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Abstract: Day-ahead electricity price forecasting (DAEPF) is vital for participants in energy markets,
particularly in regions with high integration of renewable energy sources (RESs), where price volatility
poses significant challenges. The accurate forecasting of high and low electricity prices is particularly
essential, as market participants seek to optimize their strategies by selling electricity when prices
are high and purchasing when prices are low to maximize profits and minimize costs. In Japan, the
increasing integration of RES has caused day-ahead electricity prices to frequently fall to almost zero
JPY/kWh during periods of high RES output, creating significant profitability challenges for electricity
retailers. This paper introduces novel custom loss functions and metrics specifically designed to
improve the forecasting accuracy of extreme prices (high and low prices) in DAEPF, with a focus on the
Japanese wholesale electricity market, addressing the unique challenges posed by the volatility of RES.
To implement this, we integrate these custom loss functions into a Convolutional Neural Network–
Long Short-Term Memory (CNN-LSTM) model, augmented by an ensemble learning approach and
multimodal features. The proposed custom loss functions and metrics were rigorously validated,
demonstrating their effectiveness in accurately predicting high and low electricity prices, thereby
indicating their practical application in enhancing the economic strategies of market participants.

Keywords: day-ahead electricity price forecasting (DAEPF); custom loss function; weighted mean
absolute error (WMAE); CNN-LSTM; ensemble learning

1. Introduction
1.1. The Importance of High and Low Day-Ahead Electricity Price Forecasting

The 21st century has brought a transformative shift in the global energy sector, driven
by the large-scale incorporation of renewable energy sources (RESs) like wind and solar
power into electricity grids [1,2]. This transition, motivated by the imperative to miti-
gate the environmental impacts of traditional energy systems, has introduced substantial
fluctuations and uncertainty in electricity generation. The intermittent nature of RES,
characterized by fluctuations in power output due to varying weather conditions, leads to
sudden changes in electricity supply, which in turn causes volatility in the day-ahead elec-
tricity market. These fluctuations make it challenging to predict electricity prices, thereby
complicating the pricing mechanisms in the day-ahead electricity market [3,4], in which
electricity is traded for delivery the following day.

Given this context, accurate day-ahead electricity price forecasting (DAEPF) becomes
crucial [5]. In wholesale electricity markets, price fluctuations significantly affect the finan-
cial performance of electric utilities [6]. In Japan, the structure of the Japanese electricity
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market is primarily based on deregulation, with the Japan Electric Power eXchange (JEPX)
serving as the platform for wholesale electricity trading. The market is overseen by the
Ministry of Economy, Trade, and Industry (METI), which ensures that competition remains
fair and the market functions efficiently. Unlike in some countries where state authorities
directly regulate electricity prices, in Japan, prices are largely determined by market dynam-
ics, including supply–demand balance and the impact of RES integration. The increasing
presence of RES has added significant volatility to market prices, further complicating
DAEPF efforts.

Effective DAEPF supports a range of market participants, including power producers,
consumers, and traders, by enabling optimized bidding, strategic planning, and informed
decision-making. The increasing integration of RES adds further complexity to price pat-
terns, making accurate forecasting even more vital [7]. For retailers and consumers, precise
DAEPF can lead to substantial economic advantages, facilitating optimized procurement
strategies and encouraging proactive demand response initiatives [8]. Accurate forecasting
is therefore essential for the stability and efficiency of modern power systems, playing a
critical role in the transition to a sustainable energy future.

However, forecasting high and low prices is particularly challenging due to the eco-
nomic strategies employed by market participants. Selling electricity when prices are high
and buying when prices are low is fundamental to maximizing profits and minimizing
costs. A nuanced understanding of high and low price dynamics can thus provide sig-
nificant financial benefits and enhance the overall efficiency of electricity markets. This
motivates the need for more sophisticated forecasting models that can accurately predict
these price extremes.

1.2. DAEPF Models

To address these challenges, various statistical models, including the Autoregres-
sive Moving Average (ARMA) [9,10] and the Autoregressive Integrated Moving Average
(ARIMA) [11–13], have been frequently utilized in DAEPF research. Although these models
offer a solid foundation, their linear structure can limit their ability to accurately capture
the complex non-linear patterns introduced by RES integration and demand fluctuations.
Consequently, traditional statistical models may struggle to accurately forecast sudden
price anomalies in electricity markets.

In response, machine learning models, particularly those incorporating time-dependent
features such as the Long Short-Term Memory (LSTM) network, have gained traction in
DAEPF [7,14,15]. These models are better equipped to handle the complex, non-linear
relationships and price anomalies in electricity markets. For instance, Lago et al. [16]
demonstrates the improved accuracy of neural network models over traditional statisti-
cal methods in volatile markets. In our previous work [17], we demonstrated that the
Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) model surpasses
standalone LSTM models in both accuracy and computation time. In the CNN-LSTM
framework, the CNN functions as a feature extraction mechanism, whereas the LSTM is
responsible for modeling temporal dependencies. This hybrid approach not only improves
predictive accuracy but also significantly reduces training time, making CNN-LSTM a
superior choice for DAEPF across various time series forecasting models.

1.3. Custom Loss-Function-Based Forecasting Methods

Despite the advancements in neural network model architectures, traditional loss
functions like mean squared error (MSE) and mean absolute error (MAE) have limitations.
These functions treat all errors equally, which may not be optimal in contexts where errors
at extreme price values (high or low) carry more weight for market participants [18,19].

To address these shortcomings, researchers have developed custom loss functions
tailored to the specific needs of forecasting problems. For instance, Usharani et al. [20]
proposed an improved loss function within an LSTM framework specifically for predict-
ing location-specific sea surface temperatures. Unlike the traditional MSE, the novel
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improved loss function incorporates the natural logarithm of the cumulative squared dif-
ferences between actual and predicted values. This log-scaled error representation not
only outperformed standard models but also significantly reduced processing time. In the
context of DAEPF, Nowotarski et al. [21] introduced a method for DAEPF by computing
prediction intervals using quantile regression and forecast averaging, which provides re-
liable prediction intervals for volatile electricity prices. Another innovative approach by
Nowotarski et al. [22] introduced an asymmetric loss function for DAEPF. This loss function
penalizes overestimations and underestimations differently, reflecting the asymmetric cost
implications in electricity trading. Overestimating prices might lead to overbidding and fi-
nancial losses, while underestimating prices could result in missed opportunities for selling
electricity at higher prices. Amjady et al. [23] developed a price forecasting model using
a weighted mean absolute percentage error loss function. This approach assigns higher
weights to larger errors, ensuring that the model focuses more on significant deviations
that could have substantial financial impacts. Similarly, Lago et al. [24] proposed a novel
loss function combining MSE with a penalty for forecast values outside a certain confidence
interval. This hybrid loss function enhances the model’s ability to predict prices accurately,
especially during volatile periods influenced by RESs.

These studies emphasize the importance of custom loss functions, each addressing
specific characteristics of forecasting challenges, such as volatility, asymmetry, and large
errors. Our work builds upon these principles by proposing custom loss functions specifi-
cally aimed at reinforcing the accuracy of high and low price predictions, a critical aspect
in DAEPF that has not been sufficiently addressed in prior studies.

1.4. Paper Contribution and Organization

The contributions of this paper are summarized as follows. To address the aforemen-
tioned challenges, this study proposes novel custom loss functions specifically designed for
reinforced forecasting of DAEPF, with a focus on accurately predicting high and low prices.
These custom loss functions are integrated within a CNN-LSTM model, enhanced by an
ensemble learning approach with multimodal features, to improve the overall accuracy of
the forecasting process, particularly in scenarios where extreme price values are critical.

The key findings of this study demonstrate that the proposed custom loss functions
significantly outperform the traditional MAE loss function in capturing high and low price
extremes, as validated through comprehensive performance metrics on validation and
test sets. These findings highlight the practical applicability of the proposed method in
improving decision-making processes for electricity market participants. To the best of the
authors’ knowledge, these specific custom loss functions have not been previously utilized
in existing studies, making this approach a novel contribution to the field of DAEPF.

The rest of this paper is structured as follows. Section 2 details the custom loss func-
tions adopted in this study. Section 3 presents the CNN-LSTM model, the comprehensive
structure of the DAEPF method, and the data architecture of the input features. Section 4
presents the performance metrics of the DAEPF results and demonstrates the effectiveness
of the proposed custom loss functions. Lastly, Section 5 summarizes the paper and outlines
directions for future work.

2. Weighted Mean Absolute Error (WMAE) Loss-Functions-Assisted Different Aspects
of DAEPF

The weighted mean absolute error (WMAE) [25] represents an evolution of the conven-
tional MAE loss function, formulated to allocate differential significance to individual data
points within regression tasks. While the MAE computes the average squared difference
between predicted and actual values, the WMAE introduces a weight for each term, allow-
ing certain errors to have a more significant impact on the overall loss. This modification
enables the model to focus more on specific aspects of the data that are deemed important
for the forecasting task, such as high or low prices in the context of DAEPF.
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2.1. Rationale for Designing Custom WMAE Loss Functions

In DAEPF, certain periods, such as those associated with high or low electricity prices,
are more critical for decision-making than others. Accurately predicting these periods
can lead to significant financial benefits for market participants. Therefore, it is essential
to design a loss function that places greater emphasis on these critical periods during
model training.

The custom WMAE loss functions introduced in this study are specifically designed to
enhance the model’s ability to forecast high and low prices by assigning greater importance
to errors occurring in these periods. The rationale behind the design of the two custom
WMAE loss functions is to directly address the challenges of predicting price spikes and
drops, which are often difficult to capture with conventional loss functions like the MAE.

Two custom WMAE loss functions were designed as shown in Equations (1) and (2),
each addressing different facets of DAEPF. In Equations (1) and (2), n represents the total
number of data points, while i indicates the i-th data point. The weighting vectors, W1i and
W2i, modify the absolute differences between the predicted value ŷ and the actual value y,
where y represents the prices normalized to a 0–1 range with respect to the minimum and
maximum values in the dataset.

2.2. High-Price WMAE Loss Functions

This loss function is designed to emphasize the accurate prediction of high prices,
which are crucial for maximizing profits in electricity trading. The weight assigned to each
term, W1i = yp

i , increases as the price yi rises (p > 0), with p being a hyperparameter
that controls the degree of emphasis on higher prices. In this investigation, two candidate
values for p were considered: 1 and 2. This design ensures that the loss function penalizes
errors more heavily when the actual price is high, thus encouraging the model to focus on
accurately predicting these critical periods.

Lhigh price wmae(y, ŷ) =
1
n

n

∑
i=1

(|yi − ŷi| ∗ W1i)

W1i = yp
i

(1)

2.3. Low-Price WMAE Loss Functions

This loss function focuses on improving the accuracy of low-price forecasts, which are
equally important for minimizing costs in electricity trading. The weighting vector W2i
assigns a higher weight when the price yi is below a specified threshold (low_thres). In this
investigation, two candidate values for low_thres were considered: 0.05 and 0.1, which
are compared with the target variable yi after normalization rather than on the original
price scale. When yi ≤ low_thres, W2i is assigned a weight of 10; otherwise, it is assigned a
weight of 1. This ensures that the loss function penalizes errors more severely when the
actual price is low, thereby prioritizing the accurate prediction of low-price periods. Both
candidate values for low_thres were evaluated to assess their impact on model performance.

Llow price wmae(y, ŷ) =
1
n

n

∑
i=1

(|yi − ŷi| ∗ W2i)

W2i =

{
10 if yi ≤ low_thres
1 otherwise

(2)

2.4. Selection of Hyperparameters

Table 1 shows the candidates of the hyperparameters p and low_thres used in the
custom WMAE loss functions Lhigh price wmae and Llow price wmae. These parameters were
carefully selected to explore different levels of emphasis on high and low prices in the
custom WMAE loss functions.
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As the primary objective in this study is to demonstrate the flexibility of the custom
WMAE loss functions in handling various price ranges by adjusting these hyperparameters
but not to identify the optimal values for p and low_thres, to limit the introduction of
further uncertainty and to maintain the focus of the study, the hyperparameter search
was intentionally restricted to two candidate values for both p and low_thres, respectively.
The selected values represent a reasonable range that allows for performance optimization,
highlighting how the hyperparameters can be tuned to emphasize price ranges critical for
electricity market participants.

Table 1. Hyperparameters of the defined custom WMAE loss functions.

p 1 2

low_thres 0.05 0.1

2.5. Comparison with Conventional MAE Loss Function

For comparative purposes, the conventional MAE loss function Lmae was also imple-
mented, as depicted in Equation (3). While the MAE treats all errors equally, the custom
WMAE loss functions prioritize specific periods by assigning higher weights where certain
predictions (high and low prices) are more critical.

Lmae(y, ŷ) =
1
n

n

∑
i=1

|yi − ŷi| (3)

By designing and implementing the Lhigh price wmae, Llow price wmae, and the MAE loss
function, this study aims to test the validity of the two custom WMAE loss functions in
improving the accuracy of high and low price forecasts in DAEPF, thereby providing more
reliable guidance for market participants. While using the Lhigh price wmae and Llow price wmae
exactly as the corresponding custom metrics, they are denoted as Mhigh price wmae and
Mlow price wmae, respectively.

3. CNN-LSTM Ensemble Learning Framework
3.1. Convolution Neural Network-Long Short-Term Memory Model

A CNN-LSTM model was developed and applied for DAEPF using the Python Tensor-
flow keras library due to its proven effectiveness in time series forecasting, as demonstrated
in our previous study [17]. The architecture of the proposed CNN-LSTM model is shown
in Figure 1, and the hyperparameters are selected the same as in our previous work [17].

LS
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Figure 1. Schematic of the architecture of the CNN-LSTM model [17].

The architecture of the CNN-LSTM model starts with an input layer that accepts
the input data, followed by a 1D Convolution Layer with a Rectified Linear Unit (ReLU)
activation function. A Max Pooling Layer is then applied to reduce the spatial dimen-
sionality of the feature maps. Another Convolution Layer is used next for further feature
extraction. This is followed by an LSTM Layer, which is responsible for capturing temporal
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patterns in the data. The output from the LSTM layer is fed into a Fully Connected (FC)
layer to generate the model’s final output. The CNN-LSTM model is compiled with the
Adam optimizer, set to a learning rate of 0.001, and uses the custom loss function and
corresponding metric defined in this study. To avoid overfitting, the batch size was set to
2048, and the number of training epochs was set to 50, in each training session.

For the sake of simplicity, this study does not compare the performance of the CNN-
LSTM model with other deep learning models such as MLP, CNN, RNN, or standalone
LSTM. The superiority of the CNN-LSTM model over standalone LSTM has been demon-
strated in our previous work [17].

3.2. Ensemble Learning Strategy

Traditional ensemble learning method involves aggregating the outputs of several dif-
ferent machine learning models to make a final prediction, which is a commonly used strat-
egy in ensemble learning. For instance, Iyer et al. [26] proposed a CNN and LSTM-based
ensemble learning approach for human emotion recognition using electroencephalogram
(EEG) recordings by combining the outputs from the CNN and LSTM models together to
enhance prediction accuracy.

In contrast, the ensemble learning approach proposed in our previous work [17] and
utilized in this study focuses on improving the robustness of a single neural network
architecture, rather than combining multiple different models or varying hyperparameters
to enhance prediction accuracy. Our approach addresses the inherent uncertainty of the
CNN-LSTM model by conducting 30 training iterations for each custom loss function
defined in Section 2. Subsequently, we aggregated all individual predictions from these
30 different models, utilizing a basic averaging technique to create the final ensemble
prediction. This ensemble learning approach leverages the central limit theorem and is
shown in Equation (4) [17], where N represents the total number of predictions and k
refers to the index of each individual prediction. We selected N = 30 iterations for
ensemble predictions to ensure the stability and reliability of the model output through
statistical averaging.

ŷensemble =
1
N

N

∑
k=1

ŷk (4)

For a better understanding, the pseudo-code for the ensemble learning process is
provided in Algorithm 1.

Algorithm 1 Ensemble learning procedure [17]

1: Apply natural logarithmic transformation to the day-ahead electricity prices using (9).
2: Normalize the training and test data separately.
3: for i = 1 to N do
4: Train the model to generate prediction ŷi.
5: end for
6: Revert the predicted values to their original scale (undo data normalization).
7: Perform the exponential transformation to convert the predicted values back using (10)

(reverse of the natural logarithmic transformation).
8: Compute the ensemble prediction ŷensemble following (4).
9: Derive the zero price for ŷensemble following (5).

3.3. Zero Price Forecasting

Figure 2a shows the day-ahead electricity prices in the Kyushu area from 5 April
2016 to 31 December 2023, whereas Figure 2b shows an example of a closer view of the
zero-inflated prices. As illustrated in Figure 2b, the zero prices in the target variable
lead to a zero-inflated regression problem for machine learning models. However, neural
networks are generally incapable of consecutively predicting zero values. To address this,
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in this study, zero prices are forecast by converting any negative model outputs to zeros,
as indicated by Equation (5).

ŷi = max(0, ŷi) (5)
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Figure 2. Kyushu region day-ahead electricity prices [JPY/kWh] (a) and a closer view of zero-inflated
prices (b) [17].

3.4. Training, Validation, and Test Set

The total dataset was separated into a training set, a validation set, and a test set to
select and validate the hyperparameters p and low_thres defined in the custom WMAE
loss functions Lhigh price wmae and Llow price wmae, as illustrated in Figure 3a. The training data
utilized in this study span from 5 April 2016 to the day before the validation set or test
set. The validation set and the test set covered the full year of 2022 (1 January 2022–31
December 2022) and the full year of 2023 (1 January 2023–31 December 2023), respectively.

Day i Day i+1・・・・・・ Day i+365

Training set

・・・・・・

・・・・・・

Day i Day i+1・・・・・・ Day i+2 ・・・・・・

Training data Test data

Training data Test data

Training data Test data

(b)

(a)

Day i+365

Day i+365+1 Day i+365*2・・・・・・

Data set

Test set

Data set

Training set Validation set

Figure 3. One-time prediction schematic (a) and day-by-day prediction schematic (b).
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3.5. Performance Evaluation

The performance metrics used for evaluation include the root mean squared error
(RMSE), MAE, coefficient of determination (R2), and the custom WMAE loss functions
proposed in this study. The computational formulae for the metrics of RMSE, MAE, and R2,
are specified in (6)–(8), respectively.

Mrmse(y, ŷ) =

√
∑n

t=1(yt − ŷt)2

n
(6)

Mmae(y, ŷ) =
1
n

n

∑
i=1

|yi − ŷi| (7)

MR2(y, ŷ) = 1 − ∑n
t=1(yt − ŷt)2

∑n
t=1(yt − ȳ)2 (8)

3.6. Data Preparation

The overall data structure and corresponding time frames are depicted in Figure 4.
The input data are divided into three green blocks based on their temporal delays. With a
time resolution of 30 min, a 7-day-long moving window was applied to the input data
before being input into the CNN-LSTM model. In the JEPX day-ahead electricity market,
all bids must be finalized by the 10:00 JST deadline. The forecast was made at 05:00 JST,
covering the entire next day from 00:00 JST to 23:30 JST, spanning a total of 48 time slots.

The input data were used as the same in our previous work [17], the validity of which
has been verified, comprising the areal day-ahead electricity price (Kyushu); the day-ahead
system electricity price [27]; the areal actual power generation (Kyushu) [28]; the areal
meteorological forecast data (Kyushu) [29], including the air temperature [30], relative
humidity [31], wind speed, cloud cover, accumulated precipitation, and solar radiation;
the calendar forecasts, including Japanese national holidays and temporal-cyclic features
data; and the rolling features of areal day-ahead electricity prices.

05:00 00:00 00:00 05:00 00:00 00:00・・・・・・

Forecasting point
(5 h ahead)

7-day-long historical data (05:00 - 05:00]
Actual power generation (Kyushu), actual solar power generation 
(Kyushu)

Prediction period
[00:00 - 00:00)

JEPX day-ahead 
market bidding 

deadline

Interval
(19 h)

7-day-long forecast data ① [00:00 - 00:00)
Day-ahead areal price (Kyushu), day-ahead areal price rolling features 
(Kyushu), day-ahead system price

7-day-long forecast data ② [00:00 - 00:00)
Meteorological forecast data (Kyushu), calendar forecast data

10:00

Figure 4. Illustration of the data structure with a 30-min time interval, highlighting the time delays
among different data [17].

3.7. Logarithmic Transformation Pre-Processing and Exponential Transformation Post-Processing

A natural logarithmic transformation was applied to the target day-ahead electric-
ity prices to reduce skewness and kurtosis in the price data distribution, as defined in
Equation (9). After generating the model’s predictions, an exponential reverse transforma-
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tion was performed to revert the predicted values to their original scale using Equation (10).
In Equations (9) and (10), ylog and yexp are the logarithmic-transformed target variable and
exponentially reversed target variable, respectively.

Figure 5 illustrates the distribution of the original day-ahead electricity prices in
the Kyushu area and the corresponding natural logarithmic-transformed prices for the
training set, validation set, and test set. Table 2 shows the skewness and kurtosis values
for both the original and the corresponding natural logarithmic-transformed prices in
the three datasets. The training set, which spans a very long range of nearly six years,
shows high skewness and kurtosis in the original data, reflecting significant changes
in the electricity market and prices over time. After applying the natural logarithmic
transformation, there was a significant reduction in both skewness and kurtosis in the
training set, indicating that the transformation effectively mitigated the impact of extreme
values. In contrast, the validation and test sets, which cover shorter periods and have
more stable price distributions, exhibited a shift towards negative skewness after the
transformation, with only slight changes in kurtosis. This occurs because the original
distributions in the validation and test sets were already relatively symmetric, likely due
to their shorter time range of only one year, and the natural logarithmic transformation,
by compressing higher values more strongly, introduced negative skewness. Despite the
less pronounced effects on the validation and test sets, the transformation is crucial for the
training set, as it helps the model achieve higher performance by handling the large price
variations and market fluctuations more effectively during training.

ylog = loge(y + 1) (9)

yexp = eylog − 1 (10)
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Figure 5. Distribution of the Kyushu region day-ahead electricity prices and the respective distri-
butions after applying the natural logarithmic transformation for the training set (5 April 2016–31
December 2021) (a,b), validation set (1 January 2022–31 December 2022) (c,d), and test set (1 January
2023–31 December 2023) (e,f).
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Table 2. Skewness and kurtosis of the original and natural logarithmic-transformed day-ahead
electricity prices in the Kyushu area for the training set (5 April 2016–31 December 2021), validation
set (1 January 2022–31 December 2022), and test set (1 January 2023–31 December 2023).

Original Log-Transformed

Training set
Skewness 8.77 −0.68
Kurtosis 123.00 3.81

Validation set
Skewness 1.23 −1.34
Kurtosis 3.98 1.03

Test set
Skewness 0.14 −1.41
Kurtosis 0.52 0.69

3.8. Model Training Platform

The training of the models was conducted using two NVIDIA Quadro RTX 8000 GPUs
using the Python keras package in Windows OS.

4. Results and Discussion

Table 3 presents the cross-evaluated performance metrics of the predictions generated
by each custom loss function from the CNN-LSTM model, evaluated using each custom
metric. This quantitative analysis demonstrates the effectiveness of the custom loss func-
tions proposed in this study, particularly in predicting high and low electricity prices.
The key findings from Table 3 are summarized as follows.

1. The Lhigh price wmae effectively reduces its own loss compared to the Lmae and the
Llow price wmae in both validation and test sets, indicating its validity and effectiveness.

2. The Llow price wmae effectively reduces its own loss compared to the Lmae and the
Lhigh price wmae in both validation and test sets, indicating its validity and effectiveness.

3. While either of the Lhigh price wmae or Llow price wmae performs best in minimizing its own
loss, this comes at the cost of reduced performance in R2, MAE, and RMSE metrics.

4. For Lhigh price wmae using p = 2, the prediction outperforms that obtained with p = 1
for the same metric Mhigh price wmae, whether p = 1 or p = 2, in both the validation and
the test sets. This is achieved with only a slight degradation in R2, MAE, and RMSE
compared to using p = 1 in Lhigh price wmae, indicating the superiority of p = 2 for
Lhigh price wmae.

5. For Llow price wmae using low_thres = 0.1, the prediction outperforms that obtained
with low_thres = 0.05 for the same metric Mlow price wmae, whether low_thres = 0.05
or low_thres = 0.1, in both validation and test sets. This is achieved with only a
slight degradation in R2, MAE, and RMSE compared to using low_thres = 0.05 in
Llow price wmae, indicating the superiority of low_thres = 0.1 for Llow price wmae.

Figure 6 shows the predictions generated by the Lhigh price wmae, Llow price wmae, and Lmae
over the test data. Figure 6a,b show the prediction results over the total one-year-long test
range by Lhigh price wmae and Llow price wmae, respectively, while Figure 6c,d provide zoomed-in
examples demonstrating the superior performance of the Lhigh price wmae and Llow price wmae,
respectively. Specifically, Figure 6c highlights how Lhigh price wmae excels in predicting high
prices, and Figure 6d shows how Llow price wmae excels in predicting low prices.

As can be observed from Figure 6a,c, the Lhigh price wmae performs better in capturing
high prices compared to the Lmae. Similarly, Figure 6b,d demonstrate that the Llow price wmae
significantly improves the prediction of zero prices compared to the Lmae.
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Figure 6. DAEPF results by (a) Lhigh price wmae, (b) Llow price wmae, (c,d) zoomed-in all custom loss functions.
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Table 3. Cross-evaluated performance metrics of the proposed custom WMAE loss functions in the
validation and test sets.

Metrics

Validation Set

Lhigh price wmae
Lmae

Llow price wmae

p = 1 p = 2 low_thres = 0.05 low_thres = 0.1

Mhigh price wmae
p = 1 90.709 89.736 94.445 115.319 113.252
p = 2 2866.385 2745.950 3049.677 3689.823 3580.916

MR2 0.555 0.551 0.592 0.491 0.489
Mmae 5.502 5.525 5.112 5.559 5.515
Mrmse 7.250 7.282 6.941 7.758 7.772

Mlow price wmae
low_thres = 0.05 14.435 14.301 10.919 9.267 8.824
low_thres = 0.1 14.495 14.366 10.963 9.290 8.846

Test set

Mhigh price wmae
p = 1 21.088 20.880 23.289 30.083 29.442
p = 2 333.394 326.820 367.711 470.263 459.550

MR2 0.580 0.557 0.688 0.634 0.642
Mmae 2.845 2.899 2.481 2.685 2.633
Mrmse 3.980 4.088 3.432 3.713 3.673

Mlow price wmae
low_thres = 0.05 12.088 12.520 7.573 5.600 5.426
low_thres = 0.1 12.210 12.648 7.674 5.674 5.500

In Figure 6c, when p = 2 is used, the Lhigh price wmae generates higher peaks compared
to p = 1, which aligns with the finding from Table 3 that p = 2 is superior to p = 1 for
the Lhigh price wmae. Similarly, in Figure 6d, when low_thres = 0.1 is used, the Llow price wmae
produces lower bottoms compared to low_thres = 0.05, which aligns with the finding from
Table 3 that low_thres = 0.1 is superior to low_thres = 0.05 for the Llow price wmae.

The current training and testing strategy involved a single training session followed
by testing on a one-year-long range, which inherently introduces variability due to changes
over time. Since the primary objective of this study is to evaluate the effectiveness of the
proposed custom WMAE loss functions, the day-by-day prediction approach, illustrated
in Figure 3b, was not conducted. Our previous study [17] indicates that the day-by-day
prediction approach can significantly increase prediction accuracy. However, it is important
to note that the primary purpose of Figure 6 is to visually demonstrate the efficacy of the
custom WMAE loss functions, rather than to showcase high DAEPF accuracy. Considering
the numerous changes that can occur over a year, using the day-by-day prediction approach
can achieve much higher accuracy while at the cost of increased computation time.

5. Conclusions and Future Work
5.1. Conclusions

Accurate DAEPF is crucial for effective decision-making among energy market stake-
holders, particularly in predicting extreme price fluctuations. This study contributes
to the field by introducing two novel custom WMAE loss functions, Lhigh price wmae and
Llow price wmae, specifically designed for reinforced forecasting of high and low electric-
ity prices, respectively. Unlike previous studies that primarily utilized conventional
MAE/MSE loss functions within neural network models, our approach integrates these
custom loss functions into a CNN-LSTM framework complemented by multimodal features
and an ensemble learning technique. This integration allows the model to place greater
emphasis on accurately predicting extreme price values by assigning adaptive weights to
prediction errors based on their significance. The effectiveness of the proposed custom
WMAE loss functions has been validated as evidenced by the improvements observed in
the cross-evaluated performance metrics compared to conventional MAE loss function.
For Lhigh price wmae, setting the hyperparameter p = 2 yielded superior performance com-
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pared to p = 1, indicating that a more pronounced focus on high-price errors enhances
forecasting accuracy. Similarly, for Llow price wmae, a threshold value of low_thres = 0.1 out-
performed low_thres = 0.05, effectively improving low-price predictions by appropriately
weighting low-price errors. These findings demonstrate that customizing loss functions to
target-specific forecasting challenges can improve model performance in DAEPF. By di-
rectly addressing extreme prices, the proposed approach offers more diverse predictions
for market participants.

5.2. Future Work

Building upon the promising results of this study, future work will explore novel
ensemble learning techniques by integrating predictions from different models that em-
phasize different aspects of day-ahead electricity prices through different WMAE loss
functions, such as the Lhigh price wmae and Llow price wmae proposed in this study, to generate
improved predictions. Additionally, we aim to further optimize the current custom WMAE
loss functions by experimenting with different weighting schemes and hyperparameters to
enhance DAEPF performance. Moreover, we plan to investigate the development of custom
Weighted Mean Squared Error (WMSE) loss functions to compare their effectiveness against
WMAE in capturing extreme price variations. Furthermore, expanding this research to
include other machine learning architectures and diverse datasets will also be considered
to generalize the applicability and robustness of the proposed approach across various
electricity market contexts.

Author Contributions: Conceptualization, Z.W. and R.M.; methodology, Z.W.; software, Z.W.;
validation, Z.W. and M.M.; formal analysis, Z.W., T.Y., M.A. and T.N.; investigation, Z.W., M.M., T.Y.,
M.A., T.N. and R.M.; resources, T.Y, M.A., T.N. and R.M.; data curation, Z.W., T.Y., M.A. and T.N.;
writing—original draft preparation, Z.W.; writing—review and editing, Z.W.; visualization, Z.W.;
supervision, R.M.; project administration, R.M.; funding acquisition, R.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by KYOCERA Corporation. This research was conducted by
the Social Cooperation Program of Realization of Innovation on Energy and Environment with
KYOCERA Corporation in the Graduate School of Engineering at The University of Tokyo.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: Author Takeshi Yamane, Masato Ajisaka and Tatsuya Nakata were employed
by the company KYOCERA Corporation. The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Abbreviations

ARMA Autoregressive Moving Average
ARIMA Autoregressive Integrated Moving Average
CNN Convolutional neural network
CNN-LSTM Convolutional Neural Network-Long Short-Term Memory
DAEPF Day-ahead electricity price forecasting
EEG Electroencephalogram
FC Fully-connected
JEPX Japan Electric Power eXchange
LSTM Long Short-Term Memory
MAE Mean absolute error
METI Ministry of Economy, Trade, and Industry
MLP Multilayer Perceptron
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MSE Mean squared error
R2 Coefficient of determination
ReLU Rectified Linear Unit
RES Renewable Energy Source
RMSE Root mean squared error
WMAE Weighted mean absolute error
WMSE Weighted mean squared error
Symbols
e Natural logarithm
i i-th value in a variable sequence
k k-th individual prediction after k-th training of the model
Lhigh price wmae Custom WMAE loss function emphasized on high prices prediction
Llow price wmae Custom WMAE loss function emphasized on low prices prediction
Lmae Conventional MAE loss function
low_thres Threshold in the Llow price wmae
Mhigh price wmae Using Lhigh price wmae as custom metric
Mlow price wmae Using Llow price wmae as custom metric
Mmae Metric of MAE
MR2 Metric of R2

Mrmse Metric of RMSE
n Sequence length of the target variable
N Total training times of the model
p Power of the weights in Lhigh price wmae
W1i Coefficients of the Lhigh price wmae loss function
W2i Coefficients of the Llow price wmae loss function
y Target variable
ŷ Predicted target variable
ŷensemble Ensemble prediction of the target variable
yexp Exponentially-reversed target variable
ylog Log-transformed target variable
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