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Abstract—Disturbance rejection of the high-precision scan
stages is important in industrial lithography equipment. The aim
of this paper is to develop an optimization method for designing
multi-axis resonant filters, that enhance the disturbance rejection
performance in scanning motion. The developed optimization
method explicitly defines resonant filters in structured representa-
tion and formulates the data-driven convex optimization problem.
The method enables the multi-axis resonant filter design with
iterative convex optimization using the frequency response data
of the six-degree-of-freedom experimental setup. Experimental
results on the industrial large-scale high-precision scan stage
demonstrate the performance improvement of the disturbance
rejection in the scanning motion using the optimized resonant
filters.

Index Terms—Disturbance rejection, Loop shaping, Resonant
filter, MIMO system, Frequency response, Data-driven design,
Convex optimization

I. INTRODUCTION

D ISTURBANCE rejection in scanning motion has an
important role in the product quality of semiconductors

and Flat Panel Displays (FPD) in the lithography equipment
[1], [2]. The disturbance comes from several kinds of sources
such as electrical or mechanical systems around the scanner
in several frequencies, and difficult to model the disturbance
sources in actual systems explicitly. The feedback controller
is usually used for disturbance rejection in the two-degree-
of-freedom control scheme. The challenge is how to design
the feedback controller considering the disturbance frequency
characteristics. The structured definition of the feedback con-
troller is also important in the physical meaning of inter-
pretability and intuitive tuning of on-site control engineers.

The data-driven design method [3]–[5] such as using the
frequency response data is one of the solutions for uncertain
disturbances without modeling. It also has an advantage in
multi-input multi-output (MIMO) systems because of the diffi-
culty of modeling the interaction between each axis compared
to single-input single-output (SISO) systems. The challenge in
data-driven design is the convex formulation of the optimiza-
tion problem because the non-convex optimization problem is
difficult to guarantee monotonic convergence and it could take
a long time for the optimization calculation in practice.

The data-driven feedback controller design methods with the
convex optimization have been developed using the sequential
linearization with the concave-convex procedure [6] for de-
signing PID controller [7], [8], FIR filter [9], decoupling of
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MIMO systems [10], mechanical resonance cancellation [11],
disturbance observer [12], [13], and peak filter [14].

Although several data-driven feedback controller design
methods have been developed, the multi-axis disturbance re-
jection in several frequencies has not been fully addressed
yet, and there is a gap between the theory of numerical
optimization and the actual implementation for performance
improvement in complex MIMO industrial systems. The aim
of this paper is to develop a new approach for the multi-
axis disturbance rejection in several frequencies during scan-
ning motion using structured feedback controllers designed
by convex optimization. As a consequence, the developed
approach is applied to the industrial MIMO large-scale high-
precision scan stage, and performance improvement is exper-
imentally validated. The only preliminary result is presented
in the previous study [15] and the approach is theoretically
improved, generalized, and successfully implemented in the
actual industrial scan stage in this paper.

The main contributions of this paper are as follows.
Contribution 1: The optimization problem of multi-axis res-

onant filter design using frequency response data is formulated
with structured representation and phase stabilization.

Contribution 2: The multi-axis resonant filter design prob-
lem is solved by iterative convex optimization with the objec-
tive function of the MIMO performance evaluation.

Contribution 3: The performance of the designed multi-axis
resonant filters is experimentally validated in the industrial
MIMO large-scale high-precision scan stage.

The outline is as follows. In Section II, the control prob-
lem with the experimental setup and the designed resonant
filter is formulated. In Section III, the multi-axis resonant
filter design for the MIMO system is formulated, constituting
Contribution 1. In Section IV, the resonant filter design
problem is solved in iterative convex optimization, constituting
Contribution 2. In Section V, the optimized resonant filter
is experimentally validated in the industrial MIMO large-
scale high-precision scan stage, constituting Contribution 3.
In Section VI, conclusions are presented.

II. PROBLEM FORMULATION

The setup of the industrial MIMO large-scale high-precision
scan stage is introduced, and the concept of the multi-axis
resonant filter design for disturbance rejection is formulated.

A. Experimental setup

Fig. 1 shows the experimental setup of the industrial
FPD lithography system which is used for the production
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Fig. 1. Experimental setup of FPD lithography system [17].

Fig. 2. Scan trajectory of translation along the x-axis. The scan stage moves
through 8 scan regions (■) at the same scanning motion. The scanning velocity
of translation along the x-axis is set to 0.5m/s.

of flat panel displays. In the setup, the MIMO large-scale
high-precision scan stage is implemented and it has 6-DOFs
(x, y, θz, z, θx, θy). The 6-DOF stage is supported by the air
bearing against gravity and friction, actuated by voice coil
motors and linear motors, and measured by laser displacement
sensors and linear encoders. The main scan stroke is the
translation along the x-axis. The scanning motion is conducted
in 8 scan regions shown in Fig. 2. The stage is moving with
a constant velocity of 0.5m/s in scan regions.

The open-loop frequency response data is given for the setup
with pre-designed decentralized feedback controllers which
consist of PID controllers, disturbance observers, phase lead
filters, and notch filters. The open-loop frequency response
data is acquired by the system identification using the chirp
signal excitation. The Bode magnitude plot of the open-loop
frequency response data shown in Fig. 3 is defined as

G(jωkf
) = G(ky,ku)(jωkf

), (1)

where ku, ky ∈ {x, y, θz, z, θx, θy} are the indices of inputs
and outputs, and the numbers of the input and the output
are nu = ny = 6. The index of frequency response data
is kf = 1, . . . , nf . Note that the variation of the controlled
system can be used as the set of the frequency response data
for robustness. The details can be seen in [16].

The 6-DOF controlled system is shown in Fig. 4 In this
paper, the decentralized multi-axis resonant filters F are
designed to reject the disturbance d, and are defined as

F (jωkf
,ρ) = diag(Fky

(jωkf
,ρky

)), (2)

where the tuning parameters are ρ = [ρx, . . . ,ρθy ].

B. Disturbance rejection with multi-axis resonant filters

The resonant filter has high-gained characteristics at the
designed resonance frequency and effectively rejects the dis-
turbance at the same frequency as explained in an internal

model principle [18]. In the decentralized resonant filter for
the MIMO controlled system, resonant filters in each axis are
shown in Fig. 5 and are defined as

Fky
(jωkf

,ρky
)

= 1 +

nr,ky∑
kr=1

ρky,(kr,2)(jωkf
)2 + ρky,(kr,1)(jωkf

)

(jωkf
)2 + 2ζr,ky,kr

ωr,ky,kr
(jωkf

) + ω2
r,ky,kr

, (3)

where the number of resonant filter in each axis is nr,ky
and

the index of the resonant filters is kr = 1, . . . , nr,ky
. The

tuning parameters, the resonance frequency, and the damping
coefficient in each axis are ρky,(kr,:), ωr,ky,kr

, and ζr,ky,kr
.

The problem addressed in this paper is the design of the
decentralized multi-axis resonant filters with respect to the
following requirements.

Requirement 1: The resonant filter is designed in structured
representation in which the parameters have physical meaning.

Requirement 2: The resonant filter is designed by the data-
driven method in which the frequency response data is directly
used and the parametric model is not needed.

Requirement 3: Convex optimization is used for designing
the resonant filter in the MIMO system.
In this paper, the optimization method is developed to satisfy
these requirements.

III. FORMULATION OF MULTI-AXIS RESONANT FILTER
DESIGN USING FREQUENCY RESPONSE DATA

In this section, the design method of multi-axis resonant
filters is formulated. First, the objective function is designed
as the error frequency spectrum evaluation, and the constraints
are defined in gain and phase stabilization conditions. The
initial condition of the optimization is designed by the pre-
existing approach of a resonant filter with stable resonant
modes. It results in Contribution 1.

A. Objective function to minimize error frequency spectrum

The objective function to optimize multi-axis resonant filters
is designed to minimize the error. The challenge of the objec-
tive function design is the integrated performance evaluation
of multiple axes and multiple scanning regions.

The error frequency spectrum matrix without the resonant
filter is measured in the pre-experiment and is defined as

E0(jωkf
) =

[
e0,1(jωkf

) · · · e0,ne(jωkf
)
]
, (4)

where ke = 1, . . . , ne is the index of the scanning re-
gions. The error frequency spectrum in each scanning region
e0,ke

(jωkf
) ∈ Cny×1 is defined as

e0,ke
(jωkf

) =
[
e0,ke,1(jωkf

) · · · e0,ke,ny
(jωkf

)
]T
. (5)

From the reproducible error frequency spectrum matrix, the
disturbance frequency spectrum matrix is assumed to be in-
variant for the controller design and is given by

D(jωkf
) = S−1

0 (jωkf
)E0(jωkf

), (6)

where the sensitivity function matrix is S0(jωkf
) = (I +

G(jωkf
))−1 ∈ Cny×ny with the open-loop frequency response
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Fig. 3. Bode magnitude plot of open-loop frequency response in the 6-DOF experimental setup.
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Fig. 4. Block diagram of 6-DOF controlled system.
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Fig. 5. Block diagram of resonant filters in each axis.

data G(jωkf
) and an identity matrix I ∈ Rny×ny . The element

of the disturbance frequency spectrum matrix is defined as

D(jωkf
) =

[
d1(jωkf

) · · · dne
(jωkf

)
]
, (7)

where the disturbance frequency spectrum in each scanning

region dke
(jωkf

) ∈ Cny×1 is defined as

dke
(jωkf

) =
[
dke,1(jωkf

) · · · dke,ny (jωkf
)
]T
. (8)

The error frequency spectrum matrix with the designed
resonant filter is given by

E(jωkf
,ρ) = S(jωkf

,ρ)D(jωkf
), (9)

where the sensitivity function matrix is S(jωkf
,ρ) = (I +

G(jωkf
)F (jωkf

,ρ))−1 ∈ Cny×ny with the designed resonant
filter F (jωkf

,ρ). In the MIMO systems, the unit of each
output is different in many actual applications such as trans-
lation and pitching. Therefore, from (9), the normalized error
frequency spectrum matrix is given by

W−1E(jωkf
,ρ) = W−1(I +G(jωkf

)F (jωkf
,ρ))−1D(jωkf

), (10)

where the scaling matrix is W ∈ Rny×ny . In the optimiza-
tion calculation, the norm of the normalized error frequency
spectrum matrix can be used to minimize error.

B. Constraints of stability condition

The gain stability condition shown in Fig. 6 is defined as

|ws,ky (jωkf
)| −

∣∣1 +G(ky,ky)(jωkf
)Fky (jωkf

,ρ)
∣∣ ≤ 0, (11)

where the weighting function of the upper bound gain in the
sensitivity function is ws,ky (jωkf

). Although the constraint of
the sensitivity function is commonly used for the frequency
response data-based design, the stability cannot be guaranteed
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Fig. 7. Vector locus with resonant
filter and robust stability condition.

only with the gain stability condition in the use of a controller
that changes the gain and phase with resonant modes, and
the phase stability condition is introduced. The phase stability
condition [16] shown in Fig. 7 is defined as

−π
2
≤ ∠

(
1 +G(ky,ky)(jωkf

)Fky
(jωkf

,ρ)
)
− ∠

(
1 +G(ky,ky)(jωkf

)
)
≤ π

2
. (12)

The phase stability condition represents that the vector locus
with the resonant filter is between the angle ±90◦ from the
angle with the origin of (−1, j0) without resonant filters. By
integrating the gain and phase stabilization conditions, the
vector locus with resonant filters must be on the same side
against (−1, j0) and at the outside of the modulus margin.

C. Resonant filter design with stable resonant mode

For the initial condition with stable resonant modes [19],
the resonant mode of the designed resonant filter is defined as

Fr(s) =
κs2 + κψs

s2 + 2ζrωrs+ ω2
r

, (13)

where the tuning parameters are the gain κ and the phase ψ.
The resonance frequency ωr and the damping coefficient ζr
are usually pre-defined by the shape of the error frequency
spectrum. The parameters in this representation have physical
meaning and satisfy Requirement 1.

The initial resonant filters are designed as K times larger
gain at the resonance frequency ωr and the vector locus
recedes from (−1, j0) with a resonance circle as shown in
Fig. 7. The parameter K is tuned by the users based on the
error frequency spectrum. In this condition, the parameter ψ
is given by

ψ = ωr
Re{T−1(jωr)}
Im{T−1(jωr)}

, (14)

where the complementary sensitivity function at the resonance
frequency ωr is given by T (jωr) =

G(jωr)
1+G(jωr)

. The parameter
κ can be derived geometrically [19] and is given by

κ =
±2ζrωr√
ψ2 + ω2

r

(K − 1)|T−1(jωr)|

when ∠T−1(jωr) = atan2

(
±ωr

±ψ

)
, (15)

where the order of plus and minus corresponds to each other.

Using these initial conditions for optimization, the designed
resonant filters in each axis are linearly parameterized in
tuning parameters of the numerator and are defined as

Fky
(jωkf

,ρky
) = ρT

ky
ϕky

(jωkf
)

=



1
ρky,(1,1)

ρky,(1,2)

...
ρky,(nr,ky ,1)

ρky,(nr,ky ,2)



T



1
(jωkf

)

(jωkf
)2 + 2ζr,ky,1ωr,ky,1(jωkf

) + ω2
r,ky,1

(jωkf
)2

(jωkf
)2 + 2ζr,ky,1ωr,ky,1(jωkf

) + ω2
r,ky,1

...
(jωkf

)

(jωkf
)2 + 2ζr,ky,nr,ky

ωr,ky,nr,ky
(jωkf

) + ω2
r,ky,nr,ky

(jωkf
)2

(jωkf
)2 + 2ζr,ky,nr,ky

ωr,ky,nr,ky
(jωkf

) + ω2
r,ky,nr,ky



, (16)

where the tuning parameters are ρky ∈ R2nr,ky+1.

IV. OPTIMIZATION OF MULTI-AXIS RESONANT FILTER

In this section, the optimization approach to design the
multi-axis resonant filter is formulated. The MIMO perfor-
mance is evaluated by the Frobenius norm of the normalized
error frequency spectrum matrix. The original non-convex
optimization problem is reformulated to the iterative convex
optimization problem by the Moore-Penrose inverse and se-
quential linearization. It results in Contribution 2.

A. Non-convex optimization problem formulation

From the objective function (10), and the constrains (11)
and (12), the optimization problem is formulated as

minimize
ρ

max
∀kf

∥W−1(I +G(jωkf
)F (jωkf

,ρ))−1D(jωkf
)∥2F (17a)

subject to
∀kf ,∀,ky

|ws,ky
(jωkf

)| −
∣∣1 +G(ky,ky)(jωkf

)Fky
(jωkf

,ρ)
∣∣ ≤ 0 (17b)

−π
2
≤ ∠

(
1 +G(ky,ky)(jωkf

)Fky
(jωkf

,ρ)
)
− ∠

(
1 +G(ky,ky)(jωkf

)
)
≤ π

2
, (17c)

where the MIMO performance is evaluated as the maximum
square Frobenius norm of the normalized error frequency
spectrum matrix at each frequency. The optimization problem
is formulated by the data-driven design method in which
the frequency response data is directly used and satisfies
Requirement 2. The challenge is how to formulate a convex
optimization problem that satisfies Requirement 3.

B. Objective function formulation by Moore–Penrose inverse

To deal with the non-convex objective function that includes
the parameter ρ in the inverse, the Moore–Penrose inverse is
applied. The Moore–Penrose inverse of the normalized error
frequency spectrum matrix (10) is given by

E+(jωkf
,ρ)W = D+(jωkf

)(I +G(jωkf
)F (jωkf

,ρ))W , (18)

and the reformulated objective function is given by

maximize
ρ

min
∀kf

∥D+(jωkf
)(I +G(jωkf

)F (jωkf
,ρ))W ∥2F , (19)

where the performance value is evaluated as the minimum
square Frobenius norm of the normalized Moore–Penrose in-
verse error frequency spectrum matrix at each frequency. From
the property of the Frobenius norm and the singular value, the
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objective function becomes the sum of the inverse square sin-
gular value of the normalized error frequency spectrum matrix.
The difference between (17a) and (19) is that the evaluation of
the singular values of the error frequency spectrum matrix is
whether the arithmetic mean or the harmonic mean. The linear
parameterization for convex optimization is maintained in this
formulation. Note that the number of the scanning regions ne
should be greater than or equal to that of the output ny and
satisfying ne ≥ ny to compute the Moore-Penrose inverse in
this matrix order.

The optimization problem is reformulated as

maximize
ρ

γ (20a)

subject to
∀kf ,∀,ky

γ − ∥D+(jωkf
)(I +G(jωkf

)F (jωkf
,ρ))W ∥2F ≤ 0 (20b)

|ws,ky
(jωkf

)| −
∣∣1 +G(ky,ky)(jωkf

)Fky
(jωkf

,ρ)
∣∣ ≤ 0 (20c)

−π
2
≤ ∠

(
1 +G(ky,ky)(jωkf

)Fky
(jωkf

,ρ)
)
− ∠

(
1 +G(ky,ky)(jωkf

)
)
≤ π

2
, (20d)

where the objective function (19) is defined in the constraint
(20b) with the parameter γ ∈ R+

0 of the objective function.

C. Iterative convex optimization using sequential linearization

The constraints of the non-convex optimization problem
(20) can be dealt with by a sequential linearization using
the concave-convex procedure [6]. The derivatives around the
operating point of the current iteration in the variable ρ can
be solved by an iterative convex optimization calculation as
shown in (21). Finally, the design procedure is summarized
in Algorithm 1. It can be solved in an iterative convex
optimization calculation and has an advantage in monotonic
convergence to a saddle point or a local optimum. It results
in satisfying Requirement 3.

Algorithm 1: Multi-axis resonant filter design
Input: G(jω),E0(jω),W , ωr, ζr,K,ws, γend/γend−1

Output: ρopt

1 obtain ρini from (13), (14), (15), and (16)
2 compute D(jω) from (6)
3 while (γki/γki−1) ≥ (γend/γend−1) do
4 maximize

ρ
γ subject to

∀kf ,∀,ky

convex constraints (21)

5 end

V. EXPERIMENTAL VALIDATION

In this section, the experimental validation is conducted
in the industrial MIMO large-scale high-precision scan stage.
The MIMO stability analysis is conducted before the imple-
mentation. The experimental results demonstrate the scanning
performance improvement with the optimized resonant filters.
It results in Contribution 3.

A. Conditions

The 6-DOF experimental setup is shown in Fig. 1 and the
stage is moving along the main stroke x-axis with constant
velocity 0.5m/s and the number of the scanning regions is

ne = 8 as shown in Fig. 2. The number of frequency response
data points is nf = 1000 and the data points are arranged at
linearly even intervals in the range from 1Hz to 20Hz. The
Bode magnitude plot of the open-loop frequency response data
G(jωkf

) is shown in Fig. 3.
The resonance frequency ωr of the designed resonant filter

is pre-defined by the shape of the inverse disturbance spectrum
as shown in Fig. 8 and the damping coefficient is set to
ζr = 0.01. The initial resonant filter is designed with stable
resonant modes using the approach presented in [19]. The
initial resonant filters are designed as K = 2 times larger gain
at the resonance frequency ωr and the vector locus recedes
from (−1, j0) using (14) and (15). Note that the resonant
filters are designed in (x, z, θx, θy)-axes because (y, θz)-axes
are originally too high sensitivity peak before designing the
resonant filters and not afford to design additional resonant
filters with robustness in the actual implementation. The
scaling matrix W is designed in the diagonal matrix with
the root mean square error of 8 scan regions for each axis in
the pre-experiment without the resonant filter.

The gain stabilization condition is designed by a data-
driven approach with the scaled sensitivity function without
the resonant filter as shown in Fig. 6. The weighting function
of the sensitivity function is given by

ws,ky (jωkf
) = vs ×

{
(1 +G(ky,ky)(jωkf

)) (ωkf
≤ ωky,smax

)

(1 +G(ky,ky)(jωky,smax
)) (ωkf

> ωky,smax
)
, (22)

where the scaling parameter is set to vs = 1/1.1 and

min
∀kf

|1 +G(ky,ky)(jωkf
)| = |1 +G(ky,ky)(jωky,smax

)|. (23)

Note that the initial resonant filters do not satisfy this gain
stabilization condition although they are designed with stable
resonant modes.

The iterative calculation in the optimization is continued
until the improvement of the objective function is less than
0.1% set as γend/γend−1 = 1.001. The optimization problem
is computed in several minutes by the laptop using MATLAB,
YALMIP [20], and MOSEK [21].

B. Optimization result
The Bode magnitude plot of the sensitivity function in

the diagonal SISO open-loop systems without the resonant
filters (w/o), with the initial resonant filters (ini), and with the
optimized resonant filters (opt) are shown in Fig. 9. It shows
that the optimized resonant filters satisfy the constraints of
the robust stability condition that is not satisfied by the initial
resonant filters.

The Nyquist plot of the diagonal SISO open-loop systems
without the resonant filters (w/o), with the initial resonant
filters (ini), and with the optimized resonant filters (opt) are
shown in Fig. 10. It shows that both the gain and phase of the
resonant filters are tuned to improve the disturbance rejection
performance by optimization.

C. MIMO stability analysis using eigenvalue loci
The stability analysis of the closed-loop system with the de-

signed controller is always important in the actual implemen-
tation. The challenge is the stability in MIMO systems because
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γ −
∑
ke,ky

[
2|D+(jωkf

)(I +G(jωkf
)F (jωkf

,ρ(ki−1)))W |(ke,ky)Re

{
(D+(jωkf

)(I +G(jωkf
)F (jωkf

,ρ(ki−1)))W )∗(ke,ky)

|D+(jωkf
)(I +G(jωkf

)F (jωkf
,ρ(ki−1)))W |(ke,ky)

(D+(jωkf
)(I +G(jωkf

)F (jωkf
,ρki))W )(ke,ky)

}
− |D+(jωkf

)(I +G(jωkf
)F (jωkf

,ρ(ki−1)))W |2(ke,ky)

]
≤ 0 (21a)

|ws,ky (jωkf
)| − Re

{
(1 +G(ky,ky)(jωkf

)Fky (jωkf
,ρ(ki−1)))

∗

|1 +G(ky,ky)(jωkf
)Fky (jωkf

,ρ(ki−1))|
(1 +G(ky,ky)(jωkf

)Fky (jωkf
,ρki))

}
≤ 0 (21b)

∓

(
atan2

(
Im(1 +G(ky,ky)(jωkf

)Fky (jωkf
,ρ(ki−1)))

Re(1 +G(ky,ky)(jωkf
)Fky

(jωkf
,ρ(ki−1)))

)
+

Re(1 +G(ky,ky)(jωkf
)Fky (jωkf

,ρ(ki−1)))Im(1 +G(ky,ky)(jωkf
)Fky (jωkf

,ρki))− Im(1 +G(ky,ky)(jωkf
)Fky (jωkf

,ρ(ki−1)))Re(1 +G(ky,ky)(jωkf
)Fky (jωkf

,ρki))∣∣1 +G(ky,ky)(jωkf
)Fky

(jωkf
,ρ(ki−1))

∣∣2
)

± atan2

(
Im(1 +G(ky,ky)(jωkf

))

Re(1 +G(ky,ky)(jωkf
))

)
− π

2
≤ 0

when ± Re(1 +G(ky,ky)(jωkf
)) ≥ 0 (21c)

±

(
atan2

(
Im(1 +G(ky,ky)(jωkf

)Fky
(jωkf

,ρ(ki−1)))

Re(1 +G(ky,ky)(jωkf
)Fky (jωkf

,ρ(ki−1)))

)
+

Re(1 +G(ky,ky)(jωkf
)Fky

(jωkf
,ρ(ki−1)))Im(1 +G(ky,ky)(jωkf

)Fky
(jωkf

,ρki
))− Im(1 +G(ky,ky)(jωkf

)Fky
(jωkf

,ρ(ki−1)))Re(1 +G(ky,ky)(jωkf
)Fky

(jωkf
,ρki

))∣∣1 +G(ky,ky)(jωkf
)Fky (jωkf

,ρ(ki−1))
∣∣2

)
∓ atan2

(
Im(1 +G(ky,ky)(jωkf

))

Re(1 +G(ky,ky)(jωkf
))

)
− π

2
≤ 0

when ± Re(1 +G(ky,ky)(jωkf
)) ≥ 0 (21d)

(a) x (b) z (c) θx (d) θy

Fig. 8. Inverse disturbance spectrum of 8 scan regions. Vertical black dotted lines ( ) correspond to resonance frequencies of designed resonant filters.

(a) x (b) z (c) θx (d) θy

Fig. 9. Bode magnitude plot of SISO sensitivity function without resonant filters ( ), with initial resonant filters ( ), and with optimized resonant filters
( ). Constraints of sensitivity function are shown in ( ). Vertical black dotted lines ( ) correspond to resonance frequencies of designed resonant filters.

(a) x (b) z (c) θx (d) θy

Fig. 10. Nyquist plot without resonant filters ( ), with initial resonant filters ( ), and with optimized resonant filters ( ). Sensitivity peaks are shown
in ( ).

the stability condition in SISO systems is not necessary and
sufficient for that in MIMO systems. The sufficient condition
of MIMO stability such as using a generalized Gershgorin
band in [14] results in conservative controller design. In this
paper, the eigenvalue loci [22] are used for MIMO stability
analysis in necessary and sufficient conditions. Note that the
necessary and sufficient condition of MIMO stability includes

the computation of eigenvalue and it is difficult to implement
in convex optimization. The eigenvalue loci without the res-
onant filters (w/o), with the initial resonant filters (ini), and
with the optimized resonant filters (opt) are shown in Fig. 11.
It shows that the MIMO stability condition is satisfied in all
cases. Nyquist stability analysis using frequency response data
is reliable in linear systems because of no modeling error ex-
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(a) w/o (b) ini (c) opt

Fig. 11. Eigenvalue loci without resonant filters (w/o), with initial resonant filters (ini), and with optimized resonant filters (opt).

Fig. 12. Experimental time series errors of 8 scan regions in 6-DOFs without resonant filters ( ), with initial resonant filters ( ), and with optimized
resonant filters ( ).

(a) x (b) z (c) θx (d) θy

Fig. 13. Experimental cumulative amplitude spectrum errors of 8 scan regions from high to low frequency without resonant filters ( ), with initial resonant
filters ( ), and with optimized resonant filters ( ). Vertical black dotted lines ( ) correspond to resonance frequencies of designed resonant filters.

cept for the assumption of dominant linear dynamics. Although
the eigenvalue loci are close to (−1, j0) as shown in Fig. 11, it
is because the controllers are designed with less robust margin

to satisfy the severe performance requirement. All controllers
are successfully implemented in the experimental setup and
the scanning performance is validated.
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TABLE I
EXPERIMENTAL ROOT MEAN SQUARE ERRORS OF 8 SCAN REGIONS IN

6-DOFS WITHOUT RESONANT FILTERS (W/O), WITH INITIAL RESONANT
FILTERS (INI), AND WITH OPTIMIZED RESONANT FILTERS (OPT).

[count] ex ey eθz ez eθx eθy
∫
t ∥W

−1E∥F
w/o 49 120 28 116 61 75 100 %
ini 88 88 41 111 60 108 104 %
opt 59 65 34 107 48 116 87 %

D. Experimental result
The scanning performance is validated in the last 0.5 s of 8

scan regions as a steady-state scanning error. The experimental
time series errors of 8 scan regions in 6-DOFs without resonant
filters, with initial resonant filters, and with optimized resonant
filters are shown in Fig. 12. From Fig. 12, the experimental
root mean square errors of 8 scan regions in 6-DOFs are
shown in TABLE I. From the identity of Parseval’s theorem
between the time domain signal and the frequency domain
signal in square integral, the integral normalized Frobenius
norm of the time series error signal matrix of 8 scan regions
in 6-DOFs

∫
t
∥W−1E∥F is used to evaluate the MIMO

performance of each approach. The results show that the
MIMO performance with optimized resonant filters outper-
forms that without resonant filters in 13% and that with
initial resonant filters in 17%. The initial resonant filters are
designed without considering the MIMO performance and it
may worsen the MIMO performance because of the interaction
between each axes. The optimized resonant filters are designed
with optimization for the gain and phase of the resonant filters
to improve the MIMO performance. Note that the RMS errors
with the resonant filters are not improved in all axes but
become worse in several axes such as in x and θy axes because
of the SISO performance trade-off and the nonlinear interac-
tion dynamics between translation and rotation. Although the
controller design using the linear frequency spectrum has a
limitation in considering nonlinearity, it is a reasonable linear
approximation around the operating points.

The experimental cumulative amplitude spectrum errors of
8 scan regions are shown in Fig. 13. The disturbance rejection
performance is improved in z and θx axes but high-gained
interaction deteriorates low-frequency performance in x and
θy axes. Note that the final value of the cumulative amplitude
spectrum in Fig. 13 is the same as the root mean square error
in TABLE I from the identity of Parseval’s theorem.

VI. CONCLUSION

The disturbance rejection in the scanning motion has an
important role in the lithography equipment. In this paper,
the decentralized multi-axis resonant filters are formulated in
structured representation to compensate for disturbances. The
resonant filter design problem is solved by iterative convex
optimization. Experiments on the industrial MIMO large-scale
high-precision scan stage demonstrate effective disturbance
rejection performance with the optimized resonant filters.
Ongoing research focuses on global optimization with the
initial parameter dependence, nonlinear optimization with the
coefficients of the denominator, and total optimization with
other pre-designed feedback controllers.
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