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Abstract: Reducing damage caused by power outages is important against the background
of severe natural disasters. Estimating the value of lost load (VoLL) is key to making
an optimal investment plan for power systems. This paper aims to estimate the recent
residential VoLL in Japan by using a survey. The contingent valuation method quantifies
the residential willingness to pay (WTP) and its distribution in a 2 h outage during summer.
When combining actual demand data, the VoLL is estimated at 501.1 JPY/kWh for a
predictable outage and 559.9 JPY/kWh for a sudden one. In addition, the random utility
model reveals the effect of people’s attributes on WTP. Larger annual incomes and electricity
bills significantly increase WTP. Evacuation experiences and stockpiles also affect WTP in a
sudden outage. Finally, 80% of respondents answered that refrigerators, air conditioners,
and water supplies are important during outages.

Keywords: attribute significance; contingent valuation method; load importance; random
utility model; willingness to pay

1. Introduction
Electricity is the basis of today’s society, supporting other infrastructures, such as

transportation, communication, and water supply. Thus, power supply interruptions have
a great impact on our lives. Recently, severe natural disasters have damaged power systems
and caused large supply interruptions. In Texas, a severe winter storm caused the loss of
30 GW of power generation and a blackout in February 2021 [1]. This blackout affected
4.5 million households in Texas and around 10 million people [1]. In Japan, typhoon No. 15
(Faxai) caused widespread damage to transmission and distribution networks in the Kanto
region [2], and it caused a lengthy blackout that affected around 1 million households. It
took over 10 days to recover the electricity supply of 99% of households [2]. Along with
severe climate disasters, large earthquakes have caused severe blackouts in Japan. One
example is the Hokkaido Eastern Iburi Earthquake in 2018. It caused a blackout in the
whole Hokkaido region and affected around 3 million people [3] in 2 days. These supply
shortages emphasize the importance of a resilient power system that sustains its normal
function during severe disasters.

Measures to reduce supply shortages enable society to avoid costs caused by power
outages. Some of the measures require investment, such as reinforcing transmission lines
and introducing emergency generators. The value of avoiding power outages using these
measures should be evaluated to make optimal investment plans. In addition, this value
helps to plan for optimal rolling blackouts when the power supply becomes low [4,5]. The
value of lost load (VoLL) is the most popular indicator of cost [6–8]. It expresses the costs
of power outages in terms of electricity not supplied [kWh].
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The VoLL has been estimated by power system operators [9–11] and researchers [12–18]
in many countries. The VoLL differs between sectors, such as industry, service, and house-
holds. Residential VoLL expresses the discomfort caused by power outages [19]. It
ranges widely because of the difference in power systems and household discom-
fort. Ref. [19] summarizes residential VoLL, ranging between 0–40 USD/kWh. Re-
garding Japan, ref. [20] estimated residential VoLL in Hokkaido, ranging between
1350–2700 JPY/kWh. A cross-regional operator estimated residential VoLL in 2013, ranging
between 4300–8100 JPY/kWh [9]. After the Great East Japan Earthquake in 2011, the power
system in Japan changed, with a halt to nuclear power plant operations, the large-scale
introduction of solar power, and the deregulation of power generation and retail. People’s
VoLLs may differ from the values stated in previous research. However, we are not aware
of any studies conducted in Japan in recent years. In addition, previous research in Japan
does not show the distribution of VoLLs. Estimating their distribution helps in terms of
making a better investment plan for the power system.

VoLL varies depending on a person’s attributes. Analyzing the effect of attributes
helps estimate residential VoLL. Previous research analyzed the relationship between VoLL
and attributes [12,14,15,21]. Attributes such as gender, age, occupation, and using electric
heating are found to affect residential VoLL in the northwest of England [15]. In contrast,
research in Korea [21] shows that monthly income significantly affects VoLL, but age and
the number of family members do not. In Japan, we have not seen any analysis of personal
attributes that affect residential VoLL.

Electricity demand includes both essential loads and unimportant loads during out-
ages. The VoLL of each load can differ according to its importance. For example, medical
apparatus have high VoLL values because they directly affect life [22]. In contrast, ceiling
lights have low VoLL values because people can easily use substitutional goods like candles.
Investigating the importance of residential loads helps estimate the amount of essential
loads during outages. For power system operators, it results in a more precise estimation
of costs according to outages in the residential sector. In addition, it helps evaluate a
household’s resilience [23]. However, it is not yet enough to investigate the important loads
in households.

Measures against supply shortages are important in severe natural disasters. A survey
of the current VoLL can help stakeholders decide the optimal measures for power systems
and consumers. This paper aims to investigate current residential VoLL values and the
importance of electric loads in Japan using a survey. The main contributions of this paper
are as follows:

• This paper estimates the representative value and distribution of residential VoLL by
using a contingent valuation method (CVM);

• This paper uses a random utility model to analyze the significance of respondents’
attributes on VoLL;

• This paper investigates the importance of each load in households by using a survey.

The remainder of this paper is organized as follows. The method to estimate the
residential VoLL is described in Section 2.

The results of the survey and estimation of VoLL are expressed in Section 3. The effect
of individual attributes on VoLL is analyzed in Section 4. The importance of each load is
described in Section 5. Finally, the conclusion is presented in Section 6.

2. Method
2.1. Overview of Value of Lost Load Estimation

The value of lost load (VoLL) is the quantified economic loss or discomfort caused
by a power outage [19]. Unlike electricity, supply interruptions are not traded in the



Energies 2025, 18, 2060 3 of 18

market. Thus, there is no explicit price expressing the cost of outages. The VoLL should
be estimated by calculating the damage caused by outages. There are several methods to
calculate the damage:

• Stated preference method [12–14,16–18,24]. This method uses the results of surveys
and interviews to determine the damage caused by outages. The survey and interview
inquire into how much people are willing to pay to avoid the damage, how much they
are willing to accept (at least as compensation) for outages, or which kind of outages
they prefer. There are biases in terms of the stated values due to several causes, such as
survey methods, questionnaire structures, and respondents’ bounded rationality [25].

• Revealed preference method [14]. This estimates the VoLL using expenditures on
backup equipment, such as emergency power generators and contracts that enable
supply interruption. However, households tend to use such equipment rarely. Thus,
this method can overestimate the cost of outages per hour.

• Macroeconomic method [4,26,27]. This estimates losses in industrial, commercial,
and residential sectors using regional statistical data. Input/output tables and annual
electricity consumption are collected to estimate the economic loss caused by outages.
The residential cost of outages is considered the loss of leisure time. In the estimation,
residential VoLL is assumed to equal people’s work wage. This method makes it
challenging to investigate the distribution of costs in terms of outages.

• Case study [28]. This method accumulates the damage caused by actual supply
interruptions. It can calculate the actual damage. However, it is difficult to generalize
the result because the outage is not always representative.

This paper tries to estimate the distribution of residential VoLL. The power system in
Japan is very reliable, and outages rarely happen. Thus, the revealed preference method
will overestimate the VoLL. The macroeconomic method makes it challenging to estimate
the distribution. Hence, this paper chooses the stated preference method.

2.2. Contingent Valuation Method

This paper estimates residential VoLL using the contingent valuation method (CVM).
The CVM is one of the stated preference methods used to estimate the value of goods not
exchanged in the market. This paper follows the methodology explained in the previous
report and survey [29,30]. The survey was conducted online to ask about willingness to
pay (WTP) for a hypothetical service that avoids an outage for residential respondents.
The answers are aggregated to quantify the representative value and the distribution of
residential VoLL.

The WTP to prevent an outage depends on the outage situation. The survey introduces
a hypothetical outage situation before the WTP question. In this situation, the outage
happens at 14:00 on a summer day and continues for 2 h. Respondents are presented
with two outage cases that are different in terms of the predictability of the outage. In
Case 1, the outage occurs due to a rolling blackout announced one day before. In Case 2,
the unpredictable outage occurs via an earthquake. Gas and water supplies are assumed to
not be interrupted during the outage.

The survey introduces the hypothetical service to avoid an outage, as stated below.

“Assume that there is the following paid service for households to keep power
supply during the outage. This special supply service allows customers to use
electricity during the outage by paying a fee. The fee is paid after each outage,
separately from the electricity bill.”

Then, the survey asks about the WTP for this service. The survey also notifies respon-
dents that their money would decrease if they paid for the service, bringing their budget
to mind.
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The survey inquires about WTP using the double-bounded dichotomous method [29].
The respondents answered twice whether or not they would pay the presented price. After
the first answer, the same question is asked again but with a different price. The second
presented price depends on the first answer. It is higher than the first one when the first
answer is “willing to pay” (yes) and is lower when the first answer is “not willing to pay”
(no). Figure 1 shows the options for the prices presented. The first price is chosen randomly.
It is the same in both outage cases and for each respondent. The two answers narrow the
range of respondents’ WTP (e.g., the first price is 500 JPY, and the respondent answers yes
and then no; the WTP is from JPY 500 to JPY 1000).

First

100
Second

500 1000 2000 5000 10,000 20,000

[JPY]

[JPY]

500 1000 2000 5000 10,000

Yes No
Figure 1. Prices presented in the survey.

The first answer includes yes, no, and a third option: “not using”, meaning that the
respondent does not want to use the service. This differs from “not willing to pay” (no),
meaning the respondent wants to use it but thinks the service is expensive. The third option
detects resistive answers combined with the reason for choosing it [29,30].

The options for the reasons are stated below:

• I have already prepared against a 2 h power outage;
• I will not be troubled during a 2 h power outage;
• I do not want to pay any fees for this service;
• Power outages should be avoided by power companies;
• Other.

When the respondent chooses “Others”, concrete reasons are written in a blank space.
Figure 2 shows the categorization of the “not using” answers according to their reasons.
Resistive answers demonstrate a payment rejection not for economic reasons but discon-
tent with hypothetical situations or payment methods. The third and fourth reasons are
considered resistive. Free answers can be resistive when they do not demonstrate economic
reasons. The first reason is not resistive, but it demonstrates that respondents have already
paid for equipment to prevent outages. It can cause underestimation in terms of WTP to
prevent outages. Thus, these answers are excluded from VoLL estimation. Answers using
the second reason and part of the freeform answers can be included in the estimation.

“not using”

Resistive

Others

“I don’t want to pay any fees for this service.”
“Power outages should be avoided by power companies.”
“Rolling outages don’t happen in this area.”
etc.

“I will not be troubled during a 2-hour power outage.”
“I cannot pay the fee.”
etc.

Prepared “I’ve already prepared against a 2-hour power outage.”

Used in VoLL estimation

Figure 2. Categorization of “not using” answers.
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2.3. Estimation Model

The outage cost differs in various households, which can be modeled as a probability
distribution. This paper uses the random utility model to explain the decision to pay for
the outage prevention service. In this model, people accept to pay for the service when
their utility when using the service is higher than without it. Utility is divided into decisive
and error terms, as shown in (1). T denotes the service fee. V denotes the decisive term,
which explains the effect of the service fee asked in the questionnaire. ε denotes the error
term, which explains the other factors. In this paper, ε follows a Gumbel distribution. The
distribution function of the Gumbel distribution is written in (2).

U(T) = V(T) + ε (1)

F(ε) = exp
(
− exp(−ε)

)
(2)

Whether or not to pay for the service depends on the utility difference with and
without the service. If utility with the service minus utility without it is positive, people
are willing to pay. The utility difference follows a log-linear function with the service fee,
as shown in (3). γ and β0 denote coefficients. The probability of paying for the service
using price T follows a logistic function, as shown in (4). The coefficients γ and β0 are
estimated using the maximum likelihood method. The answers in the survey specify the
range of the respondent’s WTP. On the other hand, the probability that WTP falls into each
range can be calculated using (4). Thus, the likelihood of each answer can be calculated.

∆V(T) = V(T)− V(0)

= −γ log T − β0
(3)

Prob[WTP > T] = Prob[ε0 < ∆V(T) + ε1]

=
exp(γ log T + β0)

1 + exp(γ log T + β0)

(4)

After estimating the coefficients, their significance is tested by the Wald test [31].
The Wald test assumes a distribution of the difference between the estimated and

true coefficients as a normal distribution. The null hypothesis is that the coefficients are
zero. The test statistic is the square of the tested coefficients normalized by their estimated
variance. The Hessian of log-likelihood calculates the estimated variance. The test statistic
follows a chi-squared distribution. Its degree of freedom equals the number of coefficients
the null hypothesis affects. The test is the same as the t-test when the degree of freedom is
1. The set of tested coefficients is significant if the test statistic is large enough to be in the
critical region with a particular significance level.

3. Value of Lost Load Estimation
3.1. Answers of Willingness to Pay

The survey was conducted online in October 2022 with the support of a market
research company. The questionnaire was sent to households in the Tokyo and Kinki
areas. Around 1000 answers were collected from each area, with 2131 answers in total. All
respondents were aware of their monthly electricity bills. The survey first inquired about
the respondents’ basic attributes. Around half of the respondents lived in an apartment,
and the others lived in detached houses. In addition, 285 respondents were in a fully
electrified house.

Online surveys tend to collect answers from people who are familiar with technol-
ogy [29]. This may bias the estimation.
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This paper first distinguishes answers of yes and no from “not using”. The number of
“not using” answers differed in each outage case. There were 994 answers (46.6%) in Case 1
and 832 (39.0%) in Case 2.

In addition, 434 answers in Case 1 and 409 in Case 2 were considered resistive. A total
of 93 answers in Case 1 and 91 in Case 2 showed that the respondents had already prepared
for outages. This paper uses the expression “not using” in the answers.

This means that the “not using” answers in the first question reflected residents who
are not resistive and not prepared for outages. This paper considers these answers to mean
that they are not willing to pay against the lowest price (JPY 100).

Parameter estimation is solved by using the “fminunc” function in the Optimization
Toolbox of MATLAB R2024b [32]. The initial parameters given to “fminunc” were γ = −1
and β0 = 4. The Wald tests were implemented in MATLAB R2024b. The program was
executed using a laptop PC with Intel(R) Core(TM) i7-1260P @ 2.10 GHz and 16.0 GB RAM @
4800 MHz, manufactured by Dynabook in Tokyo, Japan. It took 2.4 s to finish the estimation
using the plugged-in laptop. It took 0.17 s to finish the Wald tests for all variables.

First, we tabulated the answers and then drew an acceptance rate curve. Figures 3 and 4
show the number of answers in Cases 1 and 2 at each price. The number of “No” (“not
willing to pay”) answers is higher than “Yes” (“willing to pay”) at all prices except JPY 100.
The ratio of “No” increases with price in both cases. Figure 5 shows the acceptance rate
curve. The acceptance rate decreases with price in both cases. The median WTP can be
seen to be between JPY 500 and JPY 1000 when using this curve.

0
100
200
300
400
500

Y
es

 A
ns

w
er 1st 2nd

100 500 1000 2000 5000 10,000 20,000
Price [JPY]

0
100
200
300
400
500

N
o 

A
ns

w
er 1st 2nd

Figure 3. Answer counts for each price in Case 1 when excluding the “not using” answers.

Next, we applied the logit model to the survey results. Figures 6 and 7 show the
distribution function of the acceptance rate from the logit model, excluding and including
the “not using” answers, respectively. The plots show that the rate of WTP is lower than
T [JPY]. The acceptance rate in Case 2 is lower than in Case 1 at the same price. Their
difference is less than 5% points. Excluding the “not using” answers shifts the distributions
to the left. Tables 1 and 2 show the parameters in the logit model and the median WTP
value when excluding and including the “not using” answers, respectively. The coefficient
of the prices γ is negative and significant in all cases. This means that fewer people accept
higher prices to avoid outages. The median of WTP is JPY 700–800 when excluding the
“not using” answers. This matches the result from the acceptance rate curve (Figure 5). The
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median WTP when including the “not using” answers is one-seventh lower than when
excluding them because around 25% of the valid answers are “not using”.

0
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Price [JPY]
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Figure 4. Answer counts for each price in Case 2 when excluding the “not using” answers.
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Figure 5. Acceptance rate curves of the two outage cases when excluding the “not using” answers.

This paper excludes the “not using” answers when they are paired with the reason of
already being prepared for outages. The estimated parameters of the logit models change
when these answers are included. This shows a sensitivity analysis for WTP estimation
based on the logit model. The answer of not willing to pay against the lowest price (JPY
100) increased by 93 (Case 1) and 91 (Case 2). In Case 1, the estimated parameters are
γ = −0.4818 and β0 = 2.0503. In Case 2, the estimated parameters are γ = −0.5511 and
β0 = 2.8053. Both γ and β0 are lower than in Table 2 in Cases 1 and 2. The median of WTP
is JPY 70.5 (Case 1) and JPY 161.9 (Case 2). It is 22% smaller than that in Table 2.
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Figure 6. Distribution function of acceptance rates for the logit model when excluding the“not using”
answers.
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Figure 7. Distribution function of acceptance rates for the logit model when including the “not using”
answers.

Table 1. Fitting results for the logit model when excluding the “not using” answers.

Case 1 Case 2

Number of samples 1137 1299
Log likelihood −1371.8 −1584.7
γ (t value) −0.9821 (−25.44) −1.0175 (−27.72)
β0 (t value) 6.4580 (23.20) 6.8038 (25.52)
Median of WTP [JPY] 717.6 801.8

Table 2. Fitting results for the logit model when including the “not using” answers.

Case 1 Case 2

Number of samples 1604 1631
Log likelihood −1894.9 −2053.4
γ (t value) −0.5083 (−24.84) −0.5931 (−27.68)
β0 (t value) 2.3304 (17.10) 3.2052 (21.68)
Median of WTP [JPY] 98.0 222.4
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3.2. Value of Lost Load Calculation

The WTP inquired about in the survey represents the value of preventing a 2-h outage.
We converted this value into the cost per power not supplied kWh. The representative
value of WTP is defined as the median in the survey result (Tables 1 and 2). Then, it was
converted into VoLL and divided by the demand sum for 2 h.

First, this paper uses the actual demand in 70 households to calculate the summed
demand for 2 h. Figure 8 shows the histogram of the demand sum for 2 h. The time range
to calculate the sum is 14:00–16:00 in August. Thus, 31 data per household are included in
the histogram, and there are 70 × 31 = 2170 in total. The median of the demand sums is
1.432 kWh.

The average of the demand sum is 1.605 kWh, which is 12% greater than the median.
This paper uses the median as the representative demand during a 2 h outage.

0 1 2 3 4 5 6 7
Demand Sum in 2 Hours [kWh]

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

Median 1.432 kWh

Figure 8. Histogram of 70 households’ demand sum for 14:00–16:00, August.

Then, we calculated VoLL using the median values for WTP and the demand sum.
From the survey, four median values for WTP were obtained for different cases and data
ranges, as shown in Tables 1 and 2. The VoLL is 68.4 JPY/kWh (Case 1) and 155.3 JPY/kWh
(Case 2) when including the “not using” answers. In contrast, the VoLL is 501.1 JPY/kWh
(Case 1) and 559.9 JPY/kWh (Case 2) when excluding the “not using” answers. The result
values are four–eight times larger than when including the “not using” answers.

When using an average of 2 h for the demand sums, the VoLL is 447.1 JPY/kWh
(Case 1) and 499.6 JPY/kWh (Case 2) when excluding the “not using” answers.

The estimated VoLL values show the damage in a limited situation, demonstrating
a 2 h power outage from 14:00 to 16:00 during summer. The VoLL values differ with the
timing and duration of power outages [9,11,16,26,27]. Macroeconomic methods imply
larger VoLL values during demand peaks [26,27]. In Japan, the residential peak demand
generally happens in summer. In addition, demand tends to be larger in the evening than
in the daytime. In the previous survey, the VoLL in summer during daytime is around 40%
higher than in winter evenings in Japan [9]. Hence, the estimated VoLL may be higher than
that in other seasons but lower than that for summer evenings. In terms of outage duration,
the survey in New Zealand [11] showed that outage cost increases with longer duration,
but VoLL decreases. The residential VoLL of a 1 h outage in winter is twice as large as
that of a 5 h outage in winter [11]. VoLL reduction decelerates with longer outages [11,16].
Thus, the estimated VoLL in this paper can be reduced to around half or less than half if an
outage continues for 5 h or longer.
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Finally, this paper compares the estimated VoLL to that of previous research. Table 3
shows the areas, years, methods, and residential VoLLs from the relevant research. All
VoLL values are converted to USD, but they cannot be directly compared to the result
in this paper because the VoLL values differ according to different economies, cultures,
and power reliability. The VoLL in this paper is relatively small compared to other papers.
In Japan, the estimated residential VoLLs when using the CVM are much higher than those
of this paper. For example, the result in [9] shows over 10 times higher VoLL values.

Table 3. Comparison of residential VoLLs between this survey and previous research. VoLL values
were converted to USD using the average exchange rates in the relevant year.

Area Year Method VoLL Ref.

Japan 2022 CVM 3.83–4.28 USD/kWh (501–560 JPY/kWh) This paper

Japan 1999 CVM 11.87–23.75 USD/kWh (1350–2700 JPY/kWh) [20]
Japan 2012 CVM 65.52 USD/kWh (5230 JPY/kWh) [33]
Japan 2019 CVM 39.60–74.47 USD/kWh (4317–8118 JPY/kWh) [9]
Korea 2015 CVM 2.75–3.45 USD/2h (3103–3900 KRW/2h) [21]
US 2020 CVM 1.8–2.2 USD/kWh [17]
Australia 2014 CVM 32.55 USD/kWh [14]
UK 2018 CVM 2.67 USD/kWh (2 GBP/kWh) [10]
New Zealand 2018 CVM 11.75–27.64 USD/kWh (17–40 NZD/kWh) [11]
Italy 2022 CVM 7.88 USD/kWh (7.5 EUR/kWh) [16]
Japan 1999 Macroeconomic 21.19 USD/kWh (2409 JPY/kWh) [20]
Netherlands 2007 Macroeconomic 22.44 USD/kWh (16.38 EUR/kWh) [26]
Norway 2011 Macroeconomic 34.19 USD/kWh (24.6 EUR/kWh) [34]
Cyprus 2012 Macroeconomic 11.70 USD/kWh (9.07 EUR/kWh) [28]
Portugal 2016 Macroeconomic 8.25 USD/kWh (7.43 EUR/kWh) [27]

4. Attributes Effects
4.1. Random Utility Model with Attributes

In addition to asking about WTP, the survey also inquired about the attributes of the
respondents. Table 4 shows the list of the questions and choices. The attributes include
respondents’ occupation, monthly electricity bill, housing type, income, experience with
outages, and experience with evacuation during disasters.

Table 4. Questions and choices relating to the attributes in the survey. Choices in italics regarding the
attributes used in the random utility model are excluded.

Question Choice

Occupation
Office worker/Self-employment/
Part-time/Student/Homemaker/
Unemployed/Other

Address Kanto/Kinki

House type Apartment/Detached

Fully-electrified house Yes/No

Monthly electricity bill

JPY 0–2000/JPY 2000–4000/
JPY 4000–7000/JPY 7000–10,000/
JPY 10,000–15,000/JPY 15,000–20,000/
>JPY 20,000

Blackout experienced
after 2018 Yes/No

Number of blackouts experienced 1 or 2/3 or 4/5 or 6/7 or more
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Table 4. Cont.

Question Choice

Evacuation experienced
after 2018 Yes/No/No disaster experience

Place where you evacuated to Public evacuation shelter/
Hotel/Relatives’ house/Other

Willingness to evacuate Yes/No/Don’t know

Place where you will evacuate to Public evacuation shelter/
Hotel/Relatives’ house/Other

Damage experienced from the disaster

Gas interruption/
Water interruption/
Stop cooking appliances/
Stop boiling water/
Stop warming room/Nothing

Having stockpiles Yes/No

Stockpile amount 1 day/2 or 3 days/
4–6 days/7 days or more

Capacity of
mobile battery you have

Don’t have /
<3 Ah/3–6 Ah/6–10 Ah /
10–20 Ah/>20 Ah/Don’t know

Have known
“power supply alert” Yes/No

Have known
“power supply caution” Yes/No

Willingness to buy stockpiles
if notifying rolling blackout Yes/No/Don’t know

Household annual income **

< JPY 2 M */JPY 2 M–3 M/
JPY 3 M–4 M/JPY 4 M–6 M/
JPY 8 M–10 M/JPY 10 M–20 M/
>JPY 20 M/Don’t know

Hours at home on weekdays 0–3 h/3–6 h/
6–9 h/>9 h/Don’t know

Power generating equipment
in your house

Solar panel/Co-generating system/
Fossil fuel generator/Static battery/
Nothing

* M denotes million (JPY). ** The choice of JPY 6 M–8 M is not included by mistake.

The random utility model can evaluate the effect of the attributes on WTP. This paper
includes attributes to express the difference in the utility’s decisive terms (V). The difference
∆V is shown in (5). x denotes a person’s attribute vector. γ and β denote the coefficients of
the service price T and the attributes x. β0 denotes a constant.

The elements of x are binary, corresponding to the choices in the survey. A variable
becomes 1 if the respondent selects the corresponding choice. The questions shown in
Table 4 have multiple-choice answers. Thus, one of the elements corresponding to one
question must be 1, and the others must be 0. One of the choices of each question is
excluded in the elements of x to avoid collinearity.

This paper used all the questions in Table 4 in the model to find significant attributes.
The probability of paying for the service for price T is calculated in (6). The coefficients

γ, β, and β0 are estimated using the maximum likelihood method. The answers using
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attributes were used to calculate the likelihood. The significance of the attributes was tested
using the Wald test.

∆V(T, x) = V(T, x)− V(0, x)

= −γ log T − βx − β0
(5)

Prob[WTPx > T] =
exp(γ log T + βx + β0)

1 + exp(γ log T + βx + β0)
(6)

Parameter estimation using the maximum likelihood method is solved by using the
same environment shown in Section 3.1. The initial parameters given to “fminunc” were
γ = −1, β0 = 4, and 0.01, as was the same for other coefficients (β). It took 264 s to finish
the estimation using the plugged-in laptop.

4.2. Result

The effect of the attributes was analyzed using WTP and the attributes. The analysis
excludes the “not using” answers to avoid distortion from many of the lowest WTP values.
Table 5 shows the overall estimation result from the random utility model using the
attributes. The t-values of the coefficient of prices (γ) and the constant are far from zero;
this shows their significance in the model. The price coefficient is negative, the same as the
estimation without the attributes. In addition, the null hypothesis that all coefficients of
the attributes (β) are zero is rejected, with a p-value of less than 10−4. Thus, not only the
service price but also the attributes affect WTP.

Table 5. Fitting results for the random utility model with attributes. The attribute results are excluded
from the table values.

Case 1 Case 2

Number of samples 1137 1299
Log likelihood −1305.4 −1499.9
γ (t value) −1.0679 (−24.60) −1.1206 (−27.46)
β0 (t value) 5.3226 (15.90) 7.4426 (20.52)

Next, this paper investigates the significance of each attribute.
It can be noticed that the attributes (x) have weak correlations with each other.
Table 6 shows the significant questions and their p-values in Cases 1 and 2. The degrees

of freedom value equals the number of choices in the question minus 1.
p-values were calculated using the Wald test statistics.
The factors of monthly electricity bill, willingness to evacuate, stockpiles, and annual

income are significant in both cases. Thus, these attributes affected WTP to avoid a 2 h
outage, whether the outage was predictable or not. The questions about stockpiles and
generating equipment are significant only in Case 2. The outage in Case 2 suddenly happens
due to earthquakes. The respondents who have stockpiles and generation equipment can
be sensitive to such sudden disasters. Thus, those attributes have an effect only in Case 2.

This paper also investigates the significance of each choice. Each choice corresponds
to each variable in the model. Tables 7 and 8 show the significant variables in Cases 1 and
2, respectively.

These tables include the coefficients (β in equation (5)), p-values, and numbers of
corresponding answers in the survey. The p-values were calculated using the Wald test
statistics.

A positive coefficient means that the variable or the attribute increases WTP. In both
cases, annual income significantly increased WTP. In addition, WTP tends to increase
with annual income. This implies that people who have higher incomes can afford to
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pay higher service prices. The willingness to evacuate also significantly increases WTP in
both cases. This reflects anxiety about disasters, which influences WTP. In Case 2, having
many stockpiles decreases WTP, and the willingness to buy stockpiles increases it. These
relationships reflect feelings of security and anxiety about disasters, respectively. Having
power-generating equipment increases WTP, except for solar panels. This also relates to
anxiety about disasters. However, the equipment can generate electricity even during
outages. The relationship implies that the respondents might not have known that their
equipment could work during outages. Finally, the experience of damage on cooking
appliances significantly decreases the WTP. Most respondents who experienced damage
to cooking appliances also had stockpiles. Thus, they may not have felt anxiety about the
short-term outage. In Case 2, over 90% of respondents answered they had no experience
with evacuation. It significantly decreases WTP. This can imply that the experience of other
disasters without evacuation makes them confident of surviving short outages. However,
the significance of this choice might be indirectly affected by other attributes because of
many answers.

Table 6. Significant questions and their p-values in Cases 1 and 2.

Question Deg. of Freedom p-Value in Case 1 p-Value in Case 2

Occupation 6 0.3420 0.0722 *

Monthly electricity bill 6 0.0043 *** 0.0211 **

Blackout experience 1 0.0498 ** 0.1026
Evacuation experience 2 0.4593 0.0132 **

Willingness to evacuate 2 0.0455 ** 0.0916 *

Damage experience 5 0.0683 * 0.2551
Having stockpiles 1 0.0765 * 0.0509 *

Stockpile amount 3 0.3949 0.0982 *

Willingness to buy stockpiles 2 0.1397 0.0099 ***

Household annual income 7 2.9772 × 10−4 *** 6.3009 × 10−6 ***

Power generating equipment 4 0.2758 0.0122 **

* Reject the null hypothesis at the 10% significance level. ** Reject the null hypothesis at the 5% significance level.
*** Reject the null hypothesis at the 1% significance level.

Table 7. Coefficients, p-values, and the number of answers of significant variables in Case 1.

Variable Coefficient p-Value Num.

Monthly electricity bill:
JPY 15,000–20,000

1.6649 0.0822 * 157

Evacuation experience:
Yes

0.3282 0.0498 ** 312

Place where you evacuated:
Public evacuation shelter

2.2683 0.0759 * 12

Willingness to evacuate:
Yes

0.5019 0.0135 ** 218

Damage experience by disaster:
Stop cooking appliances

−0.7242 0.0454 ** 84

Having stockpiles:
Yes

0.5679 0.0765 * 725

Household annual income:
JPY 2 M–3 M

0.7322 0.0205 ** 86

Household annual income:
JPY 3 M–4 M

0.7422 0.0105 ** 131

Household annual income:
JPY 4 M–6 M

0.5744 0.0209 ** 341
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Table 7. Cont.

Variable Coefficient p-Value Num.

Household annual income:
JPY 8 M–10 M

0.7570 0.0041 *** 206

Household annual income:
JPY 10 M–15 M

1.0187 0.0002 *** 158

Household annual income:
JPY 15 M–20 M

1.4778 0.0057 *** 19

Power generating equipment:
Solar panel

−0.5214 0.0959 * 68

Power generating equipment:
Co-generating system

0.6496 0.0990 * 32

* Reject the null hypothesis at the 10% significance level. ** Reject the null hypothesis at the 5% significance level.
*** Reject the null hypothesis at the 1% significance level.

Table 8. Coefficients, p-values, and the number of answers of significant variables in Case 2.

Variable Coefficient p-Value Num.

Occupation:
Student

1.5288 0.0648 * 8

Monthly electricity bill:
JPY 2000–4000

−1.1331 0.0944 * 94

Blackout experienced times:
5 or 6

−1.4763 0.0942 * 9

Evacuation experience:
No

−0.8353 0.0044 *** 1216

Willingness to evacuate:
Yes

0.3664 0.0493 ** 252

Damage experience by disaster:
Stop cooking appliances

−0.6356 0.0477 ** 100

Having stockpiles:
Yes

0.5423 0.0509 * 829

Stockpile amount:
7 days or more

−0.7061 0.0380 ** 93

Willingness to buy stockpiles:
Yes

0.5937 0.0082 *** 445

Household annual income:
JPY 3 M–4 M

0.6282 0.0212 ** 145

Household annual income:
JPY 4 M–6 M

0.6428 0.0062 *** 389

Household annual income:
JPY 8 M–10 M

0.7970 0.0012 *** 243

Household annual income:
JPY10 M–20 M

1.1281 <10−4 *** 165

Household annual income:
>JPY 20 M

1.7629 0.0006 *** 21

Power generating equipment:
Co-generating system

0.8581 0.0184 *** 40

Power generating equipment:
Fossil fuel generator

2.5232 0.0148 *** 6

* Reject the null hypothesis at the 10% significance level. ** Reject the null hypothesis at the 5% significance level.
*** Reject the null hypothesis at the 1% significance level.
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5. Load Importance During Outages
The survey also asked respondents about the importance of electric loads in Cases

1 and 2 after the question about their WTP. The importance of 16 different types of loads
during the outage was inquired about. The loads include appliances for daily use (e.g.,
refrigerator, kitchen appliances, and smartphone charge), electricity use to supply water,
and critical use (e.g., medical apparatus). The choices are based on a five-point Likert scale.
In addition, the option of not using the load regularly (“Usually Not Using”) is included.

The answers regarding the importance of loads in Cases 1 and 2 are shown in
Figures 9 and 10, respectively. The most important loads are refrigerators and water sup-
plies. Around 80% of the respondents answered they were necessary, very important,
or important. The second-most important load is air conditioners. Around 70% of the
respondents answered that it was necessary, very important, or important. In contrast,
most respondents did not regularly use environmental control for pets, nursing care and
medical apparatus, elevators, and car parking. The result demonstrates that nursing care
and medical apparatus are not so important.

0 10 20 30 40 50 60 70 80 90 100
Answer Rate [%]

Car Park In/Out
Elevator

Medical Apparatus
Nursing Care Apparatus

Pet Env. Control
Water Heater
Water Supply

Smartphone Charge
Internet Router

PC & PC Charge
TV

Lighting
Air Conditioner

Gas Kitchen Range
Kitchen Appliance

Refrigerator

Necessary Very Important Important
Not Important No Trouble Usually Not Using

Figure 9. Rate of the importance of each load in Case 1.

0 10 20 30 40 50 60 70 80 90 100
Answer Rate [%]
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Nursing Care Apparatus

Pet Env. Control
Water Heater
Water Supply

Smartphone Charge
Internet Router

PC & PC Charge
TV

Lighting
Air Conditioner

Gas Kitchen Range
Kitchen Appliance

Refrigerator

Necessary Very Important Important
Not Important No Trouble Usually Not Using

Figure 10. Rate of the importance of each load in Case 2.



Energies 2025, 18, 2060 16 of 18

Around 25% of respondents regularly use nursing care and medical apparatus.
The rate of the answer that they are important is less than 50%, even when “Usually

Not Using” is excluded.
The survey inquired about the importance of nursing care and medical apparatus

without specifying their usage. This general form of questioning may have led some
respondents to imagine medical usages that were not critical for life. Thus, the survey
may underestimate the importance of nursing care and medical apparatus during outages.
Respondents can answer more precisely about the importance of nursing care and medical
apparatus if the questionnaire specifies concrete usages, such as electric wheelchairs and
oxygen supplies.

6. Conclusions
Recently, measures against supply shortages caused by disasters have become more

important. Estimating the value of lost loads (VoLLs) helps to create optimal measures.
This paper aimed to investigate the current residential VoLL in Japan by using a survey.
Residential VoLL was estimated using residents’ willingness to pay (WTP) to avoid power
outages. The median WTP to prevent a 2 h outage in the summer is JPY 717.6 in a
predictable outage and JPY 801.8 in a sudden outage. WTP was converted into residential
VoLL by using actual demand. The VoLL is 501.1 JPY/kWh in a predictable outage and
559.9 JPY/kWh in a sudden outage. Next, we used a random utility model and Wald
testing to analyze the relationship between WTP and people’s attributes. As a result, it
was found that the annual income of households and electricity bills significantly affect
WTP. Evacuation experiences and stockpiles also affect the WTP to avoid a sudden outage.
Finally, this paper investigated the importance of each load in households. A total of 80% of
respondents answered that refrigerators, air conditioners, and water supplies are important.
In contrast, around half of respondents think other loads are unimportant.

In the survey, some questions on load importance and usage are unclear; this may
underestimate the importance of some critical loads, especially medical usage. In addition,
there are around 400 resistive answers in the WTP inquiry, which is larger than the survey
in Norway [18]. The number of resistive answers may be reduced by providing details
about the damage caused by power outages. The survey is a first step toward investigating
residential VoLL and load importance. Future surveys will be carried out to formulate
more specific representations.

In addition, the survey used in this paper inquires about WTP in situations where an
outage occurs during the daytime in summer and continues for 2 h.

Future work will collect data for various outage situations.
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