0.716 | 0.809

III. SIMULATION RESULT
A. DR Model

The simulation focuses on a demand-side battery storage
system as the target DR, which operates by purchasing charg-
ing power from a single-price energy spot market during low-
price periods and maximizing profit by selling power back to
the market during high-price periods. The daily operational
schedule of the DR is formulated as the optimization problem
outlined in (3):

maximize
State(t)

subject to  SOC(t) = SOCiniial — PmaxAt Y _ State(t),
t

Punax Y Y (t)State(t) (3a)
t

(3b)
(30
(3d)

0< SOC(t) < 1,
— ) State(t) < n if State(t) <0
t

The DR aims to maximize its one-day profit with the objec-
tive function (3a) and a given forecast result Y (¢). Pyax is the

DR’s maximum power output, and State(t) € [—1, 1] repre-
sents the charging and discharging schedule to be optimized.
The state-of-charge (SOC) is computed through constraint (3b)
and restricted by constraint (3c). To mitigate severe battery
degradation, the maximum number of charging cycles per day
is regulated by constraint (3d), where n denotes the upper
limit. At is the length of the market time-step.

In this simulation, the capacity of the DR is 10 MWh.
The maximum power output varies depending on the charging
duration. As a price-taker in the market, the DR’s profit is
calculated by (4), where State(t) is the optimized charging
and discharging schedule derived from (3). T'(¢) represents the
actual market clearing price.

Profit = PraxAt » _ T(t)State(t) (4)
t

B. ETA Validation

The target market is the energy wholesale market in Japan:
the Japan Electric Power eXchange (JEPX) spot market. The
JEPX spot market operates as a day-ahead, single-price market
with a 30-minute time step. Participants are required to submit
their bids by 10:00 AM one day before the actual production
and delivery [10]. The JEPX spot clearing prices for the period
from April 2023 to March 2024 are forecasted using the
following seven models:

o Yesterday Assume today’s market clearing price is ex-
actly the same as yesterday’s.

o Conventional SARIMA

o LSTM Neural Network A recurrent neural network with
LSTM units that can effectively capture and retain long-
term dependencies in sequential data.

o Just-In-Time (JIT) Generate predictions by identifying
and using the most relevant pre-stored past data points
for the current situation.

« Partial Least Squares (PLS) Reduce high-dimensional,
correlated predictors (such as temperature, weather con-
ditions, etc.) into a smaller set of uncorrelated latent
variables and use these latent variables to construct a
linear regression model.

o Support Vector Regression (SVR) Use support vectors
to derive a regression model with most of the errors being
kept within a specified error margin.

« Ensemble An ensemble model of JIT, PLS and SVR.

The JEPX clearing price forecast with conventional
SARIMA and a three-layer LSTM neural network is reported
in [11]. The forecast with JIT, PLS, SVR, and the ensemble
model is provided by Fuji Electric Co., Ltd. and reported in
[12], [13]. A fraction of the actual JEPX clearing price and
the forecast results are shown in Fig. 2

Fig. 3 and Fig. 4 present the ETA values and profit ratios for
the target DR across varying charging durations, assuming no
limitation on allowable charging cycles. The original ETA val-
ues are represented by dashed lines, which appear as horizontal
due to the fact that the original ETA does not account for
charging duration. In contrast, the solid lines depict the ETA



Price [JPY/kWh - 30min]
Price [JPY/kWh - 30min]

0 0
2023-06-17 2023-06-18 2023-06-19 2023-06-20 2023-06-17
Date

14 15

2023-06-18
Date

2023-06-19

2
2023-06-20 2023-06-17

SARIMA LSTM

iy
5

»

Price [JPY/kWh - 30min]
o

Price [JPY/kWh - 30min|
e o

v

ol %
2023-06-18 2023-06-19 2023-06-20 2023-06-17

Date

2023-06-18
Date

2023-06-19 2023-06-20

12

30min]

Price [JPY/kWh - 30min|
=
Price [JPY/kWh -

0 0
2023-06-17 2023-06-18 2023-06-19 2023-06-20 2023-06-17

Date

2023-06-18 2023-06-19
Date

2023-06-20 2023-06-1 3

u PLS

Price [JPY/kWh - 30min]
Price [JPY/kWh - 30min|

8
6
4
2
0
3-06-17

0
2023-06-18 2023-06-19 2023-06-20 2023-06-17

Date

2023-06-18 2023-06-19
Date

2023-06-20

Fig. 2. The actual JEPX clearing price and seven forecast results.
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Fig. 3. ETA with different charging durations.

that incorporates the charging duration. Figure 4 shows the
variation in profitability across the seven forecasting methods
as a function of charging duration. When charging duration
is ignored, the straight lines fail to capture the impact of
increasing duration on profitability. Additionally, the ranking
of methods becomes inaccurate at longer charging durations.
For instance, while the Ensemble method shows an increase in
profitability with longer durations, the original ETA continues
to rank SARIMA as the most profitable method. However,
once the charging duration is considered, the ETA values
evolve with the charging duration and follow a trend that
closely aligns with the profit ratio.

Fig. 5 and Fig. 6 show the profit ratio and ETA under
different allowable charging cycles per day k. The results
show that the profit is minimally influenced by the number of
allowable charge cycles, especially when the charging duration
is sufficiently long. The reason is that, in most cases, the
clearing price exhibits only 1 to 2 dominant peaks and dips
per day, which are the most critical opportunities for DR to
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Fig. 4. Profit ratio with different charging durations.

generate profit. Increasing the allowable charge cycles beyond
this point can only target peaks and dips of less prominence,
contributing little to the overall profit. The ETA formulation
(2) is independent of the allowable charging cycles, therefore
Fig. 5 shows only horizontal straight lines. However, the
overall ranking order of the forecast methods based on ETA
is still highly consistent with that based on the profit ratio.

To quantitatively evaluate the effectiveness of the con-
ventional R-squared value and the ETA, the Kendall rank
correlation coefficient between these metrics and the profit
ratio are calculated. The analysis includes 49 scenarios, where
the charging duration varied between 0.5, 1,2, 3,4, 5,6 hours,
and the allowable charging cycles per day k takes values from
1,2,3,4,5,10,00. The Kendall rank correlation coefficient
is a common statistical measure that quantifies the ordinal
relationship between two ranked datasets [14]. A high Kendall
rank correlation coefficient indicates that the two metrics tend
to rank the forecast results similarly, which suggests a strong
agreement in their evaluation of the forecast methods. The
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TABLE IV
AVERAGE KENDALL RANK CORRELATION COEFFICIENT.
R? e — ETA ——
Not Considering Considering
Charging Duration | Charging Duration
Kendall Rank
Correlation 0.66 0.77 0.88
Coefficient

average Kendall rank correlation coefficients are presented in
Table IV.

The Kendall rank correlation coefficient for the R-squared
value shows only a moderate agreement with the profit ratio,
indicating a limited alignment. In contrast, the coefficient of
0.77 for the original ETA reveals a stronger correlation with
the profit ratio. Notably, when accounting for charging dura-
tion, the Kendall rank correlation coefficient for ETA further
increases to 0.88, indicating an even stronger concordance with
the profit ratio. This result implies that with charging duration
considered, the ranking of the seven forecasting methods
remains highly consistent between the ETA and the profit
ratio. Consequently, the refined ETA proves to be a reliable
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Fig. 6. Profit Ratio with different allowable charge cycles.

metric for approximating the profit ratio and for evaluating the
profitability of forecast results.

IV. CONCLUSIONS

This paper proposes a novel method for incorporating the
charging duration of DRs into the profit-oriented criterion,
ETA. The original form of ETA loses accuracy when the
DR has a long charging duration. To address this issue, the
proposed method applies a symmetric moving average filter
with a window length corresponding to the DR’s charging
duration. By integrating this approach, the accuracy of ETA
is significantly enhanced, particularly for scenarios with long
charging durations.
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APPENDIX

Theorem 1. Let f(x) be a discrete convex function with a
unique minimum point, and let its k smallest values occur
within the interval x € [a,b]. Suppose a symmetric moving
average filter with a window length of k is applied to f(x)
and the filtered function is f(z). Then, the minimum point of

f(x) is located at x = “£*.

\4

a a+b b

2

Fig. 7. Tllustration of the convex function f(x) and the filtered function f(x).

Proof. The symmetric moving average filter with a window
length of k calculates the filtered value f(z) at each point 4
by averaging f(z) over a symmetric interval of width k:

1 it+%
fiy = Y f@

Since f(x) is convex and its & smallest values lie within z €
[a,b], & ZZ:@ f(z) is the minimum value of f(z). Moreover,
because the filter is symmetric, the minimum of f(z) must
occur at the midpoint of the interval [a, b]. Thus, the minimum
point is:

_a+b
2




