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Abstract— Iterative learning control (ILC) techniques are
capable of improving the tracking performance of control
systems that repeatedly perform similar tasks by utilizing data
from past iterations. The aim of this paper is to achieve both
the task flexibility enabled by ILC with basis functions and the
performance of frequency-domain ILC, with an intuitive design
procedure. The cost function of norm-optimal ILC is deter-
mined that recovers frequency-domain ILC, and consequently,
the feedforward signal is parameterized in terms of basis
functions and frequency-domain ILC. The resulting method has
the performance and design procedure of frequency-domain
ILC and the task flexibility of basis functions ILC, and are
complimentary to each other. Validation on a benchmark
example confirms the capabilities of the framework.

I. INTRODUCTION

The increasing requirements for precision mechatronics
result in a situation where both tracking performance and
task flexibility, which is the ability to have high performance
for different references, are important. Feedforward control
is effective in compensating known disturbances for systems,
leading to improved performance. Feedforward control is
often based on models [1], which is generally achieved in
industrial applications by means of basis functions feedfor-
ward control. In basis functions feedforward control, the
feedforward signal is a linear combination of basis func-
tions that relate to physical quantities, such as acceleration
feedforward for the inertia [2–4]. Due to modeling and tuning
inaccuracies, the increasing requirements for performance are
generally not achieved.
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Iterative Learning Control (ILC) can improve tracking
performance with respect to model based feedforward control
[5], and hence, can fulfill the increasing requirements for
performance. ILC utilizes information from past iterations
to improve the tracking performance in the current iteration.
For ILC to be industrially applicable, it is required that ILC
(R1) is task flexible;
(R2) has high tracking performance; and
(R3) has an intuitive design procedure.
In this paper, two types of ILC are considered, and are
referred to as frequency-domain and norm-optimal ILC.

First, frequency-domain ILC uses infinite-time frequency-
domain system representations to iteratively update the feed-
forward signal [6]. Frequency-domain ILC has the advantage
that convergence can be verified and tuned using frequency
response functions (FRFs), that are accurate and inexpensive
to obtain [7]. As a result, frequency-domain ILC leads to
an intuitive frequency-domain design procedure consisting
of manual loop shaping and has high tracking performance.
Frequency-domain ILC is typically implemented in finite-
time, where convergence can still be analyzed [8]. However,
conventional frequency-domain ILC is not directly capable
of task flexibility, and hence, does not satisfy requirement
R1.

Second, norm-optimal ILC utilizes a finite-time cost func-
tion to iteratively optimize the feedforward signal [9]. The
main advantage of norm-optimal ILC is that the feedforward
signal can be parameterized into basis functions, that enables
task flexibility [10, 11]. However, if the basis functions
are not sufficiently rich to describe the inverse system, the
performance is significantly worse compared to frequency-
domain ILC, and therefore does not achieve requirement R2.

Important developments have been made to combine the
task flexibility of ILC with basis functions and the perfor-
mance of frequency-domain ILC. In [12, 13], frequency-
domain ILC is projected on basis functions, resulting in task
flexibility, but reducing tracking performance. Furthermore,
in [14], frequency-domain ILC is combined with ILC with
basis functions using a sequential optimization problem, that
results in the performance of frequency-domain ILC and
the task flexibility of ILC with basis functions. However,
the approach results in an unintuitive design procedure, not
satisfying requirement R3.

Although ILC methods with high performance and task
flexibility are investigated, a method that achieves both high
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Fig. 1: Control structure considered.

performance and task flexibility, with an intuitive design
procedure, is currently lacking. In this paper, high perfor-
mance (R2) is achieved by deliberately overparameterizing
the feedforward signal in a low number of basis functions to
accomplish task flexibility (R1). Additionally, a complemen-
tary signal is optimized via an intuitive frequency-domain
ILC design (R3). The key contributions in this paper include
the following.

(C1) Determining the equivalent norm-optimal finite-time
representation of frequency-domain ILC by specific
choice of weighting matrices, that enables intuitive
tuning in the frequency-domain (R3) (Section III-A).

(C2) Achieving both task flexibility (R1) and high perfor-
mance (R2) by exploiting an overparameterized feed-
forward signal, building upon C1 (Section III-B).

(C3) Validation of the framework on an example (Sec-
tion IV).
Notation: Let H(z) denote a discrete-time, Linear

Time-Invariant (LTI), single-input, single-output system. The
frequency response function of H(z) is obtained by substi-
tuting z = ejω ∀ω ∈ [0, 2π), and is denoted by H(ejω).

Signals are of length N . Vectors are denoted as lowercase
letters and matrices as uppercase letters, e.g., x and X . The
z-transform of signal x(k) is X (z) =

∑∞
k=0 x(k)z

−1. Let
h(k) ∀k ∈ Z be the impulse response coefficients of H(z),
with infinite impulse response y(k) =

∑∞
τ=−∞ h(τ)u(k−τ).

Let u(k) = 0 for k < 0 and k ≥ N to obtain the finite-time
convolution

y(0)
y(1)

...
y(N − 1)


︸ ︷︷ ︸

y

=


h(0) h(−1) · · · h(−N + 1)
h(1) h(0) · · · h(−N + 2)

...
...

. . . h(−1)
h(N − 1) h(N − 2) · · · h(0)


︸ ︷︷ ︸

H


u(0)
u(1)

...
u(N − 1)


︸ ︷︷ ︸

u

,

with y, u ∈ RN and H ∈ RN×N is the finite-time convolu-
tion matrix corresponding to H(z).

II. PROBLEM FORMULATION

In this section, the problem that is dealt with in this paper
is formulated. First, the problem setup is presented. Second,
the different classes of ILC considered in this paper are
described. Finally, the problem that is addressed in this paper
is defined.

A. Problem Setup

The control structure is seen in Fig. 1. The LTI system
P is stabilized by LTI feedback controller K. The finite-
time reference signal rj ∈ RN can be trial varying. The

goal is to reduce the reference induced error signal ej ∈
RN over multiple trials j with the trial-varying feedforward
signal fj ∈ RN .

B. Classes of ILC

In this section, the three considered classes of ILC, that is
norm-optimal ILC, ILC with basis functions and frequency-
domain ILC, are presented.

1) Norm-Optimal ILC: Norm-optimal ILC is a type of
ILC that minimizes a finite-time cost function, typically

min
fNO
j+1

∥êj+1∥2We
+
∥∥fNO

j+1

∥∥2
Wf

+
∥∥fNO

j+1 − fNO
j

∥∥2
W∆f

, (1)

where ∥x∥2W = x⊤Wx, We, Wf and W∆f are symmet-
ric positive (semi)definite weighting matrices [9], êj+1 =
ej − Ĵ

(
fNO
j+1 − fNO

j

)
, and finite-time convolution matrix

Ĵ = P̂
(
I +KP̂

)−1

, with convolution matrix P̂ ∈ RN×N

representing model P̂ of system P , and identity matrix
I ∈ RN×N . The cost function in (1) is quadratic in the
optimization variables fNO

j+1 , and hence, has a minimizer that
is analytically computed as

fNO
j+1 = QNOfj + LNOej , (2)

with norm-optimal ILC robustness and learning matrices
QNO and LNO.

2) ILC with Basis Functions: ILC with basis functions
achieves reference flexibility by minimizing a cost function
and parameterizing the feedforward signal in basis functions
as

fj = ψθj , (3)

with feedforward parameters θj ∈ Rnθ×1 and basis functions
ψ ∈ RN×nθ . For ILC with basis functions, the cost function

min
θj+1

∥êj+1∥2We
+ ∥fj+1∥2Wf

+ ∥fj+1 − fj∥2W∆f
, (4)

is minimized. Similarly to norm-optimal ILC in (2), the
optimal solution to (4) is of the form

θj+1 = QBF θj + LBF ej , (5)

with basis functions robustness and learning matrices QBF

and LBF .
3) Frequency-Domain ILC: Frequency-domain ILC it-

eratively improves the tracking performance by utilizing
infinite-time frequency-domain representations. Frequency-
domain ILC is designed by the infinite-time update law

Ff
j+1(z) = Qf (z)(Ff

j (z) + αLf (z)Ej(z)), (6)

with Qf the robustness filter, that is used to enforce con-
vergence and filter out unwanted effects, Lf the learning
filter and α the learning gain. Frequency-domain ILC is
implemented in finite-time as [8]

ffj+1 = Qf (ffj + αLfej), (7)

with finite-time convolution matrices Qf and Lf , corre-
sponding to Qf (z) and Lf (z).
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Fig. 2: System that is used for validation. The system is
discretized with zero-order hold, and has one sample delay.

C. Problem Definition

The aforementioned classes of ILC have several design
problems and limitations, and are as follows.

• For norm-optimal ILC, it is highly complex to robustly
choose the weighting matrices, see for example [15, 16],
and W = wI severely limits performance. Furthermore,
norm-optimal ILC does not have task flexibility.

• ILC with basis functions reduces performance if ψ does
not accurately describe the inverse system P−1 [13, 17].

• Frequency-domain ILC does have an intuitive design
procedure consisting of manual loop-shaping [5, 13] and
results in high performance, but conventionally does not
have task flexibility.

In Example 1, the limited performance of norm-optimal ILC
with identity weighting matrices and model uncertainty is
illustrated, since robust monotonic convergence is difficult
to achieve.

Example 1: A simulation study illustrates that frequency-
domain ILC performs better than norm-optimal ILC for
an inaccurate model and identity weighting matrices. The
system is a mass-spring-damper as seen in Fig. 2,where
further elaboration is provided in Section IV. The error
2-norm during 300 trials of norm-optimal and frequency-
domain ILC is shown in Fig. 3a, and the maximum error
2-norm during these trials and the steady state error 2-norm
∥e∞∥2 are shown in Fig. 3b. The results in Fig. 3 illustrate
that for norm-optimal ILC to reduce the steady-state error
∥e∞∥2 beyond frequency-domain ILC, it first increases the
maximum error 2-norm maxj

(
∥ej∥2

)
at least a factor 3 ·106

due to non-monotonic convergence, which is unacceptable in
industrial applications.

Hence, the problem addressed in this paper is to develop
an ILC algorithm that simultaneously satisfies all three re-
quirements for industrial applicability of ILC, that combines
the advantages of current ILC techniques.

III. METHOD

In this section, the developed method is presented. The
overparameterized feedforward signal

fj = ΨΘj =
[
ψ IN

] [θj
ffj

]
= ψθj + ffj , (8)

that consists of basis functions and frequency-domain ILC,
is exploited to achieve both task flexibility and high perfor-
mance, leading to (R1) and (R2). Frequency-domain ILC is
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(a) Error 2-norm for frequency-domain ILC ( ) and norm-optimal
ILC with Wf = 1.39·10−8I ( ) and Wf = 5.2·10−9I ( ).
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(b) Steady-state and maximum error 2-norm for norm-optimal ILC
with Wf = wfI ∀wf ∈ [10−14, 10−7] after 75 ( ), 150 ( ) and
300 ( ) trials, Wf = 5.2 · 10−9I ( ) and Wf = 1.9 · 10−8I ( )
correspond to Fig. 3a, frequency-domain ILC ( ), and maximum
error 2-norm for fj = 0 ( ).

Fig. 3: Illustration that norm-optimal ILC with We = I
and W∆f = 0 converges slowly and non-monotonically for
inaccurate models.

used since it has better performance than norm-optimal ILC
for inaccurate models, as shown in Section II, and due to its
intuitive design procedure (R3).

First, the norm-optimal description of frequency-domain
ILC is determined, such that second, the overparameterized
feedforward signal in (8) consisting of frequency-domain and
ILC with basis functions can be jointly optimized. Finally, a
procedure summarizes the developed method.

A. Norm-Optimal Representation of Frequency-Domain ILC

In this section, it is shown that the finite-time implementa-
tion of frequency-domain ILC in (7) is equivalent to (1) for
a very specific choice of weighting matrices We, Wf and
W∆f . First, the finite-time frequency-domain ILC update is
written using the cost function

min
ff
j+1

∥êj+1∥2W f
e
+

∥∥∥ffj+1

∥∥∥2
W f

f

+
∥∥∥ffj+1 − ffj

∥∥∥2
W f

∆f

, (9)

that is minimized by

ffj+1 =(Ĵ⊤W f
e Ĵ +W f

f +W f
∆f )

−1
(
Ĵ⊤W f

e Ĵ +W f
∆f

)
ffj

+(Ĵ⊤W f
e Ĵ +W f

f +W f
∆f )

−1Ĵ⊤W f
e ej

=Qf (ffj + αLfej),
(10)

where the last identity is found by substituting ffj+1 from the
finite-time update law of frequency-domain ILC in (7). The



contributions of ffj and ej in (10) are separated to achieve

Qf = (Ĵ⊤W f
e Ĵ +W f

f +W f
∆f )

−1
(
Ĵ⊤W f

e Ĵ +W f
∆f

)
,

(11)

αQfLf = (Ĵ⊤W f
e Ĵ +W f

f +W f
∆f )

−1Ĵ⊤W f
e . (12)

From (11), W f
f is derived as

W f
f =

(
Ĵ⊤W f

e Ĵ +W f
∆f

)((
Qf

)−1 − I
)
. (13)

Because W f
f must be symmetric and positive semidefinite,

but the product of two symmetric matrices is not necessarily
symmetric,

(
Ĵ⊤W f

e Ĵ +W f
∆f

)
in (13) is chosen(

Ĵ⊤W f
e Ĵ +W f

∆f

)
= I. (14)

By substituting (14) and W f
f from (13) into (12), the

following identity is found

αQfLf = Qf Ĵ⊤W f
e , (15)

leading to the main result in this section in Theorem 1.
Theorem 1: Let Ĵ be invertible and Lf = Ĵ−1, then the

minimizer of the cost function in (9) with

W f
e = αĴ−⊤Lf , (16a)

W f
f =

(
Qf

)−1 − I, (16b)

W f
∆f = (1− α)I, (16c)

is equal to finite-time frequency-domain ILC in (7).
Proof: Straightforward manipulation of (15) lead to We

in (16a). Substituting (14) into (13) leads to Wf in (16b).
Finally, the resulting We in (16a) is substituted into (14) to
result in W∆f in (16c).

Remark 1: The conditions that Ĵ is invertible and Lf =
Ĵ−1 in Theorem 1 are not restrictive, since the weighting
matrix W f

e can be approximated as the symmetric matrix

W f
e = αLf⊤Lf , (17)

since Lf is similar to J−1, and is shown in Section IV-A.
Assumption 1: To ensure that W f

f in (16b) is symmetric,
there is assumed that the robustness filter is designed with
zero-phase, i.e., Qf (z) = Qf

1 (
1
z )Q

f
1 (z) [9].

To summarize, finite-time frequency-domain ILC in (7) is
recovered by specifically choosing the weighting matrices
(16a), (16b) and (16c) and optimizing (9), resulting in
an intuitive frequency-domain design procedure (R3) for
norm-optimal ILC. In the next section, the norm-optimal
description of frequency-domain ILC is used when overpa-
rameterizing the feedforward signal.

B. Inclusion of Basis-Function in Frequency-Domain ILC

In this section, both task flexibility and high performance
are achieved by deliberately overparameterizing the feedfor-
ward in terms of basis functions and frequency-domain ILC
by utilizing the norm-optimal representation of finite-time
frequency-domain ILC. The cost function in (9) is adjusted

by utilizing the overparameterized feedforward signal in (8)
and preserving the weighting W f

f and W f
∆f exclusively on

the frequency-domain component as

min
Θj+1

V (Θj+1) = min
Θj+1

∥êj+1∥2W f
e
+ ∥Θj+1∥2Wθ,f

+ ∥Θj+1 −Θj∥2W∆

(18)

with

Wθ,f =

[
Wθ 0

0 W f
f

]
, W∆ =

[
W∆θ 0

0 W f
∆f

]
, (19)

where Wθ,W∆θ ∈ Rnθ×nθ are the weighting matrices on
the feedforward parameters θ, that are typically chosen as
Wθ = wθψ

⊤ψ and W∆θ = w∆θψ
⊤ψ, resulting in equivalent

weighting as conventional ILC with basis functions. The
minimizer of (18) is given by

Θj+1 =
(
Ψ⊤Ĵ⊤W f

e ĴΨ+Wθ,f +W∆

)−1

·
((

Ψ⊤Ĵ⊤W f
e ĴΨ+W∆

)
Θj +Ψ⊤Ĵ⊤W f

e ej

)
.

(20)
Remark 2: If the weighting on θ is chosen sufficiently

small Wθ << W f
f , the parameterization (8) consisting of

frequency-domain and ILC with basis functions is natu-
rally complimentary and the parameterization will assign as
much information in the basis functions feedforward signal
as possible. Additionally, a targeted regularization on the
frequency-domain component can be done by using the
image of ψ, similarly to [18],

min
Θj+1

V (Θj+1) + λ
∥∥[0 U1

]
Θj+1

∥∥2
2
,

with singular value decomposition

ψ =
[
U1 U2

] [Σ 0
0 0

] [
V ⊤
1

V ⊤
2

]
.

C. Procedure

In this section, the developed method for achieving task
flexibility, high performance and an intuitive design proce-
dure by combining frequency-domain ILC with basis func-
tion ILC is summarized in Procedure 1.

IV. SIMULATION EXAMPLE

In this section, the developed method is validated and com-
pared with frequency-domain and ILC with basis functions.
First, the validation setup is shown, including the system
and model, the reference signals and the ILC designs. Sec-
ond, the norm-optimal equivalent description of frequency-
domain ILC is validated. Finally, the developed method with
basis functions is validated and compared for a trial-varying
reference signal.

A. Simulation Setup and Approach

A two-mass-spring-damper system with one sample delay
and a sampling time of 1 ms, with inaccurate model, is sim-
ulated to validate the developed ILC technique. The mass-
spring-damper system represents the dominant dynamics of
mechatronic systems [3, 4], and is for example an actuator



Procedure 1: (Norm-optimal frequency-domain ILC with
basis functions)

1) Design learning filter Lf (z), α and zero-phase robust-
ness filter Qf (z) as in frequency-domain ILC.

2) Derive Lf and Qf , that are the finite-time convolution
matrices of Lf (z) and Qf (z).

3) Choose the basis functions ψ in (8).
4) Compute equivalent norm-optimal weighting matrices

W f
e , W f

f and W f
∆f using (16a), (16b) and (16c).

a) If We is non-symmetrical, follow Remark 1.
5) Initialize Θ1, e.g., as Θ1 = 0.
6) For j ∈ {1, 2, 3, . . . , Ntrials}.

a) Calculate fj = ΨΘj in (8).
b) Apply fj to closed-loop system and record ej .
c) Calculate Θj+1 using (20).

TABLE I: Parameters used for the system seen in Fig. 2 for
the true system and model.

Parameter True Model Unit

m1 0.072 0.09 [kg]
m2 0.01 0.006 [kg]
k 1000 1800 [N/m]
d2 0.031 0 [Ns/m]
d12 1 0.915 [Ns/m]

with a flexible coupling and mass attached. The system is
seen in Fig. 2, and the parameters of the true system P(z)
and the model P̂(z) are seen in Table I, and are given by

P(z) = 10−7 · 2.80z−2 + 12.4z−3 − 0.65z−4 − 1.58z−5

1− 3.78z−1 + 5.46z−2 − 3.56z−3 + 0.89z−4
,

P̂(z) = 10−7 · 4.00z−2 + 21.4z−3 + 5.85z−4 − 1.25z−5

1− 3.56z−1 + 4.98z−2 − 3.26z−3 + 0.85z−4
.

(21)
The FRFs of P(ejω) and P̂(ejω) are seen in Fig. 4.
Additionally, the FRF of the true system P(ejω) is available
for stability analysis, but not for the design of learning filters.
The feedback controller is a lead filter and a first-order low-
pass filter, that achieves a closed-loop bandwidth of 10 Hz

10-2 10-1 100 101 102
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Fig. 4: FRF of the system P(ejω) ( ) and of the model
available for ILC P̂(ejω) ( ).
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Fig. 5: The first ( ) and second ( ) reference signals that
are used during validation.

with sufficient robustness margins, and is given by

K(z) =
108.6 + 112.9z−1 − 100z−2 − 104.3z−3

1− 0.65z−1 − 0.95z−2 + 0.70z−3
. (22)

The learning filter Lf (z) is designed by approximating the
inverse process sensitivity using ZPETC [19]. The robust-
ness filter Qf (z) is a zero-phase second order Butterworth
lowpass filter with a cutoff frequency of 40 Hz, that was
manually tuned to achieve convergence according to∣∣Qf (ejω)(1− αJ (ejω)Lf (ejω))

∣∣ < 1, ∀ω ∈ [0, 2π].
(23)

Two fourth-order polynomial reference signals are designed
using the approach in [3] with N = 229 samples and are
seen in Fig. 5. Following 10 consecutive trials with the first
reference signal, it is then switched to the second reference
signal for another 10 consecutive trials.

a) Basis Function Design: The basis functions ψ are
based on the inverse model of P̂(z) and are chosen as

ψ =
[
r̈

....
r
]
, (24)

where the derivatives of the reference signal are readily
available by design of the reference signal. Wθ and W∆θ

in (19) are chosen as 0, since no additional robustness is
necessary.

b) Recovering Norm-Optimal Formulation of
Frequency-Domain ILC: W f

f and W f
∆f are calculated

using respectively (16b) and (16c), resulting in W f
∆f = 0

since α = 1. W f
e is computed using (17), since Lf ̸= Ĵ−1

due to the use of ZPETC, as indicated in Remark 1. A
surface plot of the weighting matrix W f

f is seen in Fig. 6.
Frequency-domain ILC and its norm-optimal equivalent
achieve the same tracking error for every trial, where the
error signal during trial 5 and 10 are shown in Fig. 7,
validating their equivalence.

B. Validation Results

The error 2-norm and signal for 20 trials of ILC are seen
in Fig. 8 and Fig. 9. The plant estimate using the basis
function feedforward filter is seen in Fig. 10. The following
observations are made.

• Fig. 8 shows frequency-domain ILC is converged at
trials 10 and 20. However, its error 2-norm significantly
increases at trial 11, showing that it lacks task flexibility.



Fig. 6: Surface plot of the weighting matrix W f
f ( ), with

cross section of the central values ( ), that if used in the
norm-optimal cost function (1) results in the frequency-
domain ILC update.
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Fig. 7: Tracking performance after 5 trials of ILC for
frequency-domain ILC ( ) and norm-optimal equivalent
( ) and after 10 trials for frequency-domain ILC ( ) and
norm-optimal equivalent ( ) using the first reference signal,
showing the same error signal.

• Though ILC with basis functions enables reference
flexibility as seen in Fig. 8, its higher error 2-norm
compared to the other methods stems from lacking ṙ in
its basis function ψ to compensate the viscous friction
d2.

• The error 2-norm in Fig. 8 and the time-domain error
signal for trial 20 in Fig. 9 demonstrate the developed
approach’s superior performance against both basis
function and frequency-domain ILC. It surpasses basis
functions ILC by compensating damping d2 with the
frequency-domain component, which is lacking in the
basis function ψ. The developed approach outperforms
frequency-domain ILC by capturing high-frequency ef-
fects with ψ, that for frequency-domain ILC is filtered
out by robustness filter Qf (z).

• Similar error 2-norm to ILC with basis functions under
reference change illustrates the method’s task flexibility.

• From Fig. 10 it becomes clear that the basis functions
feedforward parameters θj are estimated consistently
with the inverse model, which is enabled since Wθ =
0 << W f

f as described in Remark 2.
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Fig. 8: Error 2-norm for 20 trials of frequency-domain
ILC ( ), basis function ILC ( ) and developed combined
frequency-domain and basis function ILC ( ). At trial 11,
the reference signal is changed ( ).
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Fig. 9: Tracking error after 20 trials e20 of frequency-domain
ILC ( ), basis function ILC ( ) and developed combined
frequency-domain and basis function ILC ( ).

V. CONCLUSIONS

In this paper, both task flexibility and performance are
achieved through the use of an overparameterized feed-
forward signal consisting of frequency-domain and basis
functions ILC. The finite-time norm-optimal representation
of frequency-domain ILC is derived, that is consequently
used in overparameterizing the feedforward signal. The ba-
sis functions and frequency-domain ILC components are
complimentary by appropriately regularizing the frequency-
domain component. An example validates the equivalent
norm-optimal representation, and by exploiting the overpa-
rameterized feedforward signal, the performance is signif-
icantly increased. Hence, the developed method is a key
enabler for improving performance and task flexibility in
control.

Ongoing research focuses on rigorously validating the
method through experimental testing on a real-world setup,
in addition to computationally efficient implementations and
validating robustness of the developed approach.

REFERENCES

[1] J. Butterworth, L. Pao, and D. Abramovitch, “Analysis and com-
parison of three discrete-time feedforward model-inverse control
techniques for nonminimum-phase systems,” Mechatronics, vol. 22
(5), 2012.



10-2 10-1 100 101 102
-150

-100

-50

0

50

100

-100

-80

-60

Fig. 10: FRFs of system P(ejω) ( ) and of estimate using
the inverse basis function feedforward filter F−1

BF (e
jω, θj)

( ), with finite-time representation FBF (θj)r = ψθj .

[2] M. Boerlage, R. Tousain, and M. Steinbuch, “Jerk derivative feed-
forward control for motion systems,” in Am. Control Conf., vol. 5
(1), 2004.

[3] P. Lambrechts, M. Boerlage, and M. Steinbuch, “Trajectory planning
and feedforward design for electromechanical motion systems,”
Control Eng. Pract., vol. 13 (2), 2005.

[4] T. Oomen, “Control for Precision Mechatronics,” in Encycl. Syst.
Control, London: Springer London, 2020, pp. 1–10.

[5] D.A. Bristow ; M. Tharayil ; A.G Alleyne., D. A. Bristow, and
M. Tharayil, “A survey of iterative learning control,” IEEE Control
Syst., vol. 26 (3), 2006.

[6] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
Robots by learning,” J. Robot. Syst., vol. 1 (2), 1984.

[7] R. Pintelon and J. Schoukens, System Identification: A Frequency
Domain Approach. John Wiley & Sons, 2012.

[8] M. Norrlöf and S. Gunnarsson, “Time and frequency domain conver-
gence properties in iterative learning control,” Int. J. Control, vol. 75
(14), 2002.

[9] S. Gunnarsson and M. Norrlöf, “On the design of ILC algorithms
using optimization,” Automatica, vol. 37 (12), 2001.

[10] M. Phan and J. Frueh, “Learning control for trajectory tracking using
basis functions,” in Proc. 35th IEEE Conf. Decis. Control, vol. 3,
1996.

[11] J. van de Wijdeven and O. Bosgra, “Using basis functions in iterative
learning control: analysis and design theory,” Int. J. Control, vol. 83
(4), 2010.

[12] S. Mishra and M. Tomizuka, “Projection-Based Iterative Learning
Control for Wafer Scanner Systems,” IEEE/ASME Trans. Mecha-
tronics, vol. 14 (3), 2009.

[13] F. Boeren, A. Bareja, T. Kok, and T. Oomen, “Frequency-Domain
ILC Approach for Repeating and Varying Tasks: With Application
to Semiconductor Bonding Equipment,” IEEE/ASME Trans. Mecha-
tronics, vol. 21 (6), 2016.

[14] K. Tsurumoto, W. Ohnishi, and T. Koseki, “Task Flexible and
High Performance ILC: Preliminary Analysis of Combining a Basis
Function and Frequency Domain Design Approach,” in IFAC World
Congr., 2023.

[15] J. X. Xu and Y. Tan, “On the robust optimal design and convergence
speed analysis of iterative learning control approaches,” Automatica,
vol. 15 (1), 2002.

[16] B. D. Gorinevsky, “Loop shaping for iterative control of batch
processes,” IEEE Control Syst., vol. 22 (6), 2002.

[17] J. van Zundert, J. Bolder, and T. Oomen, “Optimality and flexibility
in Iterative Learning Control for varying tasks,” Automatica, vol. 67,
2016.

[18] J. Kon, N. de Vos, D. Bruijnen, J. van de Wijdeven, M. Heertjes,
and T. Oomen, “Learning for Precision Motion of an Interventional
X-ray System: Add-on Physics-Guided Neural Network Feedforward
Control,” in 22nd IFAC World Congr., 2023.

[19] M. Tomizuka, “Zero Phase Error Tracking Algorithm for Digital
Control,” ASME. J. Dyn. Sys., Meas., Control, vol. 109 (1), 1987.


