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Abstract: Fossil fuel vehicles significantly contribute to CO2 emissions due to their high consumption
of fossil fuels. Accurate estimation of vehicular fuel consumption and the associated CO2 emissions
is crucial for mitigating these emissions. Although driving behavior is a vital factor influencing fuel
consumption and CO2 emissions, it remains largely unaddressed in current CO2 emission estimation
models. This study incorporates novel driving behavior data, specifically counts of occurrences
of dangerous driving behaviors, including speeding, sudden accelerating, and sudden braking, as
well as driving time and driving distances on expressways, national highways, and local roads,
respectively, into monthly fuel consumption estimation models for individual gasoline and hybrid
vehicles. The CO2 emissions are then calculated as a secondary parameter based on the estimated
fuel consumption, assuming a linear relationship between the two. Using regression algorithms,
it has been demonstrated that all the proposed driving behavior data are relevant for monthly
CO2 emission estimation. By integrating the driving behavior data of various vehicle categories, a
generalizable CO2 estimation model is proposed. When utilizing all the proposed driving behavior
data collectively, our random forest regression model achieves the highest prediction accuracy, with
R2, RMSE, and MAE values of 0.975, 13.293 kg, and 8.329 kg, respectively, for monthly CO2 emission
estimation of individual vehicles. This research offers insights into CO2 emission reduction and
energy conservation in the road transportation sector.

Keywords: vehicular CO2 emission; eco-driving; dangerous driving behavior; machine learning;
random forest

1. Introduction

In 2020, road transportation accounted for 24% of the European Union’s total carbon
dioxide (CO2) emissions, making it as the predominant greenhouse gas responsible for
global warming [1]. Data from 2021 reveal that China’s transportation sector consumed
energy equivalent to approximately 530 million tons of standard coal, accounting for 15.3%
of the country’s overall energy consumption [2]. In the same vein, emissions from all
passenger vehicles in Japan in 2020 made up 8.9% of the country’s total CO2 emissions [3].
By 2022, the International Energy Agency (IEA) reported that personal vehicles, such as
cars and vans, were responsible for more than a quarter of the global oil consumption and
approximately 10% of the worldwide CO2 emissions linked to energy use [4].

The adverse effects of CO2 emissions on both environmental sustainability and public
health have been thoroughly documented in various studies, emphasizing the urgent
need to substantially reduce these emissions [5]. This urgency is driven primarily by two
reasons: First, the global commitment to mitigate climate change impacts, and second,
the understanding that reducing CO2 emissions, through measures like decreasing fuel
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consumption, contributes to conserving our limited fossil fuel reserves [6,7]. However,
despite the adoption of various strategies encompassing technological innovations [8]
and policy regulations to curb CO2 emissions, the increasing number of gasoline vehicles
worldwide still presents a significant challenge to CO2 emission reduction efforts [9–12],
emphasizing the importance of accurate vehicular CO2 emission estimation.

Accurate vehicular CO2 emission estimation is crucial, as it not only provides feedback
to drivers but also bolsters efforts in CO2 emission reduction and energy conservation.
In response to the mounting concerns over CO2 emissions, Japan introduced the J-Credit
Scheme in 2013 [13]. This government initiative promotes activities that diminish green-
house gas emissions, aligning with the objectives of the Paris Agreement [14]. The J-Credit
Scheme issues “J-Credits” for a myriad of activities, like renewable energy projects, energy
efficiency enhancements, or activities that absorb CO2, such as afforestation. Once these
credits are issued, they can be traded, enabling entities to count them towards their green-
house gas reduction targets. Such a mechanism bolsters the financing and incentivization
of greenhouse gas reduction endeavors. There is potential in integrating CO2 emission
estimation results with the J-Credit Scheme, enhancing its effectiveness.

Prominent vehicular CO2 emission models like MOBILE6 [15], developed by the U.S.
Environmental Protection Agency (EPA), and EMFAC7F [16], proposed by the California
Air Resources Board (CARB), strive to integrate factors related to travel, weather, and
vehicle characteristics in their CO2 emission estimations. In particular, these models
primarily utilize metrics such as average speed and total vehicle miles traveled for CO2
emission calculations. However, they often overlook the pivotal influences of roadway
conditions, traffic dynamics, and drivers’ behaviors on vehicular CO2 emissions. Several
studies have explored this area in depth. In [17], Oduro et al. introduced a dynamic
real-time fuel consumption estimation model based on multiple linear regression (MLR),
underscoring a linear relationship between CO2 emissions and both vehicle speed and
acceleration. This suggests that these two factors play a significant role in determining CO2
emission levels. In [18], Ahn et al. presented microscopic fuel consumption and emission
models that leverage instantaneous speed and acceleration data by utilizing polynomial
and hybrid regression models. This approach offers granular insights into the microscopic
interactions between driving behaviors and fuel usage. In our preliminary work [19], we
employed the random forest algorithm to estimate instantaneous fuel consumption using
the instantaneous speed and acceleration data of a specific vehicle type in Japan. While
estimating instantaneous fuel consumption has its merits, such as providing immediate
feedback for efficient driving, promoting eco-driving, and aiding in traffic planning, it has
limitations in capturing the broader picture. The focus on instantaneous CO2 emissions can
sometimes overshadow the significance of long-term accumulated CO2 emissions, which
are often of greater concern.

It has been revealed that the higher the frequency of speeding, sudden acceleration,
and sudden braking, the lower the efficiency of the internal combustion engine [20,21].
In [22,23], Lois et al. and Jimenez et al. demonstrated that driving behaviors such as the
rate of deceleration, revolutions per minute (RPM), and speed significantly influence fuel
consumption. In [24], Mane et al. indicated that factors such as average speed, braking,
and idling significantly influence fuel consumption. Congestion exacerbates this issue,
leading to more frequent braking and reduced fuel efficiency, as reported in [25,26]. In
contrast, Samaras et al. [27] demonstrated that free flow conditions result in a 4.9% decrease
in fuel usage for a standard Euro 5 diesel vehicle with an engine capacity of less than
1.41 compared to congested scenarios. Moreover, Zhang et al. [28] reported a substantial
difference in fuel consumption, exceeding 20%, between ecological and aggressive driving
behaviors. Nevertheless, it is noteworthy that a gap still persists in existing studies that
directly integrates driving behaviors into CO2 emission estimation.

To tackle the urgent environmental concerns posed by increasing CO2 emissions from
vehicles, this paper introduces a novel methodology aimed at estimating monthly fuel
consumption (Vfuel) for individual vehicles by leveraging detailed driving behavior data



Energies 2024, 17, 1410 3 of 16

provided by Aioi Nissay Dowa Insurance Co., Ltd. (Tokyo, Japan), which encompasses
counts of risky driving actions, such as speeding, sudden acceleration, and sudden braking,
across various road types, grounded in machine learning regression techniques. The
monthly CO2 emissions (ECO2 ) are then calculated as a secondary parameter based on the
estimated fuel consumption, assuming a linear relationship between the two.

The significance of this work lies in how it leverages data on dangerous driving be-
haviors to enhance the accuracy of fuel consumption estimates. Unlike previous studies,
which primarily focus on vehicle technical specifications and average driving patterns,
our research offers a more nuanced understanding of the relationship between driving
behaviors and fuel consumption. By providing a detailed analysis that connects individual
driving actions to fuel consumption, this study not only enriches the existing body of
knowledge on fuel consumption estimation models but also introduces a practical tool for
drivers to evaluate and improve their driving habits towards more fuel-efficient practices.
The CO2 emissions are then estimated based on the fuel consumption, assuming a linear
relationship between the two. It is important to note that the ECO2 values were not directly
verified by measurements, but rather estimated based on this assumed relationship. More-
over, the high prediction accuracy of the proposed fuel consumption estimation model
and the associated CO2 emission model holds promise for integration with initiatives
like the J-Credit Scheme, potentially serving as a catalyst for the widespread adoption of
fuel-efficient driving behaviors through targeted incentives. By aligning individual drivers’
interests with broader environmental objectives, our approach offers a novel pathway to
mitigate vehicular fuel consumption and the associated CO2 emissions. The remainder of
this paper is organized as follows: Section 2 details the methodology of this study. Section 3
shows the overall structure of the estimation models for Vfuel and ECO2 , Section 4 discusses
the performance and implications of the prediction results. Finally, Section 5 concludes the
paper with a summary of our contributions and suggestions for future research.

2. Methodology

In this study, we investigate the potential of driving behavior data as features for
estimating ECO2 . Then, multiple feature sets are defined to evaluate the proposed driving
characteristics. Subsequently, dimensionality reduction algorithms and correlation anal-
ysis are employed on the driving characteristics for data visualization. Lastly, machine
learning regressions are conducted to evaluate the performance of each feature set in
estimating ECO2 .

2.1. Novel Driving Behavior Data

We base our investigation on 228,281 monthly driving behavior data instances from
medium-sized TOYOTA vehicles (Toyota: Toyota City, Japan), provided by Aioi Nissay
Dowa Insurance Co., Ltd. Table 1 details the statistics of the categories (model, vehicle
name, and engine type) of the vehicles. For confidentiality reasons and for the purposes
of both dimensionality reduction and machine learning analysis, the actual names of the
model, vehicle name, and engine type are encoded into numerical labels 1, 2, 3, . . . , as
illustrated in Table 1. For the engine type, the numerical label 1 indicates a gasoline type,
while 2 indicates a hybrid vehicle type. Notably, all hybrid vehicles considered in this study
are categorized as hybrid electric vehicles (HEVs), which do not support external charging.
Both the gasoline vehicles and HEVs utilize gasoline. Within these HEVs, batteries recharge
through regenerative braking and the internal combustion engine, with the electric motor
working in tandem with the gasoline engine. To conduct a reliable and generalizable
analysis, numerous vehicle categories (26 combinations of model, vehicle name, and engine
type) were taken into account, as shown in Table 1.
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Table 1. Statistics of the vehicle categories (model, vehicle name, and engine type) and the corre-
sponding numerical labels with the percentage share of each category. Engine Type 1 represents
gasoline vehicles, while Engine Type 2 represents hybrid vehicles.

Category Model Vehicle
Name Engine Type Count Percentage

(%)

1 1 8 1 16,101 7.05
2 1 9 1 3218 1.41
3 2 5 1 3938 1.73
4 3 2 2 3262 1.43
5 4 4 2 13,045 5.72
6 5 16 2 7279 3.19
7 6 3 2 5061 2.22
8 7 14 2 8562 3.75
9 8 18 1 6383 2.80
10 9 4 1 12,418 5.44
11 10 18 1 8532 3.74
12 11 19 1 6825 2.99
13 12 18 2 25,106 11.00
14 13 19 2 15,632 6.85
15 14 19 2 4525 1.98
16 15 7 2 9943 4.36
17 16 16 1 12,487 5.47
18 17 6 2 8918 3.91
19 18 13 1 3962 1.74
20 19 11 2 5388 2.36
21 20 17 2 21,196 9.29
22 21 12 2 4374 1.92
23 22 13 2 11,266 4.94
24 23 10 2 1804 0.79
25 23 15 2 1590 0.70
26 24 1 2 7466 3.27

Total 228,281 100.00

Table 2 illustrates the novel driving behavior data proposed in this study for Vfuel.
The dataset includes the counts of dangerous behaviors of speeding, sudden accelerating,
sudden braking, alongside driving distance [m] on the expressways, national highways,
and local roads, respectively, on a monthly basis, in addition to the monthly total driving
time [s] and monthly total driving distance [m] on all types of roads, which were recorded
by the telematics on the vehicles. Moreover, the monthly fuel consumption [L] was recorded
using the internal measurement devices of the vehicles. The monthly CO2 emission ECO2
was then calculated as a secondary parameter based on the assumption that engines emit
2.3 kg of CO2 for every 1 L of gasoline consumed [29,30], and that this relationship holds
true for all vehicles under consideration. The ECO2 can be calculated using Equation (1). It
is important to note that the ECO2 values were not directly verified by measurements, but
rather estimated based on the assumed linear relationship between fuel consumption and
CO2 emissions.

ECO2 [kg] = Vfuel[L]× 2.3[kg/L] (1)

The speeding is determined based on the average speed over a certain distance, with
thresholds set according to the type of road (expressways, national highways, local roads).
On general roads, the average speed is typically measured from one traffic signal to the next.
On expressways and national highways, where there are no traffic signals, it is measured
over distances of about 2000 m. The speeding thresholds are set at 120 km/h for express-
ways and 80 km/h for national highways and local roads, respectively. Brief increases
in speed for overtaking are not considered as speeding. Speeding is only determined if
the average speed over a specific section exceeds the set thresholds. Sudden accelerating
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and braking are defined as increasing or decreasing speed by 10 km/h or more within
1 s. However, accelerating and braking that occur in normal driving scenarios are not
considered as sudden accelerating or sudden braking.

Table 2. Novel driving behavior data utilized for ECO2 in this study.

Driving Behavior Data (Monthly)

Total driving time [s]
Total driving distance [m]

Counts of dangerous speeding on expressways [times]
Counts of dangerous sudden accelerating on expressways [times]

Counts of dangerous sudden braking on expressways [times]
Driving distance on expressways [m]

Counts of dangerous speeding on national highways [times]
Counts of dangerous sudden accelerating on national highways [times]

Counts of dangerous sudden braking on national highways [times]
Driving distance on national highways [m]

Counts of dangerous speeding on local roads [times]
Counts of dangerous sudden accelerating on local roads [times]

Counts of dangerous sudden braking on local roads [times]
Driving distance on local roads [m]

2.2. Multiple Feature Sets
2.2.1. Estimation for All Vehicle Categories

To analyze and compare the efficacy of various features for ECO2 estimation, multiple
feature sets were defined as follows. First, the monthly total driving time and total driving
distance were combined to form the Base features. Second, the driving distance on the
expressways, national highways, and local roads, respectively, were combined to form
the D features. Third, the dangerous driving behaviors, including the counts of speeding,
sudden accelerating, and sudden braking on the expressways, national highways, and local
roads, respectively, were combined to form the B features. Fourth, the specification of the
vehicles, including the model, vehicle name, and engine type were combined to form the
S features. Finally, 8 feature sets were defined in total by different combinations of the D,
B, and S feature sets to the Base feature set: Base, BaseD, BaseB, BaseS, BaseDB, BaseDS,
BaseBS, BaseDBS, as shown below.

• Base features (Base feature set) consisted of the total driving time and total driving distance.
• D features consisted of driving distance on expressways, national highways, and

local roads.
• B features consisted of dangerous driving behavior data on expressways, national

highways, and local roads.
• S features consisted of specification of the vehicles (model, vehicle name, and engine type).
• BaseD feature set consisted of Base and D features.
• BaseB feature set consisted of Base and B features.
• BaseS feature set consisted of Base and S features
• BaseDB feature set consisted of Base, D, and B features
• BaseDS feature set consisted of Base, D, and S features.
• BaseBS feature set consisted of Base, B, and S features.
• BaseDBS feature set consisted of Base, D, B, and S features.

2.2.2. Estimation for Each Vehicle Category

To verify the efficacy and generalizability of the ECO2 estimation model that mixes data
from all vehicle categories together, individual ECO2 estimation models for each vehicle
category (model, vehicle name, and engine type) were defined separately using all the
driving behavior features (BaseDB) listed in Table 1.
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2.3. Dimensionality Reduction for Data Visualization

In order to elucidate underlying patterns in the high-dimensional dataset and simulta-
neously gain insights into the significance of individual features, we employed dimension-
ality reduction techniques to the complete feature set (BaseDBS). This approach not only
allows for clear visualization of the intrinsic structure of the data in a lower-dimensional
space to highlight clusters, outliers, and trends, but also provides insights into feature
contributions. By analyzing the principal components, as in principal component analysis
(PCA), or embedding vectors in methods like t-Distributed Stochastic Neighbor Embedding
(t-SNE) [31] or Uniform Manifold Approximation and Projection (UMAP) [32], we can
discern which features are most influential in shaping the observed patterns, deepening our
comprehension of data relationships. The PCA, a commonly used linear dimensionality
reduction technique, offers valuable insights for data visualization. However, its linear
nature limits its ability to capture non-linear data relationships. Conversely, t-SNE, another
popular choice for dimensionality reduction and visualization, excels in handling non-
linearities. Additionally, we employed UMAP, a versatile manifold learning method adept
at non-linear dimensionality reduction, which is also more computationally efficient than
t-SNE. While both t-SNE and UMAP are non-linear, preserving local or high-dimensional
data structures, t-SNE’s computational complexity stands at O(n2), making it suboptimal
for larger datasets. UMAP, with its approximate complexity of O(n), is considerably more
efficient for extensive datasets. For our study, PCA, t-SNE, and UMAP were applied to the
BaseDBS feature set to condense the data dimensions from 19 to 2. Implementations of PCA
and t-SNE were sourced from the Python Scikit-learn package [33,34], while UMAP was
executed using its dedicated Python package [35]. We retained default hyper-parameters
for all the three dimensionality reduction algorithms (PCA: ‘n_components = 2’; t-SNE:
‘learning_rate = auto’ and ‘perplexity = 30.0’; UMAP: ‘n_neighbors = 15’, ‘min_dist = 0.1’,
and ‘n_components = 2’).

3. Regression Models

An MLR model and a random forest regression (RFR) model were conducted to
evaluate the validity of each feature set defined in Section 2.2 for estimating the ECO2 .
Prior to fitting the MLR and RFR models, the features were normalized to ensure that
each feature contributes proportionately to the result and used as explanatory variables.
Concurrently, the ECO2 served as the target variable. We used 80% of the total data points
as the training set and the remaining 20% as the testing set after shuffling. The MLR and
RFR models were implemented using the Python Scikit-learn package. The MLR model
assumes a linear relationship between the target and explanatory variables while the RFR
model can account for non-linearities. A 5-fold cross-validation was conducted to the RFR
model by utilizing a grid search technique using the training set data to select the optimal
hyper-parameters of the RFR model, as illustrated in Figure 1. In the RFR model, the
hyper-parameter candidates were selected empirically as follows: ’n_estimators’: [200, 600,
1000]; ’max_features’: [’auto’, ’sqrt’]; ’max_depth’: [10, 20, 30]. To gauge the performance of
the model, the coefficient of determination (R2), root mean squared error (RMSE), and mean
absolute error (MAE) were used as the performance metrics. The calculation equations of
the R2, RMSE, and MAE are shown in Equations (2)–(4). In Equations (2)–(4), y represents
the target variable of the regression, ŷ represents the predicted value of y, n stands for the
total number of data points, and ȳ is the average value of y spanning the n data points.

R2(y, ŷ) = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (2)

RMSE(y, ŷ) =

√
∑n

i=1(yi − ŷi)2

n
(3)

MAE(y, ŷ) = ∑n
i=1 |yi − ŷi|

n
(4)
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Data
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Figure 1. Training, validation, and testing sets’ separation.

4. Results and Discussion
4.1. Data Visualization

Figure 2 depicts data visualizations derived from the PCA, t-SNE, and UMAP dimen-
sionality reduction algorithms, utilizing the complete feature set (BaseDBS). The dimension-
reduced data were color-coded using each feature separately for enhanced visualization,
as shown in Figure 2. As can be observed in Figure 2, it is evident that the clusters in the
PCA visualization are smaller than those in the t-SNE and UMAP visualizations, which
makes it challenging to provide a detailed visualization. In Figure 2, UMAP gives a better
visualization than t-SNE in terms of clarity. While t-SNE primarily aims to preserve the local
structure of the data, sometimes at the expense of global structure, UMAP seeks to main-
tain a balance between local and global structures, often resulting in a more interpretable
embedding. The distinction among different vehicle categories is markedly pronounced in
the UMAP visualization presented in Figure 2, particularly when the data are color-coded
by the model, vehicle name, and engine type. These categories exhibit distinct and clear
borders in the embedding, indicating a significant influence of these features on the data
structure. This clarity in demarcation underscores the critical role of the model, vehicle
name, and engine type in differentiating driving characteristics across vehicle categories.
Notably, this observation aligns with the findings from our RFR model, where the model,
vehicle name, and engine type emerged as the top three features in terms of feature impor-
tance. This alignment reinforces the validity of our dimensionality reduction analysis and
provides empirical support for the significant impact these features have on the ability of
the RFR model to predict CO2 emissions accurately. The precise delineation of clusters by
these features in the UMAP visualization not only corroborates their importance but also
highlights the efficacy of the UMAP in capturing the nuanced distinctions among vehicle
categories, thereby offering valuable insights into the underlying structure of the data.

Figure 3 shows the boxplots of the driving behavior data and the ECO2 of all data points,
offering a visual representation of distribution and variability. Each boxplot delineates
the interquartile range (IQR), highlighting the middle 50% of the data, with the lower and
upper bounds of the box corresponding to the first and third quartiles, respectively. Inside
the box, a horizontal line marks the median. The two bars above and below the box are the
upper and lower whiskers, which extend from the first and third quartiles to the highest
and lowest data points within 1.5 times the IQR, indicating the spread of the bulk of the
data and highlighting outliers beyond this range. This visualization reveals a pattern of
generally low-frequency dangerous driving behaviors among most users, punctuated by
a small number of significant outliers. This observation prompts a deeper analysis of the
outliers, suggesting potential areas for targeted interventions to mitigate high-risk driving
behaviors. Furthermore, the clear demarcation between typical and outlier behaviors aids
in understanding the relationship between driving habits and CO2 emissions, underscoring
the importance of addressing dangerous driving behaviors to enhance ECO2 estimation.
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Figure 3. Boxplots of the driving behavior data and the ECO2 for all data points.

4.2. Correlation Analysis

Figure 4 shows the heatmap of correlations among the driving behavior data and the
ECO2 . As is shown in Figure 4, the ECO2 highly correlates with the total driving time and
total driving distance, and moderately correlates with the driving distance on the three
types of roads, while it weakly correlates with the dangerous driving behaviors on the three
types of roads, implying the validity of the proposed novel driving behavior data for ECO2 .
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Figure 4. Correlation heatmap of the driving behavior data and the ECO2 .

4.3. Machine Learning Regression Results

Table 3 presents the ECO2 prediction performance metrics for each vehicle category
separately. The performance metrics for estimating ECO2 , using the eight feature sets
defined in Section 2.2.1, are shown in Table 4. Figure 5 shows the observations-versus-
predictions plots of ECO2 predictions using the BaseDBS feature set by MLR and RFR
models. As observed from Tables 3 and 4, the prediction accuracy using the BaseDBS
feature set for all vehicle categories combined is even higher than the average prediction
accuracy for each vehicle category when considered separately. This suggests the validity
and feasibility of the method that combines all vehicle categories to create a generalizable
model. The decision to evaluate all the eight feature sets on a generalized estimation model,
rather than on individual vehicle models, is underpinned by the universally applicable
relationship between driving behaviors and engine efficiency [20,21] and CO2 emissions,
as discussed in Section 1.

Observing Table 4, significant results can be summarized as follows:

1. The BaseD, BaseB, BaseS feature sets outperformed the Base feature set.
2. The BaseDB feature set outperformed both the BaseD and BaseB feature sets.
3. The BaseDS feature set outperformed both the BaseD and BaseS feature sets.
4. The BaseBS feature set outperformed both the BaseB and BaseS feature sets.
5. The BaseDBS feature set outperformed all the other feature sets.

Therefore, it has been confirmed that the proposed driving behavior features are
relevant for ECO2 modeling. Notably, the BaseDBS feature set yielded the highest predic-
tion accuracy for both MLR and RFR models, with R2 values reaching 0.842 and 0.975,
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respectively. On the other hand, Figure 2 shows that, although no notable differences are
observed when a single driving behavior feature is used for color-coding the embedding,
combining these features together yields high performance for ECO2 estimation, indicating
the non-linearities of the data. Moreover, the RFR model outperformed the MLR model
across all feature sets, as the RFR model can account for non-linearities, as indicated in
Table 4 and Figure 5. The error distributions, illustrated in Figure 6, show a prominent peak
centered around zero, indicating that most predictions closely match observed values. The
errors appear to follow a normal distribution, with fewer large deviations, suggesting that
the models are well-calibrated and reliable.

Table 3. The ECO2 prediction performance of the MLR and RFR models using the BaseDB feature set
for each vehicle category separately.

Category
MLR RFR

R2 RMSE MAE R2 RMSE MAE

1 0.967 23.394 15.977 0.975 20.378 14.255
2 0.961 24.458 15.875 0.957 25.751 17.176
3 0.976 17.357 11.315 0.973 18.448 11.826
4 0.973 11.233 7.838 0.972 11.466 7.665
5 0.946 18.996 12.069 0.963 15.696 10.162
6 0.970 12.238 8.297 0.963 13.526 8.725
7 0.946 16.323 7.842 0.935 17.922 8.191
8 0.972 11.808 7.821 0.969 12.387 7.485
9 0.967 10.342 6.800 0.967 10.426 6.671

10 0.967 18.246 12.771 0.969 17.629 11.880
11 0.948 12.364 6.423 0.967 9.815 6.259
12 0.947 16.269 7.706 0.954 15.126 7.800
13 0.924 12.658 6.803 0.962 8.949 5.443
14 0.943 12.370 7.078 0.961 10.252 6.799
15 0.946 13.702 9.927 0.941 14.318 9.660
16 0.943 10.689 6.835 0.951 9.995 6.560
17 0.971 15.696 9.266 0.979 13.278 8.673
18 0.978 8.598 5.670 0.977 8.967 5.638
19 0.980 12.789 9.036 0.979 13.067 8.911
20 0.915 17.889 8.531 0.964 11.642 8.001
21 0.940 13.100 8.406 0.965 10.055 6.582
22 0.944 13.121 9.734 0.947 12.825 8.308
23 0.954 12.760 8.532 0.958 12.202 8.235
24 0.935 19.747 14.499 0.912 22.972 15.189
25 0.909 20.356 14.581 0.906 20.678 14.283
26 0.962 11.472 8.166 0.954 12.658 8.254

Average 0.953 14.922 9.531 0.958 14.247 9.178

Table 4. The ECO2 prediction performance of the MLR and RFR models using the proposed eight
feature sets for all vehicle categories combined.

Feature Sets
MLR RF

R2 RMSE MAE R2 RMSE MAE

Base 0.632 50.933 33.875 0.642 50.232 33.452
BaseD 0.654 49.418 33.090 0.676 47.836 31.956
BaseB 0.647 49.879 33.396 0.686 47.034 31.439
BaseS 0.826 34.994 23.498 0.965 15.671 9.963

BaseDB 0.660 48.972 32.851 0.703 45.771 30.486
BaseDS 0.839 33.741 22.713 0.972 14.116 8.965
BaseBS 0.835 34.139 22.992 0.972 13.934 8.820

BaseDBS 0.842 33.387 22.456 0.975 13.293 8.329
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Figure 5. Observations versus predictions plots for ECO2 prediction using the BaseDBS feature set by
the MLR model (a) and the RFR model (b).
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Figure 6. Error distributions for ECO2 prediction using the BaseDBS feature set by the MLR model
(a) and the RFR model (b).

Figure 7 displays the impurity-based feature importances of the explanatory variables
for ECO2 estimation using the BaseDBS feature set in the RFR regression model. As shown
in Figure 7, the S features (model, vehicle name, and engine type), and Base features (total
driving time and total driving distance) are ranked as the top five features in terms of
feature importance. This aligns with the dimensionality reduction results mentioned in
Section 4.1. Subsequently, the B features (driving behavior data on expressways, national
highways, and local roads) are ranked 6th to 8th, 10th to 12th, and 14th to 16th, respectively.
This ranking is considered reasonable, as according to general knowledge, vehicle speeds
on expressways are typically higher than those on national highways, and speeds on
national highways are generally higher than those on local roads. Higher speeds result
in higher CO2 emission rates, thereby having a greater impact on the feature importance
ranking. Furthermore, the B features are ranked even higher than the D features (driving
distances on expressways, national highways, and local roads), highlighting the validity
of the proposed novel dangerous driving behavior features for ECO2 estimation. This
finding aligns with the RFR regression result, which showed that the BaseB feature set
outperformed the BaseD feature set, as illustrated in Table 4. Therefore, the overall ranking
is S features > Base features > B features > D features.
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Figure 7. Feature importances for ECO2 prediction using the BaseDBS feature set across all
vehicle categories.

5. Conclusions and Future Work

This study has developed a novel approach for estimating monthly CO2 emissions
from individual gasoline vehicles and HEVs (both utilize gasoline) using regression al-
gorithms, incorporating unprecedentedly detailed driving behavior data across diverse
categories of TOYOTA cars. Our analysis revealed that the driving behavior data proposed
in this study; specifically, the Base features (total driving time and driving distance), D
features (driving distances on expressways, national highways, and local roads), B fea-
tures (dangerous driving behavior data, including counts of sudden acceleration, sudden
braking, and speeding on expressways, national highways, and local roads), and S fea-
tures (specification of the vehicles, including model, vehicle name, and engine type) all
have a positive influence on monthly CO2 emission estimations. The overall ranking of
the proposed features is as follows: S features > Base features > B features > D features.
Utilizing a comprehensive feature set (BaseDBS), the RFR model achieved the highest
prediction accuracy, with R2, RMSE, and MAE values of 0.975, 13.293 kg, and 8.329 kg,
respectively, for predicting monthly CO2 emissions. These results not only underscore the
critical relevance of all examined driving behaviors to CO2 emissions, but also highlight
the superior predictive accuracy and generalizability across vehicle categories.

In future work, instead of encoding specific models and vehicle names into integer
numerical labels (e.g., 1, 2, 3,. . . ) for inclusion in the regression models, it might be
beneficial to incorporate general physical quantities such as the frontal projection area
and the weight of the vehicles. This approach could enhance the generalizability of CO2
emission estimation models to unknown models and vehicle names. Additionally, by
integrating the CO2 emission estimation model with incentive-based programs like the
J-Credit Scheme or incorporating it into driver feedback systems, there is potential to
significantly influence driving behaviors towards more energy-efficient practices, thereby
contributing to broader environmental sustainability goals. It is important to note that
the CO2 emissions in this study were not directly verified by measurements, but rather
estimated based on the assumed linear relationship with fuel consumption. Future work
could involve directly measuring CO2 emissions to validate and refine this relationship.
Furthermore, consideration will also be extended to diesel vehicles, addressing the distinct
characteristics and environmental impact of diesel fuel usage in addition to petrol vehicles,
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to encompass a more comprehensive analysis of CO2 emissions across different fuel types.
In conclusion, the comprehensive approach to CO2 emission estimation presented in
this study offers a robust foundation for both advancing scientific understanding and
developing practical solutions to the pressing challenge of vehicular emissions.
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Abbreviations
IEA International Energy Agency
EPA The U.S. Environmental Protection Agency
CARB California Air Resources Board
RPM Revolutions per minute
HEV Hybrid electric vehicle
Base Total driving time and driving distance
D Driving distances on expressways, national highways, and local roads
B Dangerous driving behavior data on expressways, national highways, and local roads
S Specification of the vehicles (model, vehicle name, and engine type)
BaseD Base and D features
BaseB Base and B features
BaseS Base and S features
BaseDB Base, D and B features
BaseDS Base, D, and S features
BaseBS Base, B, and S features
BaseDBS Base, D, B, and S features
PCA Principal component analysis
t-SNE t-distributed Stochastic Neighbor Embedding
UMAP Uniform Manifold Approximation and Projection
MLR Multiple linear regression
RFR Random forest regression
R2 Coefficient of determination
RMSE Root mean squared error
MAE Mean absolute error
IQR Interquartile range
Ddriving Monthly driving distance [m]

Vfuel Monthly fuel consumption [L]
ECO2 Monthly CO2 emission [kg]
y Target variable
ŷ Predicted target variable
n Sequence length of the target variable
ȳ Average value of y spanning the n data points
i i-th value in a variable sequence
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