
IEEJ Journal of Industry Applications
Vol.8 No.2 pp.263–270 DOI: 10.1541/ieejjia.8.263

Paper

Perfect Tracking Control Considering Generalized Controllability Indices
and Application for High-Precision Stage in Translation and Pitching

Masahiro Mae∗a)
Student Member, Wataru Ohnishi∗ Member

Hiroshi Fujimoto∗ Senior Member, Yoichi Hori∗ Fellow

(Manuscript received May 2, 2018, revised Sep. 28, 2018)

High-precision stages are widely used for manufacturing semiconductors and flat panels. These high-precision stages
have become multi-input multi-output (MIMO) systems with six-degrees-of-freedom (DOF); hence, the coupling be-
tween the translation and pitching motion deteriorates the control performance. This study proposes the multirate
feedforward control for MIMO systems and applies it to these high-precision stages. The multirate feedforward con-
trol designs the stable inversion for the unstable discretization zero problem. In addition, the design of the MIMO
multirate feedforward controllers has a degree of freedom to design the B matrix according to the selection of the
generalized controllability indices. In conventional control methods such as precompensated decoupling controllers,
it is theoretically impossible to achieve perfect tracking because unstable discretization zeros are generated. In this
study, the proposed method is applied to the translation and pitching motion of a high-precision stage, and it achieves
perfect tracking in the simulation. The effectiveness of the proposed method is verified experimentally.
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1. Introduction

A high-precision scan stage is critical in manufacturing
semiconductors and flat panels (1). The circuit configuration
of semiconductors and flat panels becomes finer exponen-
tially annually (2). The conventional high-precision stage is
a one-degree-of-freedom (DOF) system mechanically con-
strained to move only one direction. Recently, to decrease
the disturbance of vibration from the floor and friction from
the mechanical restraint, the high-precision stage is a six-
DOF (x, y, z, θx, θy, θz) system by the gravity canceller that
compensates for the gravitational force experienced by the
fine stage (1). In the stage with six-DOF, the interference
forces between the axes worsen the positioning accuracy of
the stage. Many studies have been conducted on the decou-
pling. The precompensator for decoupling is typically used
to apply the single-input single-output (SISO) controllers to
the coupled multi-input multi-output (MIMO) system (1). The
MIMO feedback controller and the integrated design of the
mechanism and the controller are also used for decoupling,
e.g., using the Direct Nyquist Array method and changing
the height of the actuation point virtually (3).

From the viewpoint of designing the feedforward con-
troller, the controller is designed in the continuous-time do-
main and discretized in the conventional method. In this ap-
proach, the controller cannot achieve perfect tracking control
(PTC) theoretically because of the discretized unstable ze-
ros. The word “perfect tracking control (PTC)” is defined
as “the plant output perfectly tracks the desired trajectory
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with zero tracking error at every sampling point” (4). In the
proposed method, we use discretized plant models and de-
sign the controller in the discrete-time domain. Using this
approach, PTC is achieved theoretically by considering the
interference between axes using the MIMO multirate feedfor-
ward controller. The consideration of the input multiplicities
in the digital control for the MIMO system is the important
point.

In this study, the authors control a high-precision stage
with six-DOF, as shown in Fig. 1(a). The authors consider
two-DOF of translation in the x axis direction and pitching
around the y axis, as shown in Fig. 1(b). The effectiveness
of the proposed method is demonstrated by simulations and
experiments.

2. Proposed Method

2.1 Multirate Feedforward for Single-Input Single-
Output System Multirate feedforward control achieves
PTC (6). A digital tracking control system typically has two
samplers for the reference signal r(t) and the output y(t), and
one holder on the input u(t), as shown in Fig. 2. Therefore,
three time periods exist: Tr, Ty, and Tu, representing the pe-
riods of r(t), y(t), and u(t), respectively, as shown in Fig. 3.
Additionally, the longer period of Tr or Ty is defined as the
frame period T f . In the case of the SISO nth-order plant,
Tr = nTy = nTu = T f .

Consider the continuous-time nth-order plant described by
the state equation (1) and the output equation (2).

ẋ(t) = Acx(t) + bcu(t) · · · · · · · · · · · · · · · · · · · · · · · · · · · (1)

y(t) = ccx(t) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (2)

From the discretization of (1) and (2) by the zero-order hold
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(a) Photograph of the six-DOF high-precision stage. (b) Coupling problem between xm and θy. (c) Block diagram of the plant.

Fig. 1. Details of the plant

Fig. 2. Block diagram of the controller with the plant that does not contain unstable intrinsic zeros. S,H , and L
denote a sampler, holder, and lifting operator (5), respectively; z and zs denote esTr and esTu , respectively

Fig. 3. SISO multirate sampling control at the same in-
terval

in the sampling period Tu, the discrete-time plant becomes
the state equation (3) and output equation (4).

x[k + 1] = Asx[k] + bsu[k] · · · · · · · · · · · · · · · · · · · · · (3)

y[k] = csx[k] · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (4)

where the matrices As, bs, and cs are given by

As = eAcTu , bs =

∫ Tu

0
eAcτbcdτ, cs = cc.

By lifting the discrete-time state equation (3) and the output
equation (4), the state equation (5) and the output equation
(6) are given by

x[i + 1] = Ax[i] + Bu[i], · · · · · · · · · · · · · · · · · · · · · · · (5)

y[i] = cx[i], · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (6)

where the matrices A, B, and c, and i are given by

A = An
s , B =

[
An−1

s bs An−2
s bs · · · Asbs bs

]
,

c = cs, x[i] = x(iTr).

Equations (5) and (6) are given from the interval between

t = iTr = kTu and t = (i + 1)Tr = (k + n)Tu. The input and
output vectors u[i] (7) and y[i] (8) are given by

u[i]=
[
u1[i] u2[i] · · · un[i]

]T

=
[
u(kTu) u((k + 1)Tu) · · · u((k + n − 1)Tu)

]T
,

· · · · · · · · · · · · · · · · · · · · · · · (7)

y[i]=
[
y1[i] y2[i] · · · yn[i]

]T

=
[
y(kTy) y((k + 1)Ty) · · · y((k + n − 1)Ty)

]T
.

· · · · · · · · · · · · · · · · · · · · · · · (8)

From (5), the control input uff[i] to achieve PTC are given by

uff[i] = B−1(I − z−1 A)x[i + 1]. · · · · · · · · · · · · · · · · · · · (9)

The block diagram of the control system is shown in Fig. 2.
L is a discrete-time lifting operator (5). L−1 outputs the ele-
ments of the nth dimensional vector uff[i], which is input at
every period Tr, in the order from 1 to n by Tu = Tr/n.
2.2 Multirate Feedforward for Multi-Input Multi-

Output System In an m-input p-output nth order MIMO
system, the state equation (10) and the output equation (11)
of the continuous-time plant are given by

ẋ(t) = Acx(t) + Bcu(t), · · · · · · · · · · · · · · · · · · · · · · · · (10)

y(t) = Ccx(t), · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (11)

Bc =
[
bc1 · · · bcm

]
, Cc =

[
cc1 · · · ccp

]T
,

where the plant state is x ∈ Rn, the plant input is u ∈ Rm, and
the plant output is u ∈ Rp.

The generalized controllability indices are defined as fol-
lows (7):
Definition (Generalized Controllability Indices). The gener-
alized controllability indices of (Ac, Bc) are defined as fol-
lows for Ac ∈ Rn×n and Bc = [bc1, · · · , bcm] ∈ Rn×m, respec-
tively. If (Ac, Bc) is a controllable pair, n linearly indepen-
dent vectors including the linear combination can be selected
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from {bc1, · · · , bcm, Acbc1, · · · , Acbcm, · · · , An−1
c bcm}.

Setting ϕ as a set of these n vectors, σl and N are defined
by

σl = number{k|Ak−1
c bcl ∈ ϕ}, · · · · · · · · · · · · · · · · · · · (12)

m∑

l=1

σl = n, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (13)

N = max(σl). · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (14)

In the MIMO system, n (= plant order) number of vectors
are selected from the generalized controllability indices, and
the full row rank matrix B are designed for almost all sam-
pling period of the discretization†. Therefore, the feedfor-
ward controllers designed according to their different forms.

From (15), the control input uff[i] to achieve PTC are given
by (16).

x[i + 1] = Ax[i] + Bu[i], · · · · · · · · · · · · · · · · · · · · · · (15)

uff[i] = B−1(I − z−1 A)x[i + 1], · · · · · · · · · · · · · · · · · (16)

where the matrices A, x[i], u[i], z and T f are given by

A = eAcT f , x[i] = x(iT f ), z = esT f , T f = NTu,

u[i] =
[
u1[i] · · · um[i]

]T

=
[
u11[i] · · · u1σ1 [i] u21[i] · · · umσm [i]

]T
.

3. Modeling

In the simulation and experiment, the authors controlled
the fine stage of the six-DOF high-precision stage shown in
Fig. 1(a). This fine stage is supported by a six-DOF air bear-
ing gravity canceller. In this study, the two-DOF of the trans-
lation x along the x axis and the pitching θy around the y axis
are controlled, as shown in Fig. 1(b).
3.1 System Identification The equations of motion

of the translation and pitching of the stage are given by (17)
and (18) (8).

(Mx1 + Mx2)ẍg1 + Cx1 ẋg1 + Kx1xg1 + Mx2Lg2θ̈y= fx · · · · (17)

(Mx2L2
g2+Jθy)θ̈y+Cθyθ̇y+Kθyθy+Mx2Lg2(ẍg1 − gθy)=τy+ fxL f x · · · · (18)

Convert xg1 to observable xm by (19).

xm(s) = xg1(s) + Lmθy(s) · · · · · · · · · · · · · · · · · · · · · · · ·(19)

From the expressions (17), (18), and (19), the transfer func-
tions g11 to g22 are given by (20) to (23).

The parameters of the stage are shown in Table 1, which is
given from fitting in the frequency domain, shown in Fig. 6.
3.2 State Space Realization ai j, bik (i ∈ {2, 4}, j ∈
{1, 2, 3, 4}, k ∈ {1, 2}) from the expressions (17), (18), and
(19), (ẍm, θ̈y) explained by (xm, ẋm, θy, θ̇y) are given by (25)
and (26).

ẍm=a21xm+a22 ẋm+a23θy+a24θ̇y+b21 fx+b22τy · · · · · (25)

θ̈y=a41xm+a42 ẋm+a43θy+a44θ̇y+b41 fx+b42τy · · · · · · (26)
† This is possible because the controllability of the continuous-time sys-

tem is not preserved in the discrete system only if the two poles ηi andη j
have the same real parts, and the discretizing sampling period T satisfies
ηi = η j + j 2kπ

T (k = ±1,±2, . . .); further, it is limited to only several cases.

Table 1. Model parameters

Symbol Meaning Value
xm Measured position of the fine stage –
xg1 Position of the CoG of the planar air bearing and the air gyro –
xg2 Position of the CoG of the fine stage –
θy Measured attitude angle of the fine stage –
fx Input force of the fine stage in the x direction –
τy Input torque of the fine stage in the θy direction –
Mx1 Mass of the planar air bearing and the air gyro 0.077 kg
Cx1 Viscosity coefficient in the xg1 motion 300 N/(m/s)
Kx1 Spring coefficient in the xg1 motion 6000 N/m
Mx2 Mass of the fine stage 5.3 kg
Jθy Moment of inertia of the fine stage 0.10 kgm2

Cθy Viscosity coefficient of the fine stage in the θy motion 1.6 Nm/(rad/s)
Kθy Spring coefficient of the fine stage in the θy motion 1200 Nm/rad
Lm Distance between the measurement point of xm and the CoR −0.028 m
Lg2 Distance between the CoR and the CoG of the fine stage −0.051 m
Lf x Distance between the CoR of the fine stage and the actuation point −0.0026 m

The state equations (27) and output equations (28) of the
continuous-time plant are given by

ẋ(t) = Acx(t) + Bcu(t), · · · · · · · · · · · · · · · · · · · · · · · · (27)

y(t) = Ccx(t), · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (28)

where the vectors x(t), u(t), and y(t), and the matrices Ac,
Bc, and Cc are given by

x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xm

ẋm

θy
θ̇y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u(t) =

[
fx

τy

]
, y(t) =

[
xm

θy

]
,

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
a21 a22 a23 a24
0 0 0 1

a41 a42 a43 a44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Cc =

[
1 0 0 0
0 0 1 0

]
,

Bc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
b21 b22
0 0

b41 b42

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
bc1 bc2

]
.

By using the zero-order hold in the state equation (27) and
the output equation (28) of the continuous-time plant with
the sampling period Tu, the state equation (29) and the output
equation (30) of the discrete-time plant are given by

x[k + 1] = Asx[k] + Bsu[k], · · · · · · · · · · · · · · · · · · · (29)

y[k] = Csx[k], · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (30)

where x[k], u[k], y[k], and Bs are given by

x[k] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xm[k]
ẋm[k]
θy[k]
θ̇y[k]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u[k] =

[
fx[k]
τy[k]

]
, y[k] =

[
xm[k]
θy[k]

]
,

Bs =
[
bs1 bs2

]
.

When constructing the square matrix B, the generalized
controllability indices are given by

{bs1, bs2, Asbs1, Asbs2, A2
s bs1, A2

s bs2, A3
s bs1, A3

s bs2}.

When the plant order is n = 4, four elements are chosen from
the generalized controllability indices to construct the square
matrix B.
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(a) Conventional method 1. (b) Conventional method 2. (c) Proposed method.

Fig. 4. Block diagram of the control methods. These show only feedforward controllers

(a) (σ1,σ2) = (2, 2) (b) (σ1,σ2) = (3, 1) (c) (σ1,σ2) = (4, 0)

Fig. 5. MIMO multirate sampling control at the same interval

g11(s)=
xm(s)
fx(s)

=
[Jθy+Lf xLmMx1−(Lf x−Lg2)(Lg2−Lm)Mx2]s2+(Cθy+Lf xLmCx1)s+Lf xLmKx1−Lg2Mx2g

D(s)
· · · · · · · · · · · (20)

g12(s)=
xm(s)
τy(s)

=
[LmMx1+(Lm−Lg2)Mx2]s2+LmCx1s+LmKx1

D(s)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (21)

g21(s)=
θy(s)
fx(s)

=
[Lf x Mx1+(Lf x−Lg2)Mx2]s2+Lf xCx1s+Lf xKx1

D(s)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (22)

g22(s)=
θy(s)
τy(s)

=
(Mx1+Mx2)s2+Cx1s+Kx1

D(s)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (23)

D(s)=[(Mx1+Mx2)Jθy+Mx1Mx2L2
g2]s4+[(Mx1+Mx2)Cθy+(Jθy+Mx2L2

g2)Cx1]s3

+[(Jθy+Mx2L2
g2)Kx1+(Mx1+Mx2)(Kθy−Mx2Lg2g)+CθyCx1]s2+[CθyKx1+Cx1(Kθy−Lg2Mx2g)]s+Kx1(Kθy−Lg2Mx2g)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (24)

4. Experiment

4.1 Condition The block diagram of the simulation
is shown in Fig. 2. Generally, a dual-input dual-output plant
with a coupling problem is represented by a block diagram, as
shown in Fig. 1(c). g11 to g22 represent the transfer function
of each path. Conventional method 1 ignores the interference
by g12 and g21 and the multirate feedforward controllers are
designed for each SISO system g11 and g22, respectively, as
shown in Fig. 4(a). Coupling is suppressed by the feedback
controller. Conventional method 2 designs a precompensator
for continuous-time plants that cancels the interference be-
tween axes by g12 and g21, and the multirate feedforward con-
trollers are designed for each decoupled SISO system g11 and
g22, respectively, as shown in Fig. 4(b). In this method, the
precompensator is discretized by the bilinear transformation.
Because the problem of the unstable discretization zero is not
considered, PTC cannot be achieved, theoretically. In the
proposed method, a dual-input dual-output multirate feedfor-
ward controller is designed for a dual-input dual-output plant,
as shown in Fig. 4(c).

In Fig. 6, G4 is used for the MIMO plant model of the pro-
posed method, and G2 is used for the SISO plant model of the
conventional methods 1 and 2. The nominal plant g12 and g21
contain some gaps with the frequency response data because
these four transfer functions, g11 to g22, are correlated in this
system and a trade off exists in the fitting. In this model, we
focus on the fitting of the transfer function g21 representing
the coupling from the translational force fx along the x axis
to the rotation θy around the y axis to prevent pitching.

In the simulation, C f b[zs], which is the feedback controller,
is 0 in all the methods. In the experiment, C f b[zs] is a PID
controller designed as 20 Hz closed-loop pole for all six-DOF
(x, y, z, θx, θy, θz) in all the methods.

The seventh-order polynomial trajectory of 0 µm to 100 µm
in 0 ms to 20 ms is given for xref

m , and a zero constant refer-
ence is given for θref

y . Tu = 200 µs, N = max(σ1,σ2), and
Tr = NTy = NTu = T f .
4.2 Simulation Result In this study, the simulation of

the proposed method, in which the generalized controllabil-
ity indices can be selected in three ways, as shown in Fig. 5,
is conducted with the conventional method.
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(a) g11 (b) g12 (c) g21 (d) g22

Fig. 6. Frequency responses of the plant. G4 and G2 denote a 4th order MIMO nominal plant and a 2nd order
SISO nominal plant, respectively

(σ1,σ2)=(2, 2) : B=
[
Asbs1 bs1 Asbs2 bs2

]

· · · · · · · · · · · · · · · · · · · (31)

(σ1,σ2)=(3, 1) : B=
[
A2

s bs1 Asbs1 bs1 A2
s bs2+Asbs2+bs2

]

· · · · · · · · · · · · · · · · · · · (32)

(σ1,σ2)=(4, 0) : B=
[
A3

s bs1 A2
s bs1 Asbs1 bs1

]

· · · · · · · · · · · · · · · · · · · (33)

The simulation result is shown in Fig. 7 to Fig. 11. Fig. 12
and Fig. 13 show the tracking error of each output. From
the simulation results, PTC cannot be achieved with the con-
ventional method, but it can be achieved in all three cases
of the proposed method. The effectiveness of the proposed
method is verified. It is noteworthy that the second-order rel-
ative degree plant moves the second-order polynomial trajec-
tory between the sampling points. Therefore, the errors occur
between the sampling points because of the difference in the
order between the second-order polynomial trajectory and the
seventh-order polynomial trajectory. This is an error because
of the physical model, and not a mechanical vibration.
4.3 Experimental Results In the experiment, the

proposed method of (σ1,σ2) = (2, 2), conventional method
1, and conventional method 2 are compared under the same
conditions as the simulation.

The experimental result is shown in Fig. 14. From the ex-
perimental results, the tracking error of θy in the proposed
method is the smallest compared with that in the conventional
methods. The tracking error of xm in the proposed method
is not clearly smaller than that of other conventional meth-
ods, because we focus on the fitting of the transfer function
g21 representing the coupling from the translational force fx

along the x axis to the rotation θy around the y axis to prevent
pitching in this model. Therefore, the modeling error of g12
may worse the tracking error of xm. The coupling of the feed-
back controllers is also a problem. Because it is verified that
the tracking error becomes smaller and the control perfor-
mance improves in the simulation that has no modeling error,
it appears that the modeling error influences the experiment.
From the simulation and experimental results, the applicabil-
ity of the proposed method is verified and the improvement
in the modeling error will be future work.

5. Conclusion

The six-DOF high-precision stage has the coupling prob-
lem. In the conventional methods, decoupling methods such

(a) xm (b) θy

(c) exm (d) eθy

(e) fxff (f) τyff
Fig. 7. Simulation results of the conventional method 1

as using a precompensator have been employed, and the sys-
tem was controlled as a SISO system. However, when the
precompensator and SISO multirate feedforward controller
were used, it was theoretically impossible to achieve PTC
because the unstable zeros were generated by discretization.
In the proposed method, the MIMO multirate feedforward
controller achieved PTC. In this study, the effectiveness of
the proposed method was shown in the simulation and exper-
iment of controlling two-DOF (x, θy) of the high-precision
stage. The differences in the control performance depending
on the selection of the generalized controllability indices will
be considered in future studies. The proposed method loos-
ened the restrictions of the mechanical design to suppress the
coupling problem; therefore, the freedom of the mechanical
design was improved.
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(a) xm (b) θy

(c) exm (d) eθy

(e) fxff (f) τyff
Fig. 8. Simulation results of the conventional method 2

(a) xm (b) θy

(c) exm (d) eθy

(e) fxff (f) τyff
Fig. 9. Simulation results of the proposed method
(σ1,σ2) = (2, 2)

(a) xm (b) θy

(c) exm (d) eθy

(e) fxff (f) τyff
Fig. 10. Simulation results of the proposed method
(σ1,σ2) = (3, 1)

(a) xm (b) θy

(c) exm (d) eθy

(e) fxff (f) τyff
Fig. 11. Simulation results of the proposed method
(σ1,σ2) = (4, 0)
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(a) Conventional method 1. (b) Conventional method 2. (c) Proposed method (σ1,σ2) =
(2, 2).

(d) Proposed method (σ1,σ2) =
(3, 1).

(e) Proposed method (σ1,σ2) =
(4, 0).

Fig. 12. Simulation result of exm (zoom)

(a) Conventional method 1. (b) Conventional method 2. (c) Proposed method (σ1,σ2) =
(2, 2).

(d) Proposed method (σ1,σ2) =
(3, 1).

(e) Proposed method (σ1,σ2) =
(4, 0).

Fig. 13. Simulation result of eθy (zoom)

(a) xm (b) exm (c) fxff (d) fx f b

(e) θy (f) eθy (g) τyff (h) τy f b

Fig. 14. Experimental results
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