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Abstract: CO2 emissions from gas-powered cars have a large impact on global warming.
The aim of this paper is to develop an accurate estimation method of CO2 emissions from
individual private passenger cars by using actual driving data obtained by telematics. CO2

emissions from gas-powered cars vary depending on various factors such as car models
and driving behavior. The developed approach uses actual monthly driving data from
telematics and vehicle features based on drag force. Machine learning based on random
forest regression enables better estimation performance of CO2 emissions compared to
conventional multiple linear regression. CO2 emissions from individual private passenger
cars in 24 car models are estimated by the machine learning model based on random forest
regression using data from telematics, and the coefficient of determination for all 24 car
models is R2 = 0.981. The estimation performance for interpolation and extrapolation
of car models is also evaluated, and it keeps enough estimation accuracy with slight
performance degradation. The case study with actual telematics data is conducted to
analyze the relationship between driving behavior and monthly CO2 emissions in similar
driving record conditions. The result shows the possibility of reducing CO2 emissions
by eco-driving. The accurate estimation of the reduced amount of CO2 estimated by the
machine learning model enables valuing it as carbon credits to motivate the eco-driving of
individual drivers.

Keywords: CO2 emissions; car fuel consumption; estimation; machine learning; driving data

1. Introduction
1.1. Research Background

The reduction in greenhouse gas emissions, such as carbon dioxide (CO2), is necessary
for a carbon-neutral society. In October 2020, Japan declared that it aims to achieve carbon
neutrality by 2050 [1]. CO2 emissions from the transportation sector account for about 20%
of the total CO2 emissions in Japan in 2020, and about half of them are emitted from private
passenger cars [2]. Private passenger cars have the highest CO2 emissions per unit of
transportation compared to the other ways of travel used by passengers, such as airplanes,
buses, and trains. Therefore, there is an increasing demand to reduce CO2 emissions from
private passenger cars.

In a macro analysis, CO2 emissions from private passenger cars in Japan are calculated
by a factor decomposition of CO2 emissions with the fuel emission intensity, fuel efficiency,
annual driving distance, and the number of vehicles. Comprehensive energy statistics,
including an analysis of CO2 emissions from private passenger cars in Japan, are used in
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planning energy policies, reporting Japan’s energy supply and demand to the International
Energy Agency, and reporting to the United Nations on energy-related CO2 emissions in
greenhouse gas emissions.

Although the macro analysis is important for such kinds of policy-making, a micro
analysis of CO2 emissions from individual private passenger cars is also important for
reducing CO2 emissions by changing the driving behaviors of individual drivers. For
example, the Worldwide harmonized Light vehicles Test Cycle (WLTC) is commonly
used to evaluate the fuel economy catalog value for each car model. These kinds of
evaluation methods do not include the characteristics of each driver and are not suitable
for encouraging eco-driving. The result in [3] shows that acceleration and velocity of the
driving affect CO2 emissions. The change in driving behavior influences CO2 emission
reduction, though the car model has a large impact on it [4]. The results in [5,6] show that
the feedback of the driving behavior for eco-driving is effective for CO2 emission reduction.

The accurate estimation of the CO2 emissions from individual private passenger cars
is the essential technology for feedback on the driving behavior of individual drivers for
eco-driving. The CO2 emissions from individual private passenger cars depend on various
factors, such as the car model, car size, vehicle mass, engine type, driving behaviors, and
season. The first principle modeling of the relationship between all of these features and
CO2 emissions from individual private passenger cars is too complicated, as such individual
private passenger cars are driven by different drivers with different purposes. Therefore,
it is necessary to select important features for estimating CO2 emissions from individual
private passenger cars and develop the estimation model with generalization performance
from the limited data including these features. Accurate estimation performance of the
CO2 emissions from individual private passenger cars enables valuing the CO2 emissions
reduced by eco-driving as carbon credits, such as the J-Credit Scheme [7] in Japan, and it
can be designed as incentives for eco-driving of individual private passenger cars.

1.2. Research Objective

With the spread of telematics [8], which can obtain driving data of private passenger
cars, the estimation method of the CO2 emissions from individual private passenger cars
using actual driving data as big data can be developed. The aim of this paper is to develop
an accurate estimation method of the CO2 emissions from individual private passenger
cars by using actual driving data obtained by telematics. Figure 1 shows the estimation
model of the CO2 emissions from individual private passenger cars. Vehicle features and
driving data are used to estimate CO2 emissions from individual private passenger cars.

Machine Learning Model
for CO2 Emission EstimationDriving Data

Vehicle Features Monthly CO2 Emissions

Figure 1. Model of monthly CO2 emission estimation using driving data and vehicle features.

By estimating the CO2 emissions from individual private passenger cars accurately,
the amount of CO2 reduction in eco-driving compared to the baseline can be valued as
carbon credits. It has the potential to return value to individual drivers and to be used as an
incentive for eco-driving and enables the reduction in the CO2 emissions from individual
private passenger cars.

1.3. Literature Review

In previous studies, several estimation models to estimate CO2 emissions from indi-
vidual private passenger cars are developed by using supervised learning such as linear
regression, support vector machine, extra tree, random forest regression, multilayer per-
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ceptron, and deep learning. The nonlinear regression approaches enable higher estimation
performance, and linear regression approaches can also benefit the feature analysis of the
estimation model [9].

The utilization of data from telematics enables the more precise modeling and pre-
diction of CO2 emissions from cars. In macro aspects, it can be used for the development
of smart cities [10] and the realization of intelligent transportation systems [11]. In micro
aspects, it can be used for the spatiotemporal analysis of air pollution and climate change
for urban design [12] and for real-time CO2 emission estimation [13,14].

From these points of view, the literature review focuses on previous research about
the CO2 emission estimation of private passenger cars using actual driving data.

1.3.1. CO2 Emission Estimation of Private Passenger Cars

There are several studies to analyze the features to estimate CO2 emissions from indi-
vidual private passenger cars. In [15], CO2 emission factors are analyzed using hierarchical
clustering. The insights of this approach can be used to select features in constructing a
CO2 emission estimation model. In [16], the driving behavior is classified into three groups,
and the CO2 emission analysis is conducted in both macro and micro aspects. In [17], the
driving behavior is also classified into three groups respecting the difference between the
Internal Combustion Vehicle (ICV) and Hybrid Electric Vehicle (HEV). These classifications
of driving behavior and engine type are important to enhance the estimation performance
of CO2 emissions. In [18], real-time driving data are used to estimate vehicular fuel con-
sumption on the highway using the artificial neural network, random forest regression, and
reinforcement learning. In this analysis, the estimation performance is superior in random
forest regression compared to the other two methods, but the estimation results are limited
to the data of only four cars and are not directly applicable to other cars.

In this paper, it is necessary to build a generalized CO2 estimation model that can
estimate the CO2 emissions from the car models that are not used in learning and that
will be sold in the future. If the information of the car model number or the car name is
directly used as a vehicle feature, it is not suitable for the generalization to estimate the
CO2 emissions for car models that are not used in learning. Therefore, it is necessary to
select vehicle features that can deal with not only the limited car models used in learning
but also those not used in learning and those that will be sold in the future.

1.3.2. CO2 Emission Estimation Using Actual Driving Data

There are several estimation approaches of CO2 emissions using actual driving data.
In [19], a neural network is trained for each moving window to estimate CO2 emissions
during driving. This approach is suitable for the sequential estimation of time-series driving
data but cannot be used to estimate the CO2 emissions using driving data of each trip.
In [14], the instantaneous CO2 emission prediction method using multilayer perceptron
regression is developed. The estimation method also cannot be applied to estimate the CO2

emissions using driving data of each trip. In [20], the estimation accuracy of CO2 emissions
is compared using several machine learning methods. The comparison shows that the
decision tree regression and the random forest regression achieve high accuracy in CO2

emission estimation.
From these previous studies, it is important to select an appropriate machine learning

method based on the size and characteristics of actual driving data. This paper deals with
the estimation model that uses only monthly driving records with event-based acquisi-
tion because of the data format in telematics. The driving data used in this paper are
not continuous time-series data but are nonlinear data with a count of monthly driving
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behaviors. Therefore, the CO2 estimation method that can handle the nonlinear driving
data is necessary.

1.4. Contributions

From the discussions in the literature review, the developed estimation model of the
CO2 emissions must fulfill the following requirements:

(R1) Estimation of CO2 emissions that can be applied to various car models.
(R2) Utilization of monthly driving data with event-based driving behaviors.

Although important contributions have been made to develop the estimation methods of
the CO2 emission using machine learning with actual driving data, the estimation model
of the CO2 emission using monthly driving data generalized to the car model has not
been developed. In this paper, the estimation method of the CO2 emissions using machine
learning is developed that uses vehicle features generalized to car models based on drag
force and actual driving data. The driving data in this paper is the count of event-based
driving behaviors for each month. In order to utilize such kinds of nonlinear driving data
for CO2 emission estimation, a machine learning model based on random forest regression
is introduced to handle nonlinearity.

The contributions of this paper are as follows:

(C1) Generalization of the machine learning model to car models by using vehicle features
based on drag force.

(C2) Estimation of CO2 emissions using the machine learning model using actual monthly
driving data for reduction potential evaluation.

The learning procedure for the machine learning model using big data takes a long
time, so it cannot be updated frequently due to the limitation of computing resources in
practice. When the estimation model of the CO2 emission is used to value CO2 emission
reductions as carbon credits, the cost is incurred according to the amount of computing
resources used by the business and the time required for calculation. Therefore, the
estimation model that needs to be retrained every time a new car model is released is
not economical from a business perspective. The generalized estimation model of the
CO2 emissions using vehicle features of the vehicle mass and the frontal area of private
passenger cars can achieve sufficient estimation accuracy for car models not used in training,
thereby reducing the frequency of retraining.

The remainder of this paper is as follows: In Section 2, the estimation method of the
CO2 emissions from individual private passenger cars using machine learning is described,
constituting Contribution (C1). In Section 3, the estimation performance of the CO2 emissions
by the developed machine learning model using actual driving data obtained from telematics
is evaluated, constituting Contribution (C2). In Section 4, conclusions are presented.

2. CO2 Emission Estimation Model Using Machine Learning
In this section, an estimation model for monthly CO2 emissions from individual

private passenger cars using machine learning is developed. First, vehicle features are
selected based on drag force, and it enables generalized estimation performance of the car
models. Second, driving features are selected based on monthly driving data obtained
from telematics, and it enables consideration of driving behaviors in the CO2 emissions
estimation. Finally, these selected features are constructed in a machine learning model
with random forest regression to estimate monthly CO2 emissions.
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2.1. Vehicle Feature Selection Based on Drag Force

The vehicle dynamics based on drag force is used in vehicle feature analysis in order
to construct the CO2 emission estimation model generalized to car models. The drag force
of the driving vehicle is modeled as follows [21]:

F = ma + mgCr + 4v
Br

r2 +
1
2

Av2ρCd (1)

where each variable represents the physical quantity in Table 1. The drag force on the
right-hand side consists of acceleration resistance, rolling resistance, viscous resistance, and
air resistance, respectively.

Table 1. Symbols of vehicle dynamics model.

Symbol Description Unit

F Driving Force N
v Velocity m/s
a Acceleration m/s2

g Gravitational Acceleration m/s2

m Vehicle Mass kg
A Frontal Area m2

ρ Air Density km/m3

r Wheel Radius m
Br Viscous Damping Coefficient Nms/rad
Cr Rolling Resistance Constant −
Cd Air Resistance Coefficient N/kN

The driving force is equal to the drag force, and it is related to fuel consumption that
results in CO2 emissions. Therefore, the variables in the drag force are used as vehicle
features in the machine learning model. In this paper, the speed v and the acceleration a
are not used as vehicle features because they are related to driving data. By using vehicle
mass m and frontal area A as vehicle features, the machine learning model will learn
parameters equivalent to gravitational acceleration g, air density ρ, wheel radius r, viscous
damping coefficient Br, rolling resistance constant Cr, and air resistance coefficient Cd. In
addition, since engine type has a large influence on fuel efficiency [17], two engine types,
Internal Combustion Vehicle (ICV) and Hybrid Electric Vehicle (HEV), are also treated as
vehicle features.

2.2. Driving Feature Selection Based on Driving Data

The machine learning model is developed using monthly driving data obtained from
telematics. In telematics, driving data such as vehicle speed, acceleration, accelerator,
brake, shift lever, turn signal, headlights, and automatic braking can be acquired from
sensors installed in the vehicle, and the obtained data are collected by uploading it to
the internet server after each trip. The driving features in the driving data obtained from
telematics are shown in Table 2. The features used in this paper consist of the monthly
measurement period, driving time, driving distance, the number of speeding, sudden
acceleration, sudden braking, and the safe driving score calculated from these driving
behaviors. Each driving data are classified on expressways, national highways, and local
roads. The driving data used in this paper are actual measurement data collected from the
telematics installed in private passenger cars. The feature of the monthly measurement
period enables considering seasonal effects on monthly CO2 emissions due to such as using
air conditioners. Note that since the research objective of this paper is an estimation of
the monthly CO2 emissions, the real-time driving data are not acquired because of too
much data for the monthly timescale, and only monthly driving data are used for the
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CO2 emission estimation. The utilization of the real-time driving data from telematics for
real-time CO2 estimation can be seen in [14]. The data used in this paper do not contain
geographic information such as temperature, humidity, and regional-dependent weather
trends. Therefore, private passenger cars in extreme conditions that are far from the average
of the training data should be estimated with other estimation models that are specialized
to that region.

Table 2. Features obtained from telematics.

Feature Unit

Target Year and Month −
Start Date of Relevant Month −
End Date of Relevant Month −

Monthly Driving Time s
Monthly Driving Distance m
Speeding on Expressway times

Sudden Acceleration on Expressway times
Sudden Braking on Expressway times
Driving Distance on Expressway m
Speeding on National Highway times

Sudden Acceleration on National Highway times
Sudden Braking on National Highway times
Driving Distance on National Highway m

Speeding on Local Road times
Sudden Acceleration on Local Road times

Sudden Braking on Local Road times
Driving Distance on Local Road m

Safe Driving Score %

2.3. Learning Data of Monthly CO2 Emission

The monthly CO2 emissions ECO2 [kg − CO2] used for the machine learning model
are calculated from the data of the monthly fuel consumption Cgasoline [L] as follows:

ECO2 = 2.3 × Cgasoline (2)

Since only the monthly fuel consumption data are available, the monthly CO2 emissions are
calculated indirectly from this formula. The monthly fuel consumption data are obtained
by the measurement system that is independent of telematics. It is also actual measurement
data with the same measurement period as that of telematics. By estimating monthly CO2

emissions using monthly driving data, it is possible to provide feedback to encourage
reducing CO2 emissions through eco-driving.

2.4. CO2 Emissions Estimation Model Using Random Forest Regression

The machine learning model for estimating CO2 emissions from individual private
passenger cars is constructed using vehicle features based on drag force and driving features
based on driving data. In this paper, a multiple linear regression model is also used to
compare with a random forest regression model in CO2 emission estimation performance.
Although other advanced machine learning methods, such as Support Vector Machine
(SVM) regression and multilayer perceptron regression, can be used to build the CO2

emission estimation model, these machine learning methods are difficult in feature analysis
that is important for interpretability and explainability to encourage eco-driving. Compared
to other regression methods, both multiple linear regression and random forest regression
have the advantage of evaluating the contribution of each feature, and the feature analysis
of the CO2 emission estimation model helps to encourage eco-driving effectively. The
driving data in Table 2 contain the number of counted driving behaviors. Therefore, the
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relationship between the features of these driving behaviors and CO2 emissions is not linear,
and nonlinear regression methods such as random forest regression are suitable for these
driving features. Random forest regression requires a large amount of data for learning
but has the advantage of high generalization performance and is suitable for estimating
CO2 emissions.

The learning procedure for random forest regression is shown in Figure 2. The
learning procedure consists of the following four steps. In STEP 1, some data are sampled
by bootstrap. In STEP 2, multiple different decision trees are trained. Note that each
decision tree is overfitted to the sampled data at this step. In STEP 3, the estimation results
of each decision tree are output. As a result, many different estimation results are obtained
from many different decision trees. In STEP 4, the average of estimation results from each
decision tree is calculated as a regression model. The overfitting can be prevented by
ensembling multiple estimation results. Through these four steps, random forest regression
estimates CO2 emissions from ensemble learning of multiple bagged decision trees. For the
learning process, after shuffling all the data, 80% is used as training data, and the remaining
20% is used as validation data. To prevent overfitting in random forest regression, five-fold
cross-validation by grid search is applied as shown in Figure 3. The training data are
divided into five parts, four of which are used for training and the other for validation.
This process is repeated five times, and the average of the five training steps is used as the
training result.

Original Data

Data 1 Data 𝑘 Data 𝑛· · · · · ·

Bootstrap Sampling

Decision Tree 1 Decision Tree 𝑘 Decision Tree 𝑛

Averaging

Result

Result 1 Result 𝑘 Result 𝑛

STEP 1
Sampling

STEP 2
Building

STEP 3
Estimating

STEP 4
Ensambling

Figure 2. Procedure of random forest regression.
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TrainTrainTrain

Data

Train TrainTrainTrain

Train TrainTrainTrain

Train TrainTrain Train

TrainTrain TrainTrain

Test

Validation

80% 20%

100%

16% 16% 16% 16% 16% 20%

Separation

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Validation

Validation

Validation

Validation

Test

Test

Test

Test

Test

Figure 3. Five-fold cross-validation utilizing a grid search technique in random forest regression.

3. Model Evaluation with Actual Driving Data from Telematics
In this section, the performance of CO2 emission estimation using actual driving

data obtained from telematics is evaluated. First, the learning conditions of the CO2

emission estimation model are described. Second, the learning results and estimation
performance evaluation are presented in multiple linear regression and random forest
regression. Third, feature analysis of the CO2 emission estimation model is conducted.
Fourth, the generalization performance of various car models is evaluated. Finally, the
potential of eco-driving towards CO2 emission reduction is discussed.

3.1. Learning Condition

For machine learning, the monthly driving data obtained from telematics in Table 2,
the vehicle mass, frontal area, and engine type (ICV: 0, HEV: 1) of each vehicle are used
as explanatory variables, and the data of monthly CO2 emissions is used as the objective
variable. Learning is conducted using normalized values for each feature. Details of the
dataset used in this paper are shown in Table 3. Driving data are measured monthly, and
the data are obtained from multiple users for the various car models. A total of n = 673,248
monthly driving data sets, excluding data with missing values, are used for learning.
For machine learning, Scikit-learn [22] in Python 3 [23] is used. Learning is performed
with the mean squared error as the loss function. In multiple linear regression, since the
possibility of overfitting is low, five-fold cross-validation is not performed, and 80% of
the data are used for training at once, and the remaining 20% of the data are used for
evaluation. In random forest regression, the hyperparameters of the Scikit-learn function
RandomForestRegressor are set empirically as follows, and training is performed on these
combinations in a brute-force manner:

• ’n_estimators’:[200,800,1400].
• ’max_features’:[’auto’,’sqrt’].
• ’max_depth’:[20,30,40].

Note that each hyperparameter has the following characteristics. n_estimators is the
number of decision trees. The larger it is, the more expressive it is, but at the same time,
the higher the computational cost. max_features is the number of features used by one
decision tree for branching and determines the randomness of the decision tree. max_depth
is the maximum depth of the decision tree. The larger it is, the more expressive it is, but
the higher the possibility of overfitting. For machine learning calculations, the server with
two Intel Xeon Gold 6258R CPUs, two NVIDIA Quadro RTX 8000 GPUs, and 768 GB of
RAM is used.
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Table 3. Specification of dataset.

No. Count % m [kg] A [m2] HEV = 1

1 64,457 9.56 2375 2.23 0
2 52,174 7.74 1465 1.73 1
3 41,897 6.21 1365 2.55 1
4 41,668 6.18 1865 1.85 0
5 41,375 6.14 1895 3.14 0
6 37,590 5.57 1645 2.56 1
7 35,398 5.25 1645 2.59 1
8 33,226 4.93 1405 2.53 1
9 29,749 4.41 1855 1.78 1
10 28,579 4.24 2045 2.63 1
11 28,404 4.21 1255 2.55 0
12 24,913 3.69 1715 2.79 1
13 24,295 3.60 1925 3.09 1
14 22,776 3.38 1385 2.81 0
15 22,748 3.37 2055 3.29 1
16 21,810 3.23 1965 2.29 1
17 21,300 3.16 1245 2.55 0
18 18,083 2.68 1685 2.96 1
19 16,876 2.50 2035 3.05 1
20 15,097 2.24 1525 2.81 1
21 14,581 2.16 1645 2.61 1
22 13,211 1.96 1605 2.56 0
23 13,166 1.95 2205 3.25 0
24 10,903 1.62 1945 2.59 1

3.2. Learning Result

Training is conducted in multiple linear regression and random forest regression to
estimate monthly CO2 emissions from individual private passenger cars. The estimation
accuracy is evaluated using the coefficient of determination R2, Root Mean Square Error
(RMSE), and Mean Absolute Error (MAE), defined as follows:

R2(y, ŷ) = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2 (3)

RMSE(y, ŷ) =

√
∑n

i=1(yi − ŷi)2

n
(4)

MAE(y, ŷ) = ∑n
i=1 |yi − ŷi|

n
(5)

where the objective variable y, the estimated value ŷ, and the mean value ȳ.
The comparison of the monthly CO2 emission estimation performance is shown

in Table 4. In the estimation model after training in random forest regression, the best
estimation results are obtained with the following combination of hyperparameters:

• ’n_estimators’:1400.
• ’max_features’:’auto’.
• ’max_depth’:40.

In this paper, a brute-force manner grid search is conducted for the hyperparameter tuning,
and the estimation result with the best-case hyperparameters provides sufficient estimation
performance as shown in Table 4. If the estimation performance is not sufficient for the
application, other hyperparameter tuning methods such as Bayesian optimization can help
to search for better hyperparameters efficiently.
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Table 4. Total estimation performance of monthly CO2 emissions and computation time of each
machine learning method. Estimation models are trained by training data sets of 24 car models and
validated by testing data sets of 24 car models.

Method R2 RMSE
[kg−CO2]

MAE
[kg−CO2]

Computation
Time

Multiple Linear Regression 0.874 30.8 19.9 <1 s
Random Forest Regression 0.981 12.0 7.55 >5 h

The coefficient of determination of multiple linear regression is R2 = 0.874, which
shows that bare minimum estimation performance can be achieved, and the calculation
time is very short at less than 1 s. Since the model of multiple linear regression is simple,
it has the advantages of evaluating the contribution of each feature, interpreting learning
results, and preventing overfitting.

The coefficient of determination for random forest regression is R2 = 0.981, which
shows that a very high estimation performance can be achieved, but the calculation time
is relatively long at more than 5 h. Note that random forest regression uses five-fold
cross-validation in addition to ensemble learning to prevent overfitting and improve
generalization performance.

Both multiple linear regression and random forest regression are known for high
interpolation performance within the range of the variable space used for training, but the
extrapolation performance is not as high as the interpolation performance. Therefore, it is
better to conduct training using a relatively wide range of car models and driving data so
that new car models and driving data not included in the dataset are included within the
range of the variable space of the data used for training.

Furthermore, from social implementations to value CO2 emission reductions as carbon
credits, such as the J-Credit Scheme, there is a trade-off between the high coefficient of
determination and the calculation time in multiple linear regression and random forest
regression. An appropriate estimation method for the specific use of the estimated CO2

emissions should be selected from the relative relationship between the estimated value,
the estimation error, and the frequency of updating the learning data.

3.3. Feature Analysis

The regression coefficient and the absolute t-value of each feature in the multiple
linear regression model and the feature importance in the random forest regression model
are shown in Table 5. Note that in Table 5, each feature is listed in descending order of
feature importance in the random forest regression model, and the regression coefficients
in multiple linear regression are given for normalized explanatory variables. In multiple
linear regression, the estimated equation and the t-value of each explanatory variable are
given as follows:

y = β0 + β1x1 + · · ·+ βpxp (6)

tj =
β j√

∑n
i=1(ŷi − yi)2 ×

{(XTX)−1}jj
n−p−1

(j = 0, 1, . . . , p) (7)

where the objective variable is y, the explanatory variable is x, the regression coefficient is
β, the number of data is n, the number of explanatory variables is p, and the matrix with
rows as each data and columns as features is X.

In multiple linear regression, under the null hypothesis that the regression coefficient
of each feature is 0, it is assumed that the test statistic follows a t-distribution, and the larger
the absolute t-value, the more significantly the regression coefficient of each feature differs



Energies 2025, 18, 64 11 of 17

from 0. Therefore, using features with large absolute values of t-values in Table 5 is effective
in the multiple linear regression model. Note that the number of data used in this paper is
n = 673,248, which is a sufficiently large number, and even features with low correlation
may have absolute values of t-values larger than 2, which is the 5% significance level.

Table 5. Feature analysis of estimation models. Coefficients and absolute t-value are shown for the
multiple linear regression model. Feature importance is shown for the random forest regression
model. Note that features are in descending order of feature importance.

Feature Multiple Linear Regression Random Forest Regression
Coefficient |t|-Value Feature Importance

Monthly Driving Distance 4.40 × 10−1 5.37 × 101 6.06 × 10−1

Engine Type −3.16 × 10−2 1.29 × 102 1.61 × 10−1

Vehicle Mass 4.85 × 10−2 1.01 × 102 1.06 × 10−1

Monthly Driving Time −8.10 × 10−3 3.12 × 101 9.61 × 10−2

Driving Distance on Expressway 1.28 × 10−1 1.07 × 102 4.49 × 10−3

Driving Distance on National Highway −2.19 × 10−2 7.89 × 101 3.38 × 10−3

Speeding on Expressway 1.48 × 10−1 9.88 × 100 2.58 × 10−3

Start Date of Relevant Month 6.60 × 10−3 1.35 × 100 2.35 × 10−3

Frontal Area −1.78 × 10−3 2.01 × 101 2.34 × 10−3

End Date of Relevant Month 6.49 × 10−3 1.94 × 101 2.32 × 10−3

Driving Distance on Local Road −5.19 × 10−4 5.00 × 101 2.22 × 10−3

Sudden Acceleration on Local Road 1.49 × 10−2 1.04 × 100 1.87 × 10−3

Sudden Braking on Local Road 2.46 × 10−2 8.61 × 100 1.86 × 10−3

Safe Driving Score 6.55 × 10−1 1.56 × 102 1.72 × 10−3

Sudden Braking on National Highway −3.38 × 10−2 5.88 × 100 1.24 × 10−3

Sudden Acceleration on National Highway 3.73 × 10−2 1.92 × 100 1.20 × 10−3

Speeding on National Highway 6.31 × 10−2 5.09 × 100 1.09 × 10−3

Sudden Braking on Expressway −1.60 × 10−2 3.56 × 100 7.96 × 10−4

Speeding on Local Road 2.22 × 10−2 8.94 × 10−1 4.14 × 10−4

Target Year and Month −2.55 × 10−3 2.04 × 100 3.84 × 10−4

Sudden Acceleration on Expressway −2.97 × 10−3 2.04 × 100 2.80 × 10−4

In random forest regression, feature importance means how much Gini impurity,
which is the normalized value of the reduction in the mean square of the prediction error
multiplied by the weight of the number of data points, can be reduced by splitting the
node using that feature. The explanatory variables with high feature importance can
significantly reduce the Gini impurity by splitting the node using that feature. Note that
feature importance does not represent the amount of change per unit amount.

Features with large absolute values of t-value and large feature importance are essen-
tially important features in a CO2 emission estimation model. In addition, when comparing
the features of the driving behaviors and the safe driving score calculated from driving
behaviors, those in random forest regression are around the same range. In the absolute
t-value in multiple linear regression, the contribution of the safe driving score is sufficiently
larger than that of the driving behaviors. The value of the driving behavior is 0 times
in many cases and is a discrete value such as a single-digit integer value. On the other
hand, the value of the safe driving score calculated from those driving behaviors is given
as a value from 0 to 100, which is a relatively continuous value compared to the value of
the driving behavior. Due to the difference in the continuity of the values of the driving
behavior and the safe driving score and the possibility of multicollinearity, it is sufficient
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to use the safe driving score with a large absolute t-value as explanatory variables in the
multiple linear regression model, rather than using the driving behaviors with a small
absolute t-value. Note that the same features are used as explanatory variables in both
random forest regression and multiple linear regression for comparison in this paper.

The contributions of the safe driving score and the driving behaviors in random
forest regression are around the same because the random forest regression algorithm
is nonlinear and has sufficient complexity to use the highly nonlinear driving behaviors
as an explanatory variable. In addition, the feature importance of features other than
monthly driving distance, engine type, vehicle mass, and monthly driving time, which have
relatively high feature importance, is similar, and they have around the same contribution
to the estimation accuracy. It can be confirmed from the relatively large feature importance
values that random forest regression can take into account the influence of driving behaviors
such as the number of speeding, sudden acceleration, and sudden braking, compared to
multiple linear regression. Note that the number of explanatory variables has a trade-off
between the complexity of the model and the training time.

Although CO2 emissions can be reduced by the shorter monthly driving distance,
which has the highest feature importance, there is a problem that deteriorates the con-
venience of private passenger cars for drivers. Therefore, it is beneficial to reduce CO2

emissions by only improving driving behaviors and becoming eco-driving even if the car
models, driving distance, and driving time are the same. For this reason, random forest
regression, which can take into account the influence of driving behaviors in detail, is more
effective for evaluating the CO2 emission reduction due to eco-driving.

In conclusion, in feature analysis, when selecting features in a CO2 emission estimation
model, it is important to select features with a high contribution as explanatory variables
according to the linearity and complexity of the regression model. It is expected that
effective feedback for eco-driving can be achieved to reduce CO2 emissions for individual
users who drive private passenger cars by decomposing the features of CO2 emissions and
identifying importance.

3.4. Generalization Performance Evaluation

The generalization performance of the CO2 emission estimation model is evaluated
in multiple linear regression and random forest regression. In a previous study [24], the
CO2 emission is estimated by using random forest regression with training data including
the feature of car models. Compared to the estimation approach in this paper, which uses
vehicle mass and frontal area as vehicle features, the estimation approach in a previous
study [24] is not generalized to car models because the car model information is directly
used as a feature for training the estimation model. Although the developed model in
this paper requires a long training time with a large amount of data, the trained estima-
tion model is generalized to car models, and it does not require retraining for other car
models frequently.

Figure 4 shows the distribution of vehicle mass and frontal area by engine type for the
car models used in the driving data. There is no strong correlation between vehicle mass
and frontal area in the dataset, and the possibility of multicollinearity between variables
is low. In addition, the data of both Internal Combustion Vehicles and Hybrid Electric
Vehicles is scattered across a wide range of variable space, and it leads to high generalization
performance in the variable space. Generalization performance includes both interpolation
performance, which estimates data within the range of the variable space of the training
data, and extrapolation performance, which estimates data outside the range of the variable
space of the training data. Multiple linear regression and random forest regression are
known to have lower extrapolation performance than interpolation performance. From
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the distribution of vehicle mass and frontal area in Figure 4, interpolation performance is
validated by using data from car model No. 12, and extrapolation performance is validated
by using data from car model No. 2.

1000 1500 2000 2500
1.5

2

2.5

3

3.5

𝑚 [kg]

𝐴
[m

2
]

ICV
HEV
No.2
No.12

Figure 4. Distribution of vehicle mass and frontal area of 24 cars in driving data. ICV denotes Internal
Combustion Vehicle and HEV denotes Hybrid Electric Vehicle, respectively.

The training on 23 car models, excluding the green cross of No. 12 in Figure 4, is
conducted, and the CO2 emission estimation performance of the trained model for car
model No. 12 is evaluated to validate the interpolation performance. The results of the
interpolation performance are shown in Table 6. The results show that a similar estimation
accuracy is achieved compared to the estimation performance in Table 4 when all 24 car
models are trained. The training on 23 car models, excluding the purple cross of No. 2 in
Figure 4, is conducted, and the CO2 emission estimation performance of the trained model
for car model No. 2 is evaluated to validate the extrapolation performance. The results of
the extrapolation performance are shown in Table 7.

Table 6. Interpolated estimation performance of monthly CO2 emissions and computation time of
each machine learning method. Estimation models are trained by data sets of 23 car models excluding
No. 12 and validated by a data set of car model No. 12.

Method R2 RMSE
[kg−CO2]

MAE
[kg−CO2]

Computation
Time

Multiple Linear Regression 0.846 23.4 14.9 <1 s
Random Forest Regression 0.970 10.3 6.81 >5 h

Table 7. Extrapolated estimation performance of monthly CO2 emissions and computation time of
each machine learning method. Estimation models are trained by data sets of 23 car models excluding
No. 2 and validated by a data set of car model No. 2.

Method R2 RMSE
[kg−CO2]

MAE
[kg−CO2]

Computation
Time

Multiple Linear Regression 0.763 24.8 19.7 <1 s
Random Forest Regression 0.965 9.60 6.59 >5 h

Comparing the interpolation performance in Table 6 and the extrapolation perfor-
mance in Table 7, although the estimation accuracy is worse in the coefficient of deter-
mination when extrapolated, the estimation accuracy deterioration from interpolation to
extrapolation is about 0.005 in random forest regression because the variable space of the
trained data is relatively close and vehicle mass and frontal area are used in the developed
approach. The result shows that a sufficiently high estimation accuracy is achieved even
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in the extrapolation performance validation using data from car model No. 2. In general,
random forest regression is good at interpolation performance but not for extrapolation
performance. Therefore, it is recommended to conduct training using a relatively wide
range of car models and driving data so that the extrapolation point becomes relatively
close to the range of the variable space of the training dataset. Note that the data used
in this paper do not contain geographic information such as temperature, humidity, and
regional-dependent weather trends. The generalization performance for the regions whose
weather conditions are far from the average of the training data is not guaranteed. In such
cases, CO2 emissions should be estimated with other estimation models that are specialized
to that region. In conclusion, the estimation performance is generalized to car models by
using vehicle mass and frontal area as features even if the information of the car model to
be estimated is not included in the training data.

3.5. Reduction Potential Analysis of CO2 Emissions

Table 8 shows a case study for the reduction potential of CO2 emissions. In Table 8, two
sets of data for car model No. 2 are the same for the features with high feature importance,
which are monthly driving distance, engine type, vehicle mass, monthly driving time, and
driving distance on expressway. The comparison is made while excluding as much as
possible influences other than driving behaviors, such as the number of times speeding
and sudden acceleration and braking. The used data periods are from April to June, when
the impact of air conditioners on fuel consumption is low. Note that the monthly driving
distance is the total distance that includes the monthly driving distance on road categories
other than expressway, national highway, and local road, such as narrow streets.

Table 8. Case study for comparison of monthly CO2 emissions with different driving behaviors in
data sets of car model No. 2.

Feature Unit Case A1 Case A2 Case B1 Case B2

Monthly Driving Distance m 87,000 87,000 593,000 593,000

Engine Type − HEV HEV HEV HEV

Vehicle Mass kg 1465 1465 1465 1465

Monthly Driving Time s 12,660 12,660 70,140 70,140

Driving Distance on Expressway m 0 0 0 0

Driving Distance on National Highway m 31,117 19,861 319,654 136,862

Speeding on Expressway times 0 0 0 0

Start Date of Relevant Month − 25 May 2022 1 May 2022 4 April 2022 7 May 2022

Frontal Area m2 1.73 1.73 1.73 1.73

End Date of Relevant Month − 24 June 2022 31 May 2022 3 May 2022 6 June 2022

Driving Distance on Local Road m 8692 20,508 20,546 270,401

Sudden Acceleration on Local Road times 0 9 0 0

Sudden Braking on Local Road times 1 4 1 5

Safe Driving Score % 92 23 100 100

Sudden Braking on National Highway times 1 4 2 3

Sudden Acceleration on National Highway times 0 3 0 1

Speeding on National Highway times 0 0 0 0

Sudden Braking on Expressway times 0 0 0 0

Speeding on Local Road times 0 0 0 0

Target Year and Month − May 2022 May 2022 April 2022 May 2022

Sudden Acceleration on Expressway times 0 0 0 0

Monthly fuel consumption L 4.273 5.379 20.079 21.007

Monthly CO2 emission kg − CO2 9.828 12.37 46.182 48.316
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Comparing Case A1 and Case A2, where the monthly driving distance is relatively
short, Case A1, which is eco-driving with little sudden acceleration and braking, is about
2.5 kg − CO2 lower in monthly CO2 emissions than that of Case A2. Similarly, comparing
Case B1 and Case B2, where the monthly driving distance is close to the average of the
data set, Case B1, which is eco-driving with little sudden acceleration and braking, has
about 2.1 kg − CO2 lower monthly CO2 emissions than that of Case B2. These comparisons
show that estimating the CO2 emissions from individual private passenger cars, taking into
account the features of driving behaviors, can lead to effective feedback that encourages
eco-driving for individual drivers. It is possible to reduce CO2 emissions from individual
private passenger cars by providing value return in carbon credits, such as the J-Credit
scheme for CO2 emissions through eco-driving. In the future, effective feedback that
encourages eco-driving for individual users can be socially implemented by estimating the
CO2 emissions from individual private passenger cars, and the value of carbon credits for
CO2 emissions reduction through eco-driving can be returned to individual drivers.

4. Conclusions
CO2 emissions from individual private passenger cars can be estimated by using

machine learning with vehicle features and driving data. In this paper, the estimation
method for CO2 emissions from individual private passenger cars is developed by using
the random forest regression with vehicle features based on drag force and driving data
from the telematics. The developed estimation method uses the information of vehicle mass
and frontal area as vehicle features instead of the information of the car model numbers or
the car model names. CO2 emissions estimation performance in 24 car models is R2 = 0.981
in the coefficient of determination, and the estimation performance for interpolation and
extrapolation of car models keeps enough estimation accuracy with slight performance
degradation. The developed machine learning model realizes the generalized estimation
performance for the inside and near the outside of the car models whose data are used in
the training process. The generalized estimation performance is important to estimate CO2

emissions for the car model that is not used in machine learning and for new car models
that will be released in the future.

The reliable estimation method with generalization performance can be applied to
the evaluation of CO2 emissions using driving data from telematics to trade CO2 emission
reductions as carbon credits. The case study with actual telematics data is conducted
to analyze the relationship between driving behavior and monthly CO2 emissions in
relatively the same driving record conditions. The result shows the possibility of reducing
CO2 emissions by eco-driving, and the accurate estimation of the reduced amount of
CO2 estimated by the machine learning model enables valuing it as carbon credits to
motivate the eco-driving of individual drivers. CO2 emission reductions by eco-driving of
individual drivers can be valued by the developed estimation method, and the analysis of
the improved eco-driving features can be applied to further feedback to individual drivers.

For the social implementation of the valuation as carbon credits, such as the J-Credit
Scheme in Japan, the amount of CO2 emissions is evaluated with the developed machine
learning model using the monthly driving data of an individual private passenger car
using telematics, and this evaluation stands on the accurate and generalized estimation
performance of the CO2 emission estimation model. The reduced amount of CO2 emissions
is valued by comparing it to the base case, such as the amount of CO2 emissions before
installing telematics or before the driving behavior is changed by the feedback in the
previous month. The driving behavior change in the individual drivers in private passenger
cars can contribute to reducing greenhouse gas emissions towards a carbon-neutral society.
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