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Abstract

Inversion-based feedforward control is a basic method of tracking controls. The aim of this paper is to design MIMO multirate
feedforward controller that improves continuous-time tracking performance in MIMO LTI systems considering not only on-sample
but also intersample behavior. Several types of MIMO multirate feedforward controllers are designed and evaluated in terms of
the 2-norm of the control inputs. The approach is compared with a conventional MIMO single-rate feedforward controller in
simulations. The approach improves the intersample behavior through the optimal selection of input multiplicities with MIMO
multirate system inversion.
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1. Introduction

Inversion-based feedforward controllers play an important
role in the tracking control of many high-precision mechatronic
systems, such as wafer and LCD scanners, and industrial robots
[1]. For the demands of high-performance, high-speed, and
flexible tasks, many high-precision mechatronic systems have
multiple degree-of-freedoms and are multi-input multi-output
(MIMO) systems.

Many high-precision mechatronic systems are usually con-
trolled by single-input single-output (SISO) controllers under
the assumption that they are mechanically decoupled, and cou-
pling problems between each axis can be ignored. Several high-
precision mechatronic systems with severe coupling problem
between each axis, such as a 6-degree-of-freedom high-precision
positioning stage, are controlled with MIMO controllers, such
as SISO controllers with a continuous-time pre-compensator
[2], feedforward input shaping approach [3], and feedforward
H∞ approach [4]. However, these continuous-time controllers
are usually discretized by Tustin transform for digital imple-
mentation. Therefore, the effect of discretization by the zero-
order hold is not strictly considered and perfect tracking control
cannot be achieved for a discrete-time nominal system.

In high-precision positioning systems with multiple actua-
tors and sensors, such as a 6-degree-of-freedom high-precision
positioning stage, it is common that the number of actuators
and sensors are imaginarily converted by coordinate transfor-
mation to the same number of degrees of freedom of motion
[2]. In this framework, this paper mainly focuses on MIMO
linear-time-invariant (LTI) systems with an equal number of
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inputs and outputs. For the tracking control of MIMO LTI
systems, MIMO feedforward controllers are needed to achieve
good tracking performance by considering the coupling prob-
lems and redundancy of MIMO LTI systems.

The continuous-time inversion-based approaches such as [5,
6, 7] can be used for continuous-time systems. However, prac-
tical tracking controllers are often implemented by digital sys-
tems for large flexibility and low cost [8]. Therefore, the track-
ing control is conducted with digital control and has some lim-
itations attributed to discretization. The main problem of the
inversion-based feedforward controllers is the unstable discretized
zeros, which are out of the unit circle on the z plane, of the
controlled system discretized by a sampler and a holder. The
inversion-based feedforward controllers are designed by the in-
verse of controlled systems and they have unstable poles due to
the unstable zeros of the controlled systems.

To overcome the discretized unstable zero problems, several
approximated inverse approaches are presented in the single-
rate feedforward control, such as nonminimum-phase zeros ig-
nore (NPZI) [9], zero-phase-error tracking control (ZPETC)
[10] and zero-magnitude-error tracking controller (ZMETC) method
[11]. However, these methods cannot achieve the exact tracking
on sampling points because of the approximation.

An exact inverse approach, discrete-time stable inversion
[12, 13], is presented, but this method cannot cope with the
discretized zeros around z = −1 that become oscillating poles
of the inversion-based feedforward controllers [14, 15]. It is
noted that these single-rate feedforward control approaches can
be extended to MIMO LTI systems [16, 17]. FIR filter tuning
with a gradient approximation-based algorithm is presented for
decoupling control of MIMO systems with a discrete-time con-
troller [18]. However, this approach uses an optimization in the
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Figure 1: Block diagram of tracking control. The continuous-time system Gc is
controlled by the discrete-time controller F with sampler S and holderH . The
objective is to minimize the continuous-time error e(t).

algorithm and it is not suitable when many kinds of references
are used.

Based on these approaches in the single-rate feedforward
control, a multirate control approach is presented [19]. Com-
pared with the single-rate system, the multirate system has all
zeros at z = 0. Therefore, the multirate feedforward controller
has all poles at z = 0, and exact on-sample tracking can be
achieved, and intersample behavior is also improved.

Previous researches show that the multirate feedforward con-
trol approach can be extended from the SISO LTI systems to the
MIMO LTI systems [20]. MIMO multirate feedforward con-
troller is effective to reject cross-couplings effects compared
with the basic pre-compensator approach [21]. The MIMO
multirate feedforward controller can be designed for several
kinds because of the redundancy of MIMO LTI systems and
multirate sampling periods. In this paper, a procedure of de-
signing an optimal MIMO multirate feedforward controller is
presented.

The outline of the paper is as follows. In Section 2, the
problem of tracking with digital control is formulated. In Sec-
tion 3, the conventional MIMO single-rate feedforward control
approach and its limitations are presented before introducing
the proposed method. In Section 4, the proposed MIMO mul-
tirate feedforward control approach is presented. In Section 5,
the advantages of the approach are demonstrated by application
to a MIMO motion system in the simulation. In Section 6, the
conclusion of this paper is presented.

2. Problem formulation

In this section, the control problem is formulated. The overview
of tracking control is shown in Figure 1.

2.1. Definition of multi-input multi-output system
The state equation and the output equation of an m-input m-

output nth-order continuous-time linear time-invariant system
Gc are given by

ẋ(t) = Acx(t) + Bcu(t), (1)
y(t) = Ccx(t), (2)

Bc =
[
bc1 · · · bcm

]
, Cc =

[
cc1 · · · ccm

]T
,

where the state variables are x(t) ∈ Rn×1, inputs are u(t) ∈
Rm×1, outputs are y(t) ∈ Rm×1, and the matrices are Ac ∈ Rn×n,
Bc ∈ Rn×m, and Cc ∈ Rm×n. This paper mainly focuses on the
MIMO LTI systems that have the same number of inputs and
outputs. This is a natural assumption for mechatronic systems
to achieve both the state controllability and the hardware cost
reduction.

2.2. Discretization and sampling periods
The discrete-time system Gd discretized by the zero-order

hold with Gc and the generalized sampling period δ is given by

x[k + 1] = Ad x[k] + Bdu[k], (3)
y[k] = Cd x[k], (4)

where k ∈ Z. Ad, Bd, and Cd are given by

Ad = eAcδ, Bd =

∫ δ
0

eAcτBcdτ, Cd = Cc. (5)

In the discrete-time system, three sampling periods exist:
Tr, Ty, and Tu, which represent the sampling periods of a refer-
ence r(t), an output y(t), and a control input u(t), respectively.
Three sampling periods Tr, Ty, and Tu are the same in the
single-rate system and are different in the multirate system.

2.3. Perfect tracking control and intersample behavior
In the problem of tracking control, the discrete-time con-

troller F should be designed as Gd F = I, where Gd = SGcH

,at every sampling point and achieves perfect tracking control.
The perfect tracking control is defined as follows [10]:

Definition 1. The perfect tracking control is defined as a method
with which the plant output perfectly tracks the desired trajec-
tory with zero tracking error at every sampling point.

It is important that the perfect tracking control only guar-
antees the tracking error on the discrete-time sampling points,
but not in the continuous-time. In the problem of tracking con-
trol, the objective is to minimize the continuous-time error e(t).
Therefore, not only on-sample tracking error but also intersam-
ple tracking error should be considered in the design of the
discrete-time controller F.

In this paper, two types of discrete-time controllers are men-
tioned, the first is a single-rate feedforward controller and the
second is a multirate feedforward controller.

3. Single-rate feedforward control for multi-input multi-output
system

The single-rate system Gs discretized by the zero-order hold
with Gc and the sampling period δ = Tu is given by

x[k + 1] = Asx[k] + Bsu[k], (6)
y[k] = Csx[k]. (7)

From the state space representation of the single-rate system
Gs, control inputs u f f [k] of the single-rate feedforward con-
troller Fsr for the reference of the desired output trajectory r[k] =
yd[k + 1] are given by

u f f [k] = Fsr yd[k + 1], (8)

where Fsr is given by

Fsr =

[
As − Bs(CsBs)−1Cs As Bs(CsBs)−1

−(CsBs)−1Cs As (CsBs)−1

]
. (9)

2



There is exact tracking of the desired output trajectory yd at ev-
ery sample in the systems with the single feedforward control.

However, the single-rate feedforward controller has a prob-
lem. It is known that a single-rate system discretized by the
zero-order hold has discretized zeros depending on the rela-
tive order of the continuous-time system [22]. The discretized
zeros appear around z = −1 on the real axis on the z plane.
The single-rate feedforward controller is designed as the inverse
of the single-rate system, and the zeros of the single-rate sys-
tem become the poles of the single-rate feedforward controller.
When the pole of the system is around z = −1 of the z plane, the
system becomes oscillated or diverged. Therefore, the single-
rate feedforward controller has the problem that the generated
control inputs may be oscillated or diverged. If the single-rate
feedforward controller Fsr has unstable poles, a stable inver-
sion approach or an approximated inverse approach is used, see
details in [12, 17].

On the other hand, the multirate feedforward controller is
designed so that all poles are at z = 0 and the generated control
inputs are not oscillated or diverged. In this paper, MIMO mul-
tirate feedforward controller is proposed to make the continuous-
time error smaller than that of a MIMO single-rate feedforward
controller.

4. Multirate feedforward control for multi-input multi-output
system

In this section, the design method of the MIMO multirate
feedforward controller is proposed for the tracking control of
MIMO LTI systems. The multirate feedforward control has an
advantage of intersample behavior compared with the single-
rate feedforward control [13].

4.1. Design of input matrix from generalized controllability in-
dices

The generalized controllability indices are defined as fol-
lows [20]:

Definition 2. The generalized controllability indices of Ac ∈

Rn×n and Bc = [bc1, · · · , bcm] ∈ Rn×m are defined as follows:

{bc1, · · · , bcm, Acbc1, · · · , Acbcm, · · · , An−1
c bcm}.

If (Ac, Bc) is a controllable pair, n linearly independent vectors
be selected from the he generalized controllability indices.

The generalized controllability indices are the sets of the input
multiplicities σl.

The input multiplicities σl is defined as follows [20]:

Definition 3. Input multiplicities σl are defined as the number
of the input which comes from the same input in the same frame
period T f .

Setting φ as a set of n vectors selected from the generalized
controllability indices, σl and N are defined by

σl = number{k|Ak−1
c bcl ∈ φ}, (10)

N = max(σl), (11)

where l ∈ N is the index of the inputs. The plant order n is equal
to the sum of the input multiplicities σl as

m∑
l=1

σl = n. (12)

In MIMO LTI systems, n vectors are selected from the gener-
alized controllability indices, and the full row rank matrix B
can be designed for almost all discretized sampling periods1.
Therefore, several types of multirate systems are designed ac-
cording to the selection of input multiplicities.

From the selection of input multiplicities, Tul , which is the
sampling period of lth input ul, is defined by

Tul =
N
σl

Tu. (13)

It is noted that the sampling period Tu is the smallest value of
Tul .

A sampling period T f is defined as the frame period which
is the largest value between Tr, Ty and Tu. In this paper, the
frame period T f of the multirate system is defined by

T f = Tr = NTy = NTu. (14)

The multirate system G discretized by the zero-order hold
with Gc and the sampling period δ = Tul is given by

x[i + 1] = Ax[i] + Bu[i], (15)
y[i] = Cx[i], (16)

where i ∈ Z. A, B, x[i], and u[i] are given by

A = eAcT f , (17)

B =
[
B1 · · · Bl · · · Bm

]
, (18)

C = Cc, (19)
x[i] = x(iT f ), (20)

u[i] =
[
u1[i] · · · um[i]

]T
=
[
u11 [i] · · · u1σ1

[i] u21 [i] · · · umσm
[i]
]T
, (21)

and Bl, Asl and bsl are defined as

Bl =
[
Aσl−1

sl bsl Aσl−2
sl bsl · · · Asl bsl bsl

]
, (22)

Asl = eAcTul , bsl =

∫ Tul

0
eAcτbcl dτ. (23)

The input matrix B in a multirate system is designed by the
generalized controllability indices depending on the input mul-
tiplicities σl. It becomes a nonsingular square matrix because
of the definition of the generalized controllability indices. The
state and input of the multirate system is shown in Figure 2.

1This is possible because the controllability of a continuous-time system
is not preserved in the discrete system only if the two poles ηi and η j have
the same real parts, and the discretizing sampling period T satisfies ηi = η j +

j 2kπ
T (k = ±1,±2, . . .); furthermore, it is limited to only several cases [23].

3



u11 [i] t

(i + 1
σ1

)TfiTf (i + σ1−1
σ1

)Tf (i + 1)Tf

u12 [i]

u1σ1
[i]

x[i]
x[i + 1]

ul1 [i]

ulσl [i]

(i + 1
σl

)Tf (i + σl−1
σl

)Tf

Tu1

Tul

Figure 2: MIMO multirate input control.

4.2. Controller design and control input generation

From the state equation of the multirate system (15), control
inputs u f f [i] of the multirate feedforward controller Fmr for the
reference of the desired state trajectory r[i] = xd[i+1] are given
by

u f f [i] = Fmr xd[i + 1], (24)

where Fmr and z is given by

Fmr = B−1(I − z−1 A)

=

[
O I

−B−1 A B−1

]
, (25)

z = esT f . (26)

There is exact tracking of the desired state trajectory xd at ev-
ery N samples in the nominal system with the multirate feedfor-
ward control. It is noted that all poles of the multirate feedfor-
ward controller Fmr are z = 0 because the state matrix of Fmr

is O, and smooth control input is generated compared with the
single-rate feedforward controller Fsr. For the details of the de-
sired state trajectory generation, see [24, 25]. A block diagram
of the control system is shown in Figure 3. L is a discrete-time
lifting operator [8]. L−1 outputs the elements of the Nth dimen-
sional vector u f f [i], which are inputs at every period T f , in the
order from 1 to σl by Tul .

4.3. Optimal selection of input multiplicities

Several types of multirate feedforward controllers can be
designed depending on the multirate system G with the selec-
tion of input multiplicities σl. There is exact tracking of the
desired state trajectory xd at every N samples in the systems
with all kinds of multirate feedforward controllers [21]. How-
ever, the control inputs and intersample behavior are differ-
ent depending on the multirate system G. For the application
of high-precision positioning control in mechatronic systems,
continuous-time tracking error is preferred to be small, and also
control input u should be smaller because of the limitation of
mechatronic systems. An approach of designing the optimal
MIMO multirate feedforward controller is proposed to make 2-
norm of control inputs smaller in the rest of this section.

From the state equation of a multirate system (15), the part
in which the control input u affects to the state x is given by

Bu[i] = x[i + 1] − Ax[i]. (27)

In the multirate feedforward control, there is exact tracking of
the state x[i] and x[i + 1]. The difference of the state v[i] is
defined as

v[i] = x[i + 1] − Ax[i], (28)

and the control input u[i] is represented as

u[i] = B−1v[i]. (29)

The square of the 2-norm of the control input ∥u[i]∥22 = u2
1 +

· · · + u2
n is given by

∥u[i]∥22 = vT[i](B−1)TB−1v[i], (30)

and ∥u[i]∥22 becomes a quadratic form of v[i].
For the normalization of the difference of the state, v[i] is

defined as the unit sphere:

∥v[i]∥22 = v2
1 + · · · + v2

n = 1. (31)

According to the relationship between the range of a quadratic
form with the unit sphere and eigenvalues [26], the range of
∥u[i]∥22 is given by

λn ≤ ∥u[i]∥22 ≤ λ1 (λn ≤ λ(n−1) ≤ · · · ≤ λ1), (32)

where λi is the eigenvalue of (B−1)TB−1. λci, which is the eigen-
value of BBT, is the reciprocal of λi as

λci =
1
λi
, (33)

and the range of ∥u[i]∥22 given by

1
λcn
≤ ∥u[i]∥22 ≤

1
λc1

(λc1 ≤ λc2 ≤ · · · ≤ λcn). (34)

σci, which is the singular value of the input matrix B is the
square root of λci as

σci(B) =
√
λci(BBT), (35)

and the range of 2-norm of the control input ∥u[i]∥2 is given by
1
σcn
≤ ∥u[i]∥2 ≤

1
σc1

(σc1 ≤ σc2 ≤ · · · ≤ σcn). (36)

If 2-norm of the control input ∥u[i]∥2 is too large, it is not suit-
able for the limitation of the mechatronic systems. Making the
upper bound of the 2-norm of control input ∥u[i]∥2 smaller is
equal making the smallest singular value σc1(B) larger. From
this consideration, the input multiplicity is selected so that the
smallest singular value σc1(B) becomes the largest. Therefore,
the optimal design of the MIMO multirate feedforward con-
troller to make the maximum value of 2-norm of control inputs
smaller is proposed. The MIMO multirate feedforward con-
troller cannot specify the band of the continuous-time error be-
cause it only guarantees the exact tracking of the desired state
trajectory xd at every frame period T f in the nominal system,
but the intersample behavior becomes smoothly connected be-
tween the discrete sampling points in continuous time with the
control inputs of the optimally designed controller. The analy-
sis of the bound of the continuous-time error is an open issue.
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(Tr)

xd(t + Tr) xd[i + 1] uff [i] uff [k] u(t) y(t)
State Trajectory

Generation

yd(t + Tr)

Figure 3: Block diagram of MIMO multirate feedforward control. S, H , and L denote sampler, holder, and lifting operator [8], respectively. z and zs denote esTr

and esTu , respectively.

Gc(s) =
1

s6 + 8895s5 + 3.979 × 107s4 + 2.428 × 109s3 + 9.099 × 1012s2 + 4.382 × 1013s + 24[
4.702 × 1010s2 + 2.294 × 1011s + 5.477 × 1015 1.387 × 108s2 + 1.233 × 1012s + 5.477 × 1015

5.477 × 1015 1220s4 + 1.085 × 107s3 + 4.835 × 1010s2 + 1.462 × 1012s + 5.477 × 1015

]
(37)

Table 1: σc1(B), the smallest singular value of B, and root mean square and maximum absolute value of control inputs u and tracking errors e depending on sets of
input multiplicities (σ1, σ2).

(σ1, σ2) σc1(B) RMS(u1) MAX(|u1|) RMS(u2) MAX(|u2|) RMS(e1) MAX(|e1|) RMS(e2) MAX(|e2|)
(0, 6) 1.86 × 10−16 0.00 × 1000 0.00 × 1000 9.81 × 1004 2.27 × 1005 4.48 × 10−01 9.94 × 10−01 7.34 × 1000 1.53 × 1001

(1, 5) 6.77 × 10−13 5.54 × 10−12 7.83 × 10−12 1.71 × 1005 4.27 × 1005 4.01 × 10−01 9.88 × 10−01 9.30 × 1000 2.47 × 1001

(2, 4) 8.09 × 10−07 2.24 × 10−10 5.01 × 10−10 3.95 × 1005 8.37 × 1005 3.28 × 10−01 9.70 × 10−01 1.40 × 1001 3.67 × 1001

(3, 3) 4.70 × 10−07 4.70 × 1003 1.48 × 1004 6.72 × 1005 1.73 × 1006 2.26 × 10−01 8.50 × 10−01 4.01 × 1001 1.28 × 1002

(4, 2) 1.54 × 10−04 2.06 × 1003 4.78 × 1003 8.12 × 1002 1.29 × 1003 2.77 × 10−01 9.20 × 10−01 3.09 × 10−01 8.99 × 10−01

(5, 1) 5.70 × 10−07 5.84 × 1005 1.51 × 1006 2.27 × 1003 3.21 × 1003 3.44 × 1001 1.01 × 1002 7.66 × 10−01 1.70 × 1000

(6, 0) 1.01 × 10−06 3.44 × 1005 7.45 × 1005 0.00 × 1000 0.00 × 1000 1.05 × 1001 2.58 × 1001 4.11 × 10−01 9.96 × 10−01
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Figure 4: Desired output trajectory yd(t) = [y1d (t) y2d (t)]T: they are 7th-order
polynomials, respectively.

4.4. Example: intersample behavior of multirate feedforward
in different sets of input multiplicities

The optimal design of the MIMO multirate feedforward con-
troller is validated with the example of a numerical simulation.
The continuous-time system Gc is defined as the transfer func-
tion matrix (37). The reference of the desired output trajectory
yd is given by 7th-order polynomials which change from 0 to 1
in 0 s to 400 µs for each output as shown in Figure 4. The sam-
pling period of the control input is set to Tu = 400 µs. For the
design of MIMO multirate feedforward controller, seven types
of sets of input multiplicities are selected as

(σ1, σ2) = (0, 6), (1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (6, 0). (38)

The examples of multirate inputs are shown in Figure 5.
The smallest singular value σc1(B) and the simulation re-

sults are shown in Table 1. From the procedure of designing the
optimal MIMO multirate feedforward controller, the set of in-
put multiplicities in which the smallest singular value σc1(B) is
the largest is the optimal set of input multiplicities for the con-
trolled system. The advantage of this procedure is that the op-

u1

u2

u1

u2

u1

u2

Tu1 = Tu

Tu1 = Tu

3Tu = Tf

4Tu = Tf

6Tu = Tf

1 2 3

1 2 3

1 2 3

1 2

4

1 2 3 4 5 6

(σ1, σ2)

(3, 3)

(4, 2)

(6, 0)

Tu2 = Tu

Tu2 = 2Tu

Tu1 = Tu

not used

Figure 5: Examples of multirate inputs. Two inputs u1 and u2 are generated
according to the input multiplicities (σ1, σ2). A control input with 0 input
multiplicity is not in use.

timal MIMO multirate feedforward controller is designed with-
out numerical simulations. When the order of the system is
high or the number of inputs and outputs is large, the number
of the set of input multiplicities becomes enormous. Therefore,
testing all sets with several references in numerical simulations
spends a large amount of time, and the proposed design proce-
dure is effective.

The validity of the procedure can be confirmed from the
root mean square and the maximum absolute value of control
inputs u and tracking errors e in Table 1. The trend is that
control inputs u and tracking errors e become small when the
smallest singular value σc1(B) is large. From Table 1, the op-
timal MIMO multirate feedforward controller is designed with
the set of input multiplicities (σ1, σ2) = (4, 2) which makes the
smallest singular valueσc1(B) largest, and the root mean square
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(a) Photograph of two-inertia system motor bench.

Right SideLeft Side

Jl Jr

K

τl θl τrθr

Dl Dr

(b) Model of two-inertia system.

Figure 6: Details of two-inertia system motor bench. In this paper, the two-
inertia system motor bench is modeled as a two-input two-output system. The
two inputs are left side torque τl and right side torque τr , respectively. The two
outputs are left side angle θl and right side angle θr , respectively.

1
Jrs2+Drs

1
Jls2+Dls

K

τr

τl

θr

θl

∆θτs
−

+

+

+

+

−

Figure 7: Block diagram of two-inertia system.

of tracking errors e are the smallest in all sets.
In summary, the proposed procedure is validated, and the

optimal MIMO multirate feedforward controller can be designed
with the set of input multiplicities which makes the smallest sin-
gular value σc1(B) largest, without spending time on numerical
simulations.

5. Verification in multi-input multi-output positioning sys-
tem

In this section, the tracking performance considering the in-
tersample behavior of the optimal MIMO multirate feedforward
controller is verified compared with that of a MIMO single-rate
feedforward controller.

5.1. System modeling

The approach is validated on the two-inertia system mo-
tor bench shown in Figure 6(a). The two-inertia system motor
bench has two motors on the left and right side and two motors
are connected by the flexible shaft as shown in Figure 6(b). The
two-inertia system motor bench is used for theoretical and ap-
plicability validation. The two-inertia system motor bench has
20 bit/rev optical encoder for both sides which is enough high
resolution for high-precision mechatronic systems.
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Figure 8: Bode diagram of two-inertia system motor bench. The black line is a
frequency response function measurement of the system and the magenta line
is the identified continuous-time system.

Table 2: Parameters of two-inertia system motor bench.
Jl 8.40 × 10−4 kgm2 Jr 8.20 × 10−4 kgm2

Dl 4.00 × 10−3 Nms/rad Dr 4.00 × 10−3 Nms/rad
K 95.5 Nm/rad

In this paper, the two-inertia system motor bench is modeled
as a two-input two-output 4th-order system. The block diagram
of the system is shown in Figure 7. The two inputs u are the
left and right side torque, τl and τr, and the outputs y are the
left and right side angle, θl and θr, respectively.

The Bode diagram of a frequency response function mea-
surement of the system is shown in Figure 8. The measure-
ment is obtained through the identification experiment with a
multisine input [27] from 1 Hz to 1249 Hz, and a sampling fre-
quency is 2.5 kHz. From the frequency response function mea-
surement, the parameters of the two-inertia system motor bench
are given as shown in Table 2 and the identified continuous-time
system Gc is given by the state space model with the state equa-
tion (39) and the output equation (40).

d
dt


θl(t)
θ̇l(t)
θr(t)
θ̇r(t)

=


0 1 0 0
− K

Jl
−

Dl
Jl

K
Jl

0
0 0 0 1
K
Jr

0 − K
Jr
−

Dr
Jr



θl(t)
θ̇l(t)
θr(t)
θ̇r(t)

 +


0 0
1
Jl

0
0 0
0 1

Jr


[
τl(t)
τr(t)

]
(39)

[
θl(t)
θr(t)

]
=

[
1 0 0 0
0 0 1 0

] 
θl(t)
θ̇l(t)
θr(t)
θ̇r(t)

 (40)

5.2. Conditions
The conventional MIMO single-rate feedforward controller

Fsr and the proposed MIMO multirate feedforward controller
Fmr are compared in the tracking control of the continuous-time
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Figure 9: Poles and zeros of multirate feedforward controller Fmr and single-
rate feedforward controller Fsr with unit circle on z plane.
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Figure 10: Simulation results of multirate and single-rate feedforward control.

system Gc. With the proposed procedure, the optimal MIMO
multirate feedforward controller is designed for Gc with the
set of input multiplicities (σ1, σ2) = (2, 2) which makes the
smallest singular value σc1(B) largest. The poles and zeros of
the feedforward controllers Fsr and Fmr are shown in Figure 9.
From Figure 9(a), the conventional MIMO single-rate feedfor-
ward controller Fsr has one pole around z = −1 which leads
to an oscillation, and from Figure 9(b), the proposed MIMO
multirate feedforward controller Fmr has all poles on z = 0.

The reference of the desired output trajectory yd is given
by 7th-order polynomials which change from 0 to 100 µrad in
0.8 ms to 2 ms for each output. The sampling period of the con-
trol input is set to Tu = 400 µs. From these conditions, the
reference signal is steep enough compared with Tu.

5.3. Results: intersample behavior of multirate feedforward
and single-rate feedforward

The simulation results are shown in Figure 10. Figure 10(a)
and Figure 10(b) show that the control inputs of the conven-
tional MIMO single-rate feedforward controller Fsr oscillate
and the proposed MIMO multirate feedforward controller Fmr

generates the smooth control inputs. Figure 10(c) and Fig-
ure 10(d) show that the outputs of the single-rate feedforward
controller are oscillated because of the oscillated control in-
puts, and the outputs of the multirate feedforward controller
are settled after 2 s. Figure 10(e) and Figure 10(f) show that
the continuous-time tracking error of the multirate feedforward
controller is smaller than that of the single-rate feedforward
controller, thus the effectiveness proposed method is verified.

MIMO multirate feedforward controller is used in the two-
degree-of-freedom robust control with feedback controllers which
reduce modeling error and disturbances. The role of the feed-
forward controller is the nominal tracking performance in the
two-degree-of-freedom control scheme, and the simulation val-
idations accurately verify it. In summary, the proposed optimal
MIMO multirate feedforward controller outperforms the con-
ventional MIMO single-rate feedforward controller in smooth
control inputs and continuous-time tracking errors.

6. Conclusion

The procedure of the optimal MIMO multirate feedforward
controller design is proposed. The optimal MIMO multirate
feedforward controller makes the upper bound of the 2-norm
of control input ∥u[i]∥2 smaller, and as a result, the continuous-
time tracking errors become smaller. The numerical simulation
is conducted for the 6th-order system, and the proposed proce-
dure of the selection of input multiplicities is validated.

The continuous-time tracking errors of the proposed MIMO
multirate feedforward controller Fmr are compared with the con-
ventional MIMO single-rate feedforward controller Fsr with
the two-inertia system motor bench. Depending on the poles
of each controller, the conventional single-rate controller gen-
erates oscillated control inputs and the proposed multirate con-
troller generates smooth control inputs. As a result, continuous-
time tracking errors of the multirate controller are better than
that of the single-rate controller in the MIMO LTI system.

Ongoing research focuses on MIMO LTI systems which
have a different number of inputs and outputs, and the com-
bination of single-rate and multirate controllers.
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