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Abstract—The local area energy management system plays an
important role in constituting the virtual power plant, which
includes photovoltaics and batteries installed in multiple house-
holds. The aim of this paper is to develop a control method to
compensate for the imbalance between the planned and actual
values of a retailer’s sales and procurement plan by charging
and discharging the batteries. The rule-based model predictive
control is designed as a centralized battery management to match
the planned and actual values of the total power flow using
the real-time time-series forecast models of power generation
and power demand. The numerical validation based on the
emulated dataset of the multiple households with photovoltaics
and batteries demonstrates that the developed approach reduces
the imbalance. The developed approach reduces the economic
risk of the imbalance price for the retailer that operates the
local area energy management system as a virtual power plant.

Index Terms—Model Predictive Control, Imbalance Compen-
sation, Solar Power Generation, Energy Management System,
Virtual Power Plant

I. INTRODUCTION

For the transition to a carbon-neutral society by 2050 in
Japan, the regional power companies that manage the sales and
procurement as retailers are developing for decarbonization
and local energy self-sufficiency. The regional power com-
panies have the business potential to operate a local area
Energy Management System (EMS) for multiple households
with PhotoVoltaics (PV) and batteries as a Virtual Power
Plant (VPP). Compared to microgrids, VPP is designed to be
connected to the grid and provides electricity as a controlled
renewable energy resource. Regional power companies with
small-scale businesses often face financial risks due to the
imbalance that is the gap between the planned and actual
power flow. Therefore, it is necessary to develop an imbalance
compensation method that considers both the retailer’s opera-
tion and the EMS communication constraints. Several studies
have been conducted on VPP such as demand response [1]–
[4], resource coordination [5], battery capacity optimization
[6], and forecast error and imbalance compensation [7]–[9].

This research is conducted by the Social Cooperation Program of Realiza-
tion of Innovation on Energy and Environment with KYOCERA Corporation
in the Graduate School of Engineering at The University of Tokyo.
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Fig. 1. Overview of the local area EMS as a VPP. Multiple households with
PV and batteries are managed to compensate for the imbalance between the
retailer’s planned and actual values of sales and procurement in the local area.

Although there have been several studies on VPP, the
real-time imbalance compensation using the local area EMS
considering the operation and communication constraints to
reduce the economic risk of the regional power company has
not been developed. The aim of this paper is to develop
a Model Predictive Control (MPC) method for imbalance
compensation. The contributions of this paper are
C1) developing the centralized battery management method

using rule-based MPC for imbalance compensation, and
C2) considering the retailer’s planning operation constraints

and the EMS communication constraints.

II. PROBLEM FORMULATION

A. Local area energy management system

Fig. 1 shows the overview of the local area EMS as a
virtual power plant with multiple households with PV and
batteries. The retailer can measure the power generation P gen

k,t ,
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Fig. 2. Emulated dataset of power generation and power demand for 80 households with PV without battery in Japan from February 2nd to May 31st in
2022 [4], [10]. The first 112 days are used as training data for the forecast model and the last 7 days are used as validation data for imbalance compensation.

TABLE I
PARAMETERS OF LOCAL AREA ENERGY MANAGEMENT SYSTEM.

Symbol Description Value
∆t Time step of control and communication 10min
P gen
max PV maximum output 5 kW

Pbat
max Battery maximum output 3 kW

Qbat Battery capacity 11 kWh
Sbat
min Battery minimum State Of Charge (SOC) 10%

Sbat
max Battery maximum State Of Charge (SOC) 90%

η Battery charge and discharge efficiency 94%

the power demand P dem
k,t , the discharge power P bat

k,t , and the
battery State Of Charge (SOC) Sbat

k,t of kth household at time
t every 10min. The specification of the EMS is shown in
TABLE I.

The batteries are managed to compensate for the imbalance
between the planned and actual power flow for the retailer’s
sales and procurement plan to work as a VPP connected to
the grid. The emulated dataset of power generation and power
demand for 80 households with PV without battery in Japan
from February 2nd to May 31st in 2022 [4], [10] is used in
this paper as shown in Fig. 2. The first 112 days are used
as training data for the forecast model and the last 7 days
are used as validation data for imbalance compensation. The
conventional decentralized battery management without EMS
communication is to maximize the self-consumption of each
household, in which the battery charges surplus power and
discharges to cover power shortages independently. In Japan,
the imbalance price is determined by the marginal price of
the balancing market after supply and demand adjustment.
Therefore the imbalance because of the insufficient day-ahead
forecast accuracy becomes the economic risk of the retailer
who manages the virtual power plant in the local area.

B. Problem description

This paper develops the battery management method for im-
balance compensation considering the following requirements:
R1) The Imbalance between the planned and actual power

flow should be compensated by battery management.

TABLE II
COEFFICIENT OF DETERMINATION OF FORECAST RESULTS IN POWER

GENERATION AND POWER DEMAND FROM MAY 25TH TO 31ST IN 2022.

R2 Total power generation Total power demand
Day-ahead forecast 0.771 0.527
Real-time forecast 0.997 0.955

R2) Constraints of the retailer’s planning operation and the
EMS communication should be considered.

III. PLAN OF POWER GENERATION AND POWER DEMAND

A. Day-ahead forecast of power generation

The day-ahead forecast value of the total power generation
is given by the weather forecast data based on the Meso-Scale
Model Grid Point Value (MSM GPV) [11]. The scaled solar
radiation data is used as the forecast value of the total power
generation. The scaling factor is given by the fitting of the
total power generation for the first 112 days of the dataset.

B. Day-ahead forecast of power demand

The day-ahead forecast value of the total power demand is
given by the time-series forecast model based on the Seasonal
AutoRegressive Integrated Moving Average (SARIMA) model
[12]. In the dataset, the total power demand of the first 112
days is used as training data for the SARIMA model.

C. Retailer’s sales and procurement plan

Because of the retailer’s planning operation constraints, the
day-ahead forecast is conducted at 6AM for the 24 hours
of the next day as shown in Fig. 3. The retailer’s sales
and procurement plan is designed by using the day-ahead
forecast value of the total power generation and the total power
demand. It is assumed that the battery in each household is
expected to charge and discharge following the balance of the
power generation and the power demand to maximize self-
consumption. From this assumption, the retailer’s sales and
procurement plan P̃ vpp

t is designed the same as the total power
flow using the total battery model that charges surplus power



Fig. 3. Forecast of total power generation and total power demand: actual value in magenta lines ( ), day-ahead forecast value for the plan in red lines (
), and real-time forecast value for MPC in blue lines ( ), respectively. The magenta and blue lines are almost overlapped with high forecast accuracy.

Fig. 4. Plan of power generation and power demand: day-ahead forecast value of total reverse power flow without battery charge and discharge in a red
dotted line ( ), and planned value with battery charge and discharge in black lines ( ), respectively.

and discharges to cover power shortages as shown in Fig. 4.
Since the day-ahead forecast accuracy is not enough as shown
in Fig. 3 and TABLE II, the imbalance between the planned
and actual power flow is inevitable.

IV. CENTRALIZED BATTERY MANAGEMENT USING
RULE-BASED MODEL PREDICTIVE CONTROL

A. Real-time forecast of power generation and power demand

Because of the EMS communication constraints, the actual
data up to 10min ago can be used. In the developed rule-

based model predictive control, the SARIMA model forecasts
the total power generation P̂ gen

t and the total power demand
P̂ dem
t in real-time. In the dataset, the first 112 days are used

as training data for the SARIMA model of the total power
generation and the total power demand. The real-time forecast
enables higher forecast accuracy compared to that of the day-
ahead forecast as shown in Fig. 3 and TABLE II.



Fig. 5. Decentralized battery management to maximize self-consumption for 80 households with PV and battery. Each household independently charges and
discharges the battery according to the balance of each power generation and power demand.

Fig. 6. Centralized battery management to minimize imbalance for 80 households with PV and battery. Charge and discharge commands are sent to each
battery by the retailer every 10min to minimize the imbalance between the planned and actual power flow.

B. Rule-based battery management to minimize imbalance
The developed centralized battery management is conducted

by the rule-based MPC with the following procedures:
1) Step 1: The total power generation P̂ gen

t and the to-
tal power demand P̂ dem

t are forecasted in real-time by the
SARIMA model using the actual data up to 10min ago.

2) Step 2: The total discharge power P bat
t is given by

P bat
t = P̃ vpp

t − (P̂ gen
t − P̂ dem

t ), (1)

where P̃ vpp
t is the planned total reverse power flow.

3) Step 3: If the total discharge power P bat
t is a positive

value, the maximum output discharge command P bat
k,t is sent

to the kth battery in order of the battery SOC from the highest
to lowest. If the total discharge power P bat

t is a negative value,
the maximum output charge command P bat

k,t is sent to the kth
battery in order of the battery SOC from the lowest to highest.
The commands are sent to multiple batteries until their total
power matches the total discharge power as P bat

t =
∑

k P
bat
k,t .



Fig. 7. Total imbalance compensation utilizing battery charge and discharge: decentralized battery management to maximize self-consumption in red lines (
), and centralized battery management to minimize imbalance in blue lines ( ), respectively. In the total reverse power flow, the planned value is in a

black line ( ) and the actual value without battery charge and discharge is in a magenta dotted line ( ), respectively.

V. VALIDATION FOR IMBALANCE COMPENSATION

A. Conditions
In the validation, the emulated dataset in Fig. 2 [4], [10]

is used. The number of households with PV and battery is
n = 80. The training data is 112 days from February 2nd
to May 24th, and the validation data is 7 days from May
25th to 31st. The validation starts from the minimum SOC of
the batteries. The imbalances between the planned and actual
values of the total power flow are evaluated in the conventional
decentralized and developed centralized battery management.

B. Results
Fig. 5 shows the conventional decentralized battery manage-

ment to maximize the self-consumption of each household.
Although the real-time data of power generation and power
demand of each household is used without forecast, each
household independently charges and discharges the battery
according to each power flow, and the imbalance is not taken
into account. Fig. 6 shows the developed centralized battery
management to minimize the imbalance of total power flow.
Charge or discharge commands are sent to multiple batteries
by the retailer every 10min until their total power matches
the total charge or discharge power to compensate imbalance.

The total imbalances with the conventional decentralized
and developed centralized battery managements are shown
in Fig. 7. The cumulative absolute imbalances are shown in
TABLE III, in which the imbalance P imb

t is defined as

P imb
t =

n∑
k=1

(P gen
k,t − P dem

k,t + P bat
k,t )− P̃ vpp

t . (2)

TABLE III
CUMULATIVE ABSOLUTE IMBALANCE FROM MAY 25TH TO 31ST IN 2022.

Approach
∑

t |P imb
t | Ratio

Decentralized battery management 2.81MWh 100%
Centralized battery management 2.03MWh 72%

The result shows that the developed approach reduces the
imbalance risk about 28% from the conventional approach.

VI. CONCLUSION

The local area EMS enables a virtual power plant by multi-
ple households with PV and batteries. In this paper, a control
method to compensate for the imbalance between the planned
and actual values of a retailer’s sales and procurement plan by
charging and discharging the batteries is developed. The rule-
based model predictive control is designed as a centralized
battery management to match the planned and actual values
of the total power flow using the real-time forecast of power
generation and power demand by the SARIMA model. The
validation result demonstrates that the imbalance is reduced
by the developed centralized battery management compared
to that of the conventional decentralized battery management.
The developed approach reduces the economic risk of the
imbalance price for the retailer that operates the local area
EMS as a VPP.

Ongoing researches focus on balancing the trade-off be-
tween self-consumption by each household and imbalance
compensation by the retailer and the economic risk analysis
with the actual imbalance price every 30min in Japan.
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