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Abstract

Multirate feedforward control enables perfect tracking control for the desired state trajectory at every sample as the same number
of the model order. The aim of this paper is the comparison of perfect tracking control approaches for intersample performance in
multi-modal motion systems. The multirate feedforward control has a trade-off between the number of states for perfect tracking
control and the reference sampling frequency. To balance the trade-off, the states for the perfect tracking control can be selected by
the mode decomposition. Intersample performance of each approach in a multi-modal motion system is compared in both frequency
domain and time domain.
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1. Introduction

Feedforward control based on exact model inversion en-
ables perfect tracking control [1] for the model of the con-
trolled system. The quality of the feedforward controller di-
rectly results in tracking performance in high-precision mecha-
tronic systems such as wafer scanners [2], wire bonders [3], and
ball-screw-driven stages [4]. In industrial applications, the sys-
tem is controlled in discrete time but the tracking performance
should be improved in continuous time.

The exact model inversion has a challenge when the model
has nonminimum-phase zeros such as intrinsic and discretiza-
tion zeros [5]. Several approximated inverse approaches in-
clude zero-phase-error tracking control (ZPETC) [1], nonminimum-
phase zeros ignore (NPZI) [6], and zero-magnitude-error track-
ing controller (ZMETC) method [7], and comparisons are pro-
vided in [8, 9]. These approaches cannot provide exact on-
sample tracking due to approximation. The single-rate stable
inversion approach [9] generates the noncausal bounded feed-
forward input for the model with nonminimum-phase zeros and
provides perfect output tracking for every sample. However, it
cannot compensate for the zeros around −1 of the discrete-time
model that cause the oscillating feedforward input and deteri-
orate intersample performance when the relative degree of the
continuous-time model is 2 or more [5].

To improve intersample performance, the multirate feed-
forward control [10, 11] is presented. The multirate feedfor-
ward control provides perfect n states tracking for every n sam-
ple and prevents intersample oscillation. There is a trade-off
in the multirate feedforward control between the number of
states for perfect tracking control and the reference sampling
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frequency. To balance the trade-off, the multirate feedforward
control approaches based on modal form with additive decom-
position [12, 13] and multiplicative decomposition [14] are pre-
sented. Both approaches select the states for perfect tracking
control and balance the trade-off to improve intersample per-
formance. Note that the concept of perfect tracking control is
defined in the sampled-data controlled systems as “the output
perfectly tracks the reference with zero tracking error at every
sampling point” [1]. The concept of perfect tracking control
is in discrete time, and it is distinguished from the concept of
perfect control in continuous time [15].

There are other finite sample preview feedforward control
approaches [16, 17, 18] based on minimizing the two-norm of
the tracking error with optimization or least square calculation.
These approaches can deal with constraints using the redun-
dancy of the preview samples. However, these concepts are not
the same as the exact model inversion approaches such as the
single-rate stable inversion and the multirate feedforward con-
trol which provide exact on-sample tracking for the model, and
the number of preview samples is normally larger than that of
the exact model inversion approaches.

Although several approaches are available to design the per-
fect tracking controller, the choice of the feedforward controller
can be arbitrarily and there is no comparison in terms of inter-
sample performance for perfect tracking controllers. The aim
of this paper is the analysis of pre-existing perfect tracking con-
trollers in both frequency domain and time domain and provides
the guideline to design the feedforward controller to improve
intersample performance. The main contributions of this paper
are as follows.

Contribution 1. Perfect tracking control approaches are de-
scribed focusing on improving intersample performance in multi-
modal motion systems.
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Figure 1: Block diagram of tracking control. The continuous-time system G is
controlled by the discrete-time controller F with sampler S and zero-order-hold
H . The objective is to minimize the continuous-time error e(t).

Contribution 2. Intersample performance of each approach is
evaluated in both frequency domain and time domain.

The theory is described in a general multi-input multi-output
(MIMO) system and the verification is conducted in a single-
input single-output (SISO) system.

The outline is as follows. In Section 2, the tracking prob-
lem for intersample performance is formulated. In Section 3,
the desired state trajectory generation method is presented for
SISO and MIMO systems. In Section 4, the multirate feedfor-
ward controller design methods with additive and multiplica-
tive decomposition are presented. In Section 5, the intersample
performance is validated in a multi-modal motion system. In
Section 6, conclusions are presented.

2. Problem formulation

In this section, the problem to improve continuous-time track-
ing performance is formulated. The perfect tracking control
methods based on the single-rate and multirate feedforward are
described. From the trade-off of these two approaches, the re-
quirements of the optimal perfect tracking controller design are
presented.

2.1. Intersample performance in sampled-data control

The considered tracking control configuration is shown in
Figure 1, with input u ∈ Rnu , output y ∈ Rny , reference r ∈ Rny ,
and error e ∈ Rny . In this paper, the system is assumed to
be square as nu = ny = m. The m-input m-output nth order
continuous-time linear time-invariant system Gc

s
= (Ac, Bc,Cc,O)

is given by

ẋ(t) = Acx(t) + Bcu(t), (1)
y(t) = Ccx(t), (2)

where Ac ∈ Rn×n, Bc ∈ Rn×m, and Cc ∈ Rm×n. The discrete-
time system Hd of the continuous-time system Hc discretized
by sampler S and zero-order-holdH in sampling time δ is gen-
erally defined as

Hc
s
=

[
Ac Bc

Cc Dc

]
, (3)

Hd
z
= SHcH =

[
Ad Bd

Cd Dd

]
=

[
eAcδ A−1

c (eAcδ − I)Bc

Cc Dc

]
,

(4)

x[k] = x(kδ). (5)

The discrete-time system Gd
z
= (Ad, Bd,Cd,O) = SGcH is

given by

x[k + 1] = Ad x[k] + Bdu[k], (6)
y[k] = Cd x[k]. (7)

The control objective considered in this paper is to mini-
mize the continuous-time error e(t) that includes both on-sample
and intersample performance for the continuous-time reference
r(t) that is assumed to be known in advance.

2.2. Single-rate feedforward control based on discrete-time model
inversion

The one-sample forward shifted system G̃d of Gd from u[k]
to y[k + 1] is given by

x[k + 1] = Ad x[k] + Bdu[k], (8)
y[k + 1] = Cd Ad x[k] + Cd Bdu[k]. (9)

For the system H = (A, B,C, D) with nonsingular D, the in-
verse system H−1 is generally defined as

H−1 =

[
A − BD−1C BD−1

−D−1C D−1

]
. (10)

By inverting G̃d, the input u generated by the single-rate feed-
forward controller is given by

u[k] = G̃−1
d r[k + 1], (11)

where the single-rate feedforward controller G̃−1
d is given by

G̃−1
d =

[
Ad − Bd(Cd Bd)−1Cd Ad Bd(Cd Bd)−1

−(Cd Bd)−1Cd Ad (Cd Bd)−1

]
. (12)

When G̃−1
d has unstable poles, it can be decomposed as[

xs[k + 1]
xu[k + 1]

]
=

[
As O
O Au

] [
xs[k]
xu[k]

]
+

[
Bs

Bu

]
r[k + 1], (13)

u[k] =
[
Cs Cu

] [xs[k]
xu[k]

]
+ Dr[k + 1], (14)

where |λ(As)| ≤ 1 and |λ(Au)| > 1. The bounded feedforward
input u is given by

u[k] = Csxs[k] + Cuxu[k] + Dr[k + 1] (15)

where xs follows from solving

xs[k + 1] = Asxs[k] + Bsr[k + 1], xs[−∞] = 0 (16)

forward in time and xu follows from solving

xu[k + 1] = Auxu[k] + Bur[k + 1], xu[∞] = 0 (17)

backward in time [9]. This stable inversion approach is based
on that the unstable poles |λ(Au)| > 1 forward in time are stable
poles |λ(Au)−1| < 1 backward in time. The generated feedfor-
ward input u provides perfect output tracking for every sample.

Note that although the feedforward input generated by the
single-rate stable inversion approach is bounded, the oscillating
poles around λ = −1 cannot be compensated. The oscillat-
ing feedforward input can deteriorate intersample performance.
The single-rate feedforward controller has unstable or oscillat-
ing poles when the relative degree of the continuous-time model
is 2 or more as Euler-Frobenius polynomials [5].
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2.3. Multirate feedforward control for full-state tracking
To compensate for oscillating poles of the feedforward con-

troller due to discretization, multirate feedforward control [10]
based on perfect state tracking is presented.

The n samples lifted system Hd of Hd
z
= (Ad, Bd,Cd, Dd)

is generally defined as

Hd
zn

= LnHdL
−1
n =

[
Ad Bd
Cd Dd

]

=



An
d An−1

d Bd An−2
d Bd · · · Ad Bd Bd

Cd Dd O · · · · · · O

Cd Ad Cd Bd Dd
. . .

...
...

...
. . .

. . .
. . .

...

Cd An−2
d Cd An−3

d Bd Cd An−4
d Bd

. . . Dd O
Cd An−1

d Cd An−2
d Bd Cd An−3

d Bd · · · Cd Bd Dd


(18)

u[in] = Lnu[k] =
[
u[nin] · · · u[nin + (n − 1)]

]T
=
[
u1[nin] · · · um[nin] · · · um[nin + (n − 1)]

]T
∈ R(m×n),

(19)

y[in] = Lny[k] =
[
y[nin] · · · y[nin + (n − 1)]

]T
=
[
y1[nin] · · · ym[nin] · · · ym[nin + (n − 1)]

]T
∈ R(m×n),

(20)

where u[in] and y[in] are column vectors, and Ln is n samples
lifting operator [19].

The N (≤ n) samples lifted system of Gd is given by

Gd
zN

= LNGdL
−1
N =

[
Ad Bd
Cd Dd

]
. (21)

Note that the number of lifting samples is N = n in SISO sys-
tems but it is not the case in MIMO systems, see [20]. The
desired state trajectory of Gd is given by the multirate sampler
for every N sample SN that is defined as

x̂[iN] = SN x̂(t) = x̂(iN Nδ), (22)

where x̂(t) is the desired state trajectory in continuous time. By
inverting the state equation of Gd, the input u generated by the
multirate feedforward controller is given by

u[k] = L−1
N

(
B−1

d x̂[iN + 1] − B−1
d Ad x̂[iN]

)
= L−1

N B−1
d (I − z−N Ad)x̂[iN + 1], (23)

where z is shift operator in sampling time δ. The generated
feedforward input u provides perfect state tracking for every N
sample and improves intersample performance.

Note that the desired state trajectory x̂ is given by the refer-
ence and its derivatives in continuous time for the model with-
out zeros in controllable canonical form. When the model has
zeros, the desired state trajectory generation method that is de-
scribed in the next section is used. Although the multirate feed-
forward controller provides perfect state tracking for every N

sample, the sampling time of the desired state trajectory is Nδ,
and the higher N is, the lower the reference sampling frequency
1/Nδ is.

2.4. Problem description

From these discussions, the optimal perfect tracking con-
troller should be designed by considering the following require-
ments.

Requirement 1. Oscillating poles of the feedforward controller
due to discretization is compensated by state tracking.

Requirement 2. States for perfect tracking control are selected
to make reference sampling frequency enough high.

The state tracking can be provided by multirate feedforward
control and the states can be selected based on the mode de-
composition. In this paper, two kinds of multirate feedforward
controllers with mode selection in additive decomposition [12,
13] and multiplicative decomposition [14] are described and in-
tersample performance is compared with pre-existing perfect
tracking control approaches.

In this paper, square systems that have the same number
of inputs and outputs are assumed. For applications in indus-
trial mechatronic systems, it is usual to design a static decou-
pling controller by coordinate transformation and make the con-
trolled system square and statically decoupled in the rigid-body
mode. The over-actuated non-square systems are not assumed
in this paper because the exact and causal inversion can be
achieved by the dynamic squaring-down approach [21].

Note that the controller design is addressed in both contin-
uous and discrete time to deal with the sampled-data system.
Basically, the desired state trajectory generation is conducted
in continuous time and the multirate feedforward controller de-
sign is conducted in discrete time.

3. Desired state trajectory generation

In this section, the desired state trajectory methods are pre-
sented for the SISO and MIMO systems. For the SISO system,
the desired state trajectory is generated in controllable canoni-
cal form. For the MIMO system, the desired state trajectory is
generated by the state transformation using the singular value
decomposition of the input matrix. The bounded desired state
trajectory is generated by the stable and unstable decomposition
and the non-causal convolution with time axis reversal. This pa-
per substantially extends the preliminary result in [11, 22] with
generalization and theoretical proof in MIMO systems.

3.1. Desired state trajectory generation for SISO system

The single-input single-output continuous-time linear time-
invariant nth order system is given by

Gc(s) =
B(s)
A(s)

=
bmsm + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0
, (24)
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where n > m and b0 , 0. Gc in controllable canonical form
Gc,cc f

s
= (Ac,cc f , bc,cc f , cc,cc f , 0) is given by

ẋcc f (t) = Ac,cc f xcc f (t) + bc,cc f u(t), (25)
y(t) = cc,cc f xcc f (t), (26)

where

[
Ac,cc f bc,cc f

cc,cc f 0

]
=



0 1 0 0
. . .

. . .
...

0 0 1 0
−a0 · · · · · · −an−1 1
b0 · · · bm 0 0


. (27)

The filter for the state trajectory generation is given by

β(t) = L−1
[
B(s)−1

]
, (28)

whereL[·] is the unilateral Laplace transform. The desired state
trajectory in the controllable canonical form is given by

x̂cc f (t) =
∫ t

0
β(t − τ)rn(τ)dτ, (29)

where

x̂cc f (t) =
[
x̂cc f ,0(t) · · · x̂cc f ,n−1(t)

]T
, (30)

rn(t) =
[
1 · · ·

dn−1

dtn−1

]T
r(t). (31)

When B(s)−1 has unstable poles, it can be decomposed as

B(s)−1 = B−1
s (s) + B−1

u (s), (32)

where all poles ps ∈ C of B−1
s (s) are Re(ps) ≤ 0 and all poles

pu ∈ C of B−1
u (s) are Re(pu) > 0. The filters of stable and

unstable parts for the state trajectory generation are given by

βs(t) = L−1
[
B−1

s (s)
]
, (33)

βu(t) = L−1
[
B−1

u (−s)
]
. (34)

The stable and unstable parts of the desired state trajectory are
given by

x̂s(t) =
∫ t

−∞

βs(t − τ)rn(τ)dτ, (35)

x̂u(t) =
∫ ∞

t
βu(t − τ)rn(τ)dτ, (36)

and the bounded desired state trajectory in controllable canoni-
cal form x̂cc f is given by

x̂cc f (t) = x̂s(t) + x̂u(t). (37)

The state transformation of the system H = (A, B,C, D)
with the state transformation matrix T is generally defined as

T (H,T) =
[

T AT−1 TB
CT−1 D

]
. (38)

The state transformation matrix T−1
cc f from the system in con-

trollable canonical form Gcc f to the system Gc
s
= (Ac, bc, cc, 0)

with the states x is given by

T−1
cc f =

[
Bc · · · An−1

c Bc

]


a1 · · · an−1 1
... . .

.
. .
.

an−1 . .
.

1 O

 , (39)

where

Gc,cc f = T (Gc,Tcc f ), (40)
xcc f (t) = Tcc f x(t). (41)

3.2. Desired state trajectory generation for MIMO system

The m-input m-output nth order continuous-time linear time-
invariant system Gc

s
= (Ac, Bc,Cc,O) is given by

ẋ(t) = Acx(t) + Bcu(t), (42)
y(t) = Ccx(t), (43)

where Ac ∈ Rn×n, Bc ∈ Rn×m, and Cc ∈ Rm×n. Singular Value
Decomposition (SVD) of Bc is given by

Bc = UΣVH, (44)

where U ∈ Rn×n and V ∈ Rm×m are unitary matrices so that
U−1 = UH and V−1 = VH. The elements of Σ ∈ Rn×m are given
by

Σ =

[
∆
O

]
, (45)

∆ = diag(σi) (i = 1 · · ·m ∈ N), (46)

where σi (i = 1 · · ·m ∈ N) are the singular values of B.
The system Gsvd

s
= (Asvd, Bsvd,Csvd,O) = T (Gc,UH) with

the states xsvd = UHx is given by
Wu(s) ∆VH

Wl(s) O(n−m)×m

Csvd Om×m


[

xsvd(s)
u(s)

]
=


Om×m

O(n−m)×m

y(s)

 , (47)

where u(s) = L [u(t)], x(s) = L [x(t)], y(s) = L
[
y(t)
]
, Wu(s) ∈

Rm×n, Wl(s) ∈ R(n−m)×n, and the Rosenbrock system matrix
Πsvd(s) is given by

Πsvd(s) =
[

Asvd − sI Bsvd

Csvd O

]
=

 Wu(s) ∆VH

Wl(s) O(n−m)×m

Csvd Om×m

 .
(48)

The following theorem shows that Wl(s) contains the property
for the invariant zeros of the system.

Theorem 1 (Identity of invariant zeros). Invariant zeros of Gsvd

are the values when Wl(s) is not full row rank.
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Proof. The invariant zero is defined as the value when the Rosen-
brock system matrix is not full rank. It is assumed that rank(∆VH) =
m and the upper m rows of Πsvd(s) are full row rank. It is as-
sumed that rank(Cc) = m and rank(U) = n. From Sylvester’s
rank inequality, for X ∈ Rl×n and X ∈ Rn×k it generally follows

rank(X) + rank(Y) − n ≤ rank(XY). (49)

Sylvester’s rank inequality is applied to X as Cc and Y as U. It
follows that rank(Csvd) = rank(CcU) = m and the lower m rows
of Πsvd(s) are full row rank. Therefore, the values when Wl(s)
is not full rank are the same as the values when the Rosenbrock
system matrix is not full rank.

From (47),[
Wl(s)
Csvd

]
xsvd(s) =

[
O(n−m)×m

y(s)

]
, (50)

and it follows that

xsvd(s) =
[

Wl(s)
Csvd

]−1 [ O(n−m)×m

y(s)

]
. (51)

Let the state transformation be

x(s) = Uxsvd(s) = U
[

Wl(s)
Csvd

]−1 [ O(n−m)×m

y(s)

]
. (52)

Let the inverse Laplace transform be β(t) = L−1[B−1(s)], where

B−1(s) = U
[

Wl(s)
Csvd

]−1

. (53)

The desired state trajectory is given by

x̂(t) =
∫ t

0
β(t − τ)

[
O(n−m)×m

r(τ)

]
dτ. (54)

When B(s)−1 has unstable poles, it can be decomposed as

B(s)−1 = B−1
s (s) + B−1

u (s), (55)

where all poles ps ∈ C of B−1
s (s) are Re(ps) ≤ 0 and all poles

pu ∈ C of B−1
u (s) are Re(pu) > 0. The filter matrices of stable

and unstable parts for the state trajectory generation are given
by

βs(t) = L−1
[
B−1

s (s)
]
, (56)

βu(t) = L−1
[
B−1

u (−s)
]
. (57)

The stable and unstable parts of the desired state trajectory are
given by

x̂s(t) =
∫ t

−∞

βs(t − τ)
[
O(n−m)×m

r(τ)

]
dτ, (58)

x̂u(t) =
∫ ∞

t
βu(t − τ)

[
O(n−m)×m

r(τ)

]
dτ, (59)

and the bounded desired state trajectory x̂ is given by

x̂(t) = x̂s(t) + x̂u(t). (60)

Note that the unitary matrix U that is used as the state trans-
formation matrix is not unique in singular value decomposition
but the desired state trajectory is generated uniquely for the de-
sired state-space representation. The calculation of the singu-
lar value decomposition can be numerically ill-conditioned and
the state-space representation should be properly formulated so
that the state transformation matrix U is not numerically ill-
conditioned.

4. Multirate feedforward control with mode decomposition

In this section, the multirate feedforward control with mode
decomposition is presented. First, the model of the multi-modal
motion system is defined. Second, the multirate feedforward
control with additive decomposition is described. Third, the
multirate feedforward control with multiplicative decomposi-
tion is described. The intersample performance of these two
approaches is verified in the next section.

4.1. Definition of multi-modal motion system
The m-input m-output continuous-time multi-modal motion

system [23] is defined as

Gc(s) =
nm∑

km=1

ckm bkm

s2 + 2ζkmωkm s + ω2
km

=

nm∑
km=1

Gc,mod,km (s), (61)

where ω is the resonance angle frequency, ζ is the damping co-
efficient, and nm is the number of modes. The vectors b ∈ R1×m

and c ∈ Rm×1 are associated with the inputs, the outputs, and the
mode shapes. Gc in modal form Gc,mod

s
= (Ac,mod, Bc,mod,Cc,mod,O)

is given by

ẋmod(t) = Ac,mod xmod(t) + Bc,modu(t), (62)
y(t) = Cc,mod xmod(t), (63)

where

[
Ac,mod Bc,mod

Cc,mod O

]
=


Ac,mod,1 O Bc,mod,1

. . .
...

O Ac,mod,nm Bc,mod,nm

Cc,mod,1 · · · Cc,mod,nm O

 ,
(64)

xmod(t) =
[
xmod,1(t) · · · xmod,nm (t)

]T
, (65)

and the subsystem Gc,mod,km

s
= (Ac,mod,km , Bc,mod,km ,Cc,mod,km ,O)

is given by

[
Ac,mod,km Bc,mod,km

Cc,mod,km O

]
=


0 1 O
−ω2

km
−2ζkmωkm bkm

ckm O O

 . (66)

xmod,km (t) =
[
xmod,km,0(t) xmod,km,1(t)

]T
. (67)
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Although there are other representations such as the nu-
merical decomposed model, the multi-modal model is reason-
able for the intersample performance improvement by the state
tracking control, and mode selection should be relied on the
physical meaning of the states. The state tracking is only guar-
anteed on-sample and the intersample performance improve-
ment is achieved because of the physical relationships between
each state. The gray box modeling approach with white box
structure and black box parameter tuning such as in [24] is
preferable to obtain the high-order multi-modal model in which
each mode has a physical interpretation of the mode shapes.

4.2. Multirate feedforward control with additive decomposition
The overview of multirate feedforward control with additive

decomposition [12, 13] is shown in Figure 2. The indices µ of
the selected modes are defined as

µ = {km|km ∈ 1, . . . , nm}, (68)

and the order ν of the selected modes is defined as

ν = 2 × number{µ}. (69)

The permutation matrix for the selected modes is defined as

Tµ =
[
Eµ
E×

]
, (70)

where Eµ and E× consist of standard basis vectors of selected
and unselected modes, and the standard basis vectors of the
mode km is defined as

Ekm =
[
O2×2(km−1) I2 O2×2(nm−km)

]
. (71)

The model reduction matrix extracting upper ν states is defined
as

Tν =
[
Iν Oν×(n−ν)

]
. (72)

The system of the selected modes Gc,µ is given by

ẋµ(t) = Ac,µxµ(t) + Bc,µu(t), (73)
y(t) = Cc,µxµ(t), (74)

where

xµ(t) = TνTµxmod(t), (75)

Ac,µ = TνTµAc,modT−1
µ TT

ν , (76)

Bc,µ = TνTµBc,mod, (77)

Cc,µ = Cc,modT−1
µ TT

ν . (78)

The discrete-time system of Gc,µ is given by

Gd,µ
z
= SGc,µH =

[
Ad,µ Bd,µ

Cd,µ O

]
, (79)

and the N (≤ ν) samples lifted system of Gd,µ is given by

Gd,µ
zN

= LNGd,µL
−1
N =

[
Ad,µ Bd,µ
Cd,µ Dd,µ

]
. (80)

Note that the number of lifting samples is N = ν in SISO sys-
tems but it is not the case in MIMO systems, see [20]. By in-
verting the state equation of Gd,µ, the input u generated by the
multirate feedforward controller with additive decomposition is
given by

u[k] = L−1
N

(
B−1

d,µ x̂µ[iN + 1] − B−1
d,µAd,µ x̂µ[iN]

)
= L−1

N B−1
d,µ(I − z−N Ad,µ)x̂µ[iN + 1], (81)

where x̂µ[iN] = SNTνTµ x̂mod(t). The generated feedforward
input u provides perfect state tracking for every N sample for
the states corresponding to the selected modes µ.

Note that although perfect state tracking for selected states
does not guarantee perfect output tracking, it can provide better
intersample performance because the desired state trajectory is
generated by the model with full states, and the reference sam-
pling frequency for selected ν states becomes higher to 1/Nδ
where N ≤ ν ≤ n.

4.3. Multirate feedforward control with multiplicative decom-
position

The overview of multirate feedforward control with multi-
plicative decomposition [14] is shown in Figure 3. The one-
sample forward shifted system
G̃d,mod

z
= (Ãd,mod, B̃d,mod, C̃d,mod, D̃d,mod)

of the discrete-time system in modal form
Gd,mod

z
= (Ad,mod, Bd,mod,Cd,mod,O) = SGc,modH

from u[k] to y[k + 1] is given by[
Ãd,mod B̃d,mod

C̃d,mod D̃d,mod

]
=

[
Ad,mod Bd,mod

Cd,mod Ad,mod Cd,mod Bd,mod

]
. (82)

When ν states corresponding to the modes µ are selected,

Π = S
[

Iν Oν×(n−ν)
O(n−ν)×ν O(n−ν)

]
S−1 (83)

is defined with full rank S =
[
V V×

]
, where V ∈ Rn×ν and

V× ∈ Rn×(n−ν) are a column space of an invariant subspace of
A = Ãd,mod and A× = Ãd,mod − B̃d,mod D̃−1

d,modC̃d,mod that cor-
respond to the poles of Gmr and the zeros of Gsr. Then the
state-space realizations are given by

Gmr f
z
=

[
Ãd,mod ΠB̃d,mod D̃−1

d,mod
C̃d,mod I

]
, (84)

Gsr f
z
=

[
Ãd,mod B̃d,mod

C̃d,mod(I −Π) D̃d,mod

]
. (85)

Let the permutation matrix Tµ be such that

T (Gmr f ,Tµ)
z
=

 Amr O Bmr

O Asr O
Cmr Cmrr I

 , (86)

T (Gsr f ,Tµ)
z
=

 Amr O Bsrr

O Asr Bsr

O Csr Dsr

 . (87)
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Tµ SN L−1
NB−1

µ (I − z−N Aµ)
x̂mod(t) x̂µ(t) x̂µ[iN + 1] u[iN ] u[k]

Tν zN

Figure 2: Block diagram of multirate feedforward control with additive decomposition.

x̂mr(t) x̂mr[iN + 1]
Tµ SN L−1

N G−1
srB−1

mr(I − z−N Amr)
x̂mod(t) rsr[iN ] rsr[k] u[k]

Tms Tν zN

Figure 3: Block diagram of multirate feedforward control with multiplicative decomposition.

Gmr with states xmr and Gsr with states xsr are given by

Gmr
z
=

[
Amr Bmr

Cmr I

]
, (88)

Gsr
z
=

[
Asr Bsr

Csr D

]
. (89)

The product of the system H1 = (A1, B1,C1, D1) and H2 =

(A2, B2,C2, D2) is generally defined as

H1H2 =

 A1 B1C2 B1 D2
O A2 B2

C1 D1C2 D1 D2

 . (90)

The state transformation matrix Tms is given by

Tms =

[
Iν X

Oν×(n−ν) I(n−ν)

]−1

, (91)

where X ∈ Rν×(n−ν) is the solution of the Sylvester equation

Amr X − X Asr = BmrCsr. (92)

G̃ms
z
= (Ãms, B̃ms, C̃ms, d) = T (G̃d,mod,TmsTµ) = GmrGsr is

given by

[
Ãms B̃ms

C̃ms D

]
=

 Amr BmrCsr Bmrd
O Asr Bsr

Cmr Csr D

 . (93)

The N (≤ ν) samples lifted system of Gmr is given by

Gmr
zN

= LNGmrL
−1
N =

[
Amr Bmr
Cmr O

]
. (94)

Note that the number of lifting samples is N = ν in SISO sys-
tems but it is not the case in MIMO systems, see [20]. By invert-
ing the state equation of Gmr, the reference for the single-rate
inversion rsr is given by

rsr[k] = L−1
N

(
B−1

d,mr x̂mr[iN + 1] − B−1
d,mr Ad,mr x̂mr[iN]

)
= L−1

N B−1
d,mr(I − z−N Ad,mr)x̂mr[iN + 1], (95)

where x̂mr[iN] = SNTνTmsTµ x̂mod(t). Then, the input u gener-
ated by the multirate feedforward controller with multiplicative
decomposition is given by

u[k] = G−1
sr rsr[k], (96)

where

G−1
sr =

[
Asr − Bsr D−1

sr Csr Bsr D−1
sr

−D−1
sr Csr D−1

sr

]
. (97)

Note that the one-sample backward shifted system of G̃ms

is given by

Gms = T (Gd,mod,TmsTµ) =
[

Ams Bms

Cms O

]

=

[
Ãms B̃ms

C̃ms Ã−1
ms O

]
=

 Amr BmrCsr Bmr D
O Asr Bsr

C∗mr D∗mrC∗sr D∗mr D


=

[
Amr Bmr

C∗mr D∗mr

] [
Asr Bsr

C∗sr D

]
, (98)

where D∗mr D = O and the output is given by

y[k] = C∗mr xmr[k] + D∗mrC
∗
sr xsr[k]. (99)

It shows that the approach provides perfect output tracking for
every N sample with D∗mr = O because the multirate inversion
provides perfect state tracking of xmr for every N sample. If the
system is decomposed as D∗mr , O, there is no perfect output
tracking because perfect state tracking of xsr is not guaranteed.
Therefore, V and V× should be selected such that D∗mr = O.

5. Application to multi-modal motion system

In this section, the intersample performance of the perfect
tracking control approaches is validated in a multi-modal mo-
tion system. The intersample performance is evaluated in both
frequency and time domains. The nominal and robust perfor-
mance is verified in the simulation using the model without and
with modeling error. The experimental validation is conducted
with feedback controller.

5.1. Conditions

The validation is conducted in a single-input single-output
multi-modal motion system in Figure 4. The frequency re-
sponse of the controlled system is shown in Figure 5. For the
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Figure 4: High-precision positioning stage with input current u [A] generating
force with linear motor and output displacement y [m] measured by linear en-
coder with 1 nm resolution.
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Figure 5: Bode diagram of the controlled system: frequency response data
( ), a high-order continuous-time model Ĝ ( ), a low-order continuous-
time model Gc ( ), and a low-order discrete-time model for controller design
Gd ( ). Vertical lines ( ) and ( ) show Nyquist frequency 1/2δ and sam-
pling frequency 1/δ, respectively.

verification of the modeling error, the high-order continuous-
time model Ĝ is given by

Ĝ(s) =
2.44

s2

+
1.1

s2 + 2 × 0.024 × (2π × 30)s + (2π × 30)2

+
−2.44

s2 + 2 × 0.038 × (2π × 89)s + (2π × 89)2

+
−1.1

s2 + 2 × 0.07 × (2π × 297)s + (2π × 297)2

= G1(s) +G2(s) +G3(s) +G4(s). (100)

For the controller design, a low-order continuous-time model
Gc is given by

Gc(s) = G1(s) +G2(s)

=
2.44

s2 +
1.1

s2 + 2 × 0.024 × (2π × 30)s + (2π × 30)2

=
3.54

s2 ×
s2 + 2 × 0.02 × (2π × 25)s + (2π × 25)2

s2 + 2 × 0.024 × (2π × 30)s + (2π × 30)2

=
N1(s)
D1(s)

×
N2(s)
D2(s)

. (101)

The controller is designed by the low-order continuous-time
model Gc and the continuous-time performance is verified by
the simulation in the low-order continuous-time model Gc with-
out modeling error and the high-order continuous-time model
Ĝ with modeling error. The verification is conducted in the fre-
quency domain and the time domain. The sampling time of the
controller is δ = 10 ms. The intersample performance is evalu-
ated in the sampling time δ/20 = 0.5 ms.

The compared 8 approaches are shown in Table 1. The dif-
ference in the approach between using additive decomposition
and using multiplicative decomposition is the provided perfect
tracking to states or to outputs. If the dynamics of the sys-
tem are clearly modeled and the states of the state-space rep-
resentation have physical meaning, the approach using additive
decomposition is useful because it is clear to which state the
perfect tracking is provided. If the dynamics and the physical
meaning of the system are not clear and the controller design
only focuses on the output, the approach using multiplicative
decomposition is useful because it provides the perfect tracking
to on-sample output but not to state.

5.2. Frequency domain verification
In frequency domain verification, the intersample perfor-

mance is verified by the performance frequency gain |Er | [25,
26, 27] in the simulation that is the steady state continuous-time
tracking error normalized by the step sine wave reference and
is defined as

|Er(jω)| =
RMS(ejω(t))
RMS(rjω(t))

, (102)

where rjω(t) can only contain a single frequency at each fre-
quency and the intersample performance is evaluated in the
sampling time δ/20 = 0.5 ms.

The performance frequency gain of the continuous-time track-
ing error in Gc without modeling error is shown in Figure 6. It
shows that Case 5 = Case 7 and Case 6 = Case 8 in the per-
formance frequency gain. It is because the discretization only
affects the dynamics of zeros, and the choice of the pole does
not affect the performance. Case 4 makes a large error for the
whole frequency range because it cannot compensate for rigid
body dynamics. The approaches like Case 1, Case 6, and Case
8 that cannot compensate for oscillating poles of the feedfor-
ward controller due to discretization make large errors around
Nyquist frequency. In low frequency, |Er | is smaller in order of
Case 1 < Case 5 = Case 7 < Case 2 < Case 3. From these anal-
yses, Case 2 with multirate feedforward control for full-state
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Table 1: Comparison of 8 approaches. Tr is the reference sampling time. Gc,mr and Gc,sr are the continuous-time model for the multirate and single-rate inversion.
Intersample performance is evaluated by the Root Mean Square of the tracking error eRMS = RMS(e(t)) with the sampling time δ/20 = 0.5 ms. The evaluations are
conducted by the simulation of Gc without feedback control, Ĝ without feedback control, and Ĝ with feedback control, and by the experiment.

Case Line Approach Tr Gc,mr Gc,sr Gc w/o FB Ĝ w/o FB Ĝ with FB Experiment
1 Single-rate δ - Gc 9862 nm 16 811 nm 17 642 nm 27 152 nm
2 Multirate 4δ Gc - 5174 nm 11 646 nm 12 406 nm 15 027 nm
3 Additive 2δ G1 - 8199 nm 12 176 nm 13 397 nm 17 210 nm
4 Additive 2δ G2 - >1 mm >1 mm - -
5 Multiplicative 2δ N1/D1 N2/D2 9309 nm 11 280 nm 12 510 nm 22 579 nm
6 Multiplicative 2δ N2/D1 N1/D2 8559 nm 14 547 nm - -
7 Multiplicative 2δ N1/D2 N2/D1 9309 nm 11 280 nm - -
8 Multiplicative 2δ N2/D2 N1/D1 8559 nm 14 547 nm - -
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Figure 6: Performance frequency gain of the continuous-time tracking error in
Gc. Vertical lines ( ) and ( ) show Nyquist frequency 1/2δ and sampling
frequency 1/δ, respectively. Each line corresponds to 8 approaches from Case
1 to Case 8 in Table 1, respectively.

tracking provides the best performance in steady state, and Case
2, Case 3, Case 5, and Case 7 are preferable approaches.

The performance frequency gain of the continuous-time track-
ing error in Ĝ with modeling error is shown in Figure 7. There
is the same trend around Nyquist frequency compared to the
simulation in Gc without modeling error. In low frequency, |Er |

is around the same performance in all approaches except Case
4. It is because the controller cannot compensate for the low-
frequency compliance of the unmodeled high-frequency dynam-
ics.

5.3. Time domain verification
In the time domain verification, the intersample performance

is verified by the continuous-time tracking error in the simula-
tion for the continuous-time reference trajectory shown in Fig-
ure 8. The intersample performance is evaluated by Root Mean
Square error eRMS = RMS(e(t)) in Table 1 with the sampling
time δ/20 = 0.5 ms.

The time series error e(t) in Gc without modeling error is
shown in Figure 9. The result shows that Case 2 achieves the
best performance because there is no modeling error between
the controller and the controlled system and perfect tracking
for all states provides smooth intersample behavior.
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Figure 7: Performance frequency gain of the continuous-time tracking error in
Ĝ. Vertical lines ( ) and ( ) show Nyquist frequency 1/2δ and sampling
frequency 1/δ, respectively. Each line corresponds to 8 approaches from Case
1 to Case 8 in Table 1, respectively.

The time series error e(t) in Ĝ with modeling error is shown
in Figure 10. The result shows that Case 5 and Case 7 achieve
the best performance because the control input contains rela-
tively low-frequency components compared to Case 2, and it
does not excite the resonances of the unmodeled dynamics. The
performance of Case 1, Case 6, and Case 8 is getting worse in Ĝ
because the oscillating feedforward input due to discretization
excites the unmodeled high-frequency dynamics. From these
analyses, multirate feedforward control with mode decomposi-
tion can provide better intersample performance in transient re-
sponse than that of multirate feedforward control for full-state
tracking.

5.4. Experimental validation
From the result of the simulation verification, the experi-

mental validation is conducted in Case 1, Case 2, Case 3, and
Case 5 as shown in Table 1 with the same reference that is
shown in Figure 8. The overview of the experimental valida-
tion is shown in Figure 11. A feedback controller K is used for
stabilization and compensation for low-frequency modeling er-
rors in the experimental validation. For the feedback controller,
the PD controller is designed as 5 Hz bandwidth and 6 dB mod-
ulus margin. In the two-degree-of-freedom control structure,
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Figure 8: Continuous-time 4th order polynomial trajectory reference r(t) and its
derivatives. ( ), ( ), and ( ) show sampling points every δ, 2δ, and 4δ.

the feedforward controller handles tracking performance, and
the feedback controller handles modeling error and disturbance
rejection, independently. As shown in Figure 11, the feedback
controller compensates for the modeling error and disturbance
in low frequency. The simulation with the feedback controller
and the quantization of the linear encoder is also conducted for
the validation of the experimental results.

The time series error e(t) in the experiment is shown in Fig-
ure 12. The result has a similar trend to that in the simulation of
Ĝ with feedback control. Note that due to experimental condi-
tions such as model mismatches, the exact on-sample tracking
is not provided. The intersample performance is evaluated by
Root Mean Square error eRMS = RMS(e(t)) in Table 1 with the
sampling time δ/20 = 0.5 ms. It shows that Case 2 with multi-
rate feedforward control for full-state tracking provides the best
performance in simulation and experiment with feedback con-
trol. The amplitude spectrum of error e(t) in the experiment is
shown in Figure 13. The result shows that Case 1 and Case 5
which contain single-rate filters have a large error in over sam-
pling frequency because the frequency components of the feed-
forward input over sampling frequency excite the unmodeled
high-frequency dynamics.

6. Conclusion

In this paper, perfect tracking control approaches are de-
scribed focusing on intersample performance in multi-modal
motion systems. The model of the multi-modal motion sys-
tem is decomposed into combinations of the states that can be
selected for the perfect tracking control. The simulation ver-
ification and experimental validation in a multi-modal motion
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Figure 9: Error e(t) in the simulation of Gc with sampling time δ/20 = 0.5 ms.
( ), ( ), and ( ) show sampling point every δ, 2δ, and 4δ. Each figure from
top to bottom corresponds to 8 approaches from Case 1 to Case 8 in Table 1,
respectively.

system show that state tracking should be used to compensate
for the oscillating poles of the feedforward controller due to dis-
cretization. In summary, the feedforward controller to improve
intersample performance should be designed with the following
conditions.

• State tracking approach with lifted samples at least the
same number as the relative degree can compensate for
oscillating poles of the feedforward controller due to dis-
cretization when the relative degree of the continuous-
time model is 2 or more.

• For steady-state performance without modeling error, mul-
tirate feedforward control for full-state tracking provides
the best performance.

• Multirate feedforward control with mode decomposition
can provide the best intersample performance in transient
response depending on the frequency components of the
reference and the unmodeled dynamics of the controlled
system.
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Figure 10: Error e(t) in the simulation of Ĝ with sampling time δ/20 = 0.5 ms.
( ), ( ), and ( ) show sampling point every δ, 2δ, and 4δ. Each figure from
top to bottom corresponds to 8 approaches from Case 1 to Case 8 in Table 1,
respectively.
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+ −

+
+

Figure 11: Block diagram of the experimental validation. G, Gd , K, S and
H denote a controlled system, a low-order discrete-time model for controller
design, a feedback controller, sampler and zero-order-hold, respectively.

Ongoing research focuses on the optimal mode selection de-
pending on the reference signal in higher-order motion systems.
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