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Abstract

Increasing performance requirements in high-precision mechatronic systems lead to a situation where both multivariable and
sampled-data implementation aspects need to be addressed. The aim of this paper is to develop a design framework for a multi-
input multi-output feedforward controller to improve continuous-time tracking performance through learning. The sampled-data
feedforward controller is designed with physically interpretable tuning parameters using a multirate zero-order-hold differentiator.
The developed approach enables interaction compensation for multi-input multi-output systems and the feedforward controller pa-
rameters are updated through learning. The performance improvement is experimentally validated in a multi-input multi-output
motion system compared to the conventional feedforward controllers.
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1. Introduction

Feedforward control is essential in increasing performance
requirements for motion control of high-precision mechatronic
systems in industries such as semiconductor lithography sys-
tems [1, 2, 3], wire bonders [4], atomic force microscopy [5],
machine tools [6], industrial robots [7], magnetic bearing [8],
boost converters [9], 2D/3D printers [10, 11, 12], and CT scan-
ners [13]. Iterative Learning Control (ILC) is one of the algo-
rithms to update the feedforward controller by the error data of
the previous iteration, and the error is reduced through learning.
To overcome the limitation of the interpretability in ILC such as
a Finite Impulse Response (FIR) filter-based structure in [1, 11],
it is beneficial in industries that the controller consists of phys-
ically interpretable tuning parameters to achieve both intuitive
tuning and data-driven learning.

Physical interpretability and intuitive tuning of the data-
driven feedforward controller are desirable in industrial appli-
cations. It is achieved by structure analysis of the controlled
system [14, 15], and the controller can be parameterized intu-
itively by linear combinations with tuning parameters and basis
functions [10, 16]. Basis functions typically consist of a ref-
erence signal and its derivatives [16] and nonlinear functions
such as friction compensation [6]. This structure enables low-
complexity parameterization with physical interpretability and
flexibility for varying references. In conventional approaches
[14, 15, 16], the differentiator for the basis function design is
implemented by the backward differentiator, and the sampled-
data characteristic is not considered. The gap between the back-
ward differentiator and the zero-order-hold characteristics of
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the sampled-data system results in the limitation of the control
performance in continuous time.

Sampled-data feedforward control improves the continuous-
time tracking performance of high-precision mechatronic sys-
tems where the sampling frequency is not sufficiently high com-
pared to the motion profile [17]. In industrial control appli-
cations, the controlled system is discretized by sampler and
zero-order-hold and these characteristics should be considered
in feedforward controller design to improve not only on-sample
but also intersample performance [18]. State-tracking feedfor-
ward control [19, 20] and ILC [21] with multirate inversion can
improve the continuous-time tracking performance in sampled-
data systems. These controllers enable on-sample state-tracking
and it leads to physically natural intersample behavior. For
the application to the complex mechatronic systems, there is
no guarantee of a perfect model for model inversion and there
must be a modeling error between the identified model and the
actual system. The multirate feedforward control also can be
extended to the multivariable systems [22, 23]. However, the
complex mechatronic systems are represented by the multivari-
able model in many cases and it results in many tuning param-
eters for the inverse-based controller design.

Although important contributions have been made to im-
prove the performance and interpretability of feedforward con-
trol, the sampled-data characteristics with sampler and zero-
order-hold are not taken into account in the basis function de-
sign, and the structure of multi-input multi-output (MIMO) feed-
forward control is not discussed in the context of intuitive tun-
ing and leaning from experimental data. The aim of this paper
is to design the MIMO feedforward controller to improve the
continuous-time tracking performance through learning. Com-
pared to conventional approaches, the developed basis function



design considers the sampled-data characteristics. In this paper,
the feedforward controller is parameterized with basis functions
for MIMO motion systems and it enables physical interpreta-
tion of the feedforward controller parameters and analytic so-
lution of data-driven parameter tuning. The present paper sub-
stantially extends the preliminary result in [24], including the
comparison between the exact model inversion based on the
multirate feedforward control, the generalization for the appli-
cation in MIMO motion systems, the data-driven tuning algo-
rithm, and the experimental validation.

The main contribution of this paper is the fixed-structure
feedforward controller design considering sampled-data char-
acteristics and interactions in MIMO motion systems. The con-
tributions include:

Contribution 1. Discrete-time basis functions are designed for
continuous-time reference considering sampled-data character-
istics to improve continuous-time tracking performance.

Contribution 2. ILC with basis functions is formulated with
physically interpretable tuning parameters considering the dy-
namics and interaction of MIMO motion systems.

The outline is as follows. In Section 2, the problem is for-
mulated. In Section 3, the basis function design considering
continuous-time tracking performance is described, constitut-
ing Contribution 1. In Section 4, the continuous-time tracking
performance of the developed approach is demonstrated by the
simulation in SISO motion systems compared to the conven-
tional approaches. In Section 5, ILC with basis functions is
formulated in MIMO motion systems, constituting Contribu-
tion 2. In Section 6, the performance improvement with inter-
action compensation and the sampled-data characteristics is ex-
perimentally validated. In Section 7, conclusions are presented.

2. Problem formulation

In this section, the problem to improve continuous-time track-
ing performance in MIMO motion systems is formulated. First,
the reference tracking problem is defined in continuous time.
Second, interaction compensation is investigated for reference
tracking in MIMO motion systems. Finally, the problems in
this paper are described.

2.1. Continuous-time tracking performance in sampled-data con-
trol

The considered tracking control configuration in a nu-input
ny-output continuous-time linear time-invariant system G is shown
in Figure 1, with reference r(t) ∈ Rny , control input u(t) ∈ Rnu ,
and output y(t) ∈ Rny .

The system is controlled by the sampled-data controller that
consists of feedforward controller F(θ), feedback controller K,
sampler S, and zero-order-hold H , where sampler and zero-
order-hold are defined as follows.

Definition 1 (Sampler). The sampler S with sampling time Ts

is defined as

S : r(t) 7→ r[k], r[k] = r(kTs). (1)
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Figure 1: Tracking control diagram. The continuous-time system G is con-
trolled by the feedforward controller F(θ) and the discrete-time feedback con-
troller K with sampler S and zero-order-hold H . The objective is to minimize
the continuous-time tracking error e(t). The solid and dotted lines denote the
continuous-time and discrete-time signals, respectively.

Definition 2 (Zero-order-hold). The zero-order-holdH
with sampling time Ts is defined as

H : u[k] 7→ u(t), u(kTs + τ) = u[k], τ = [0,Ts). (2)

The control objective in this paper is to minimize the continuous-
time tracking error e(t). Traditionally, the conventional discrete-
time controller only focuses on the on-sample performance with
the discrete-time tracking error e[k]. To improve the continuous-
time tracking error e(t), not only on-sample but also intersam-
ple performance should be considered. The improvement of
continuous-time tracking performance is defined as follows.

Definition 3 (Continuous-time tracking performance). The op-
timization problem to improve the continuous-time tracking per-
formance in the sampled-data motion system is defined as

minimize
θ

∥e[k]∥W (3)

subject to
∀l

RMS(el[k]) ≈ RMS(el(t)), (4)

where θ is the tuning parameter, ∥ • ∥W is the weighted 2-norm
with the weighting matrix W, el[k] and el(t) are the tracking
errors of the lth axis in discrete time and continuous time, and
RMS(•) is the operator to calculate the Root Mean Square.

It is the practical constraint that the controller can be tuned
using the data of the discrete-time tracking error e[k] although
the objective of the control problem is the improvement of the
continuous-time tracking error e(t). To satisfy approximately
the same condition of the discrete-time and continuous-time
tracking errors, the controller should be designed not to gen-
erate the control inputs that cause the intersample oscillation.

2.2. Decoupling control for interaction compensation

In the controller design of MIMO motion systems, the static
decoupling is applied by the input decoupling matrix Tu and
the output decoupling matrix Ty. The decoupled system TyGTu

should be square and diagonally dominant. In many cases, the
single-input single-output (SISO) controller is designed after
the static decoupling. Even if the system is statically decou-
pled, the off-diagonal terms still remain and it results in inter-
action between inputs and outputs [1]. Therefore, static de-
coupling is not sufficient in practice and it limits the control
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performance of MIMO motion systems. In complex mecha-
tronic systems, interaction analysis is difficult and the model of
coupling dynamics always has a modeling error. In this paper,
the feedforward controller is designed considering both diag-
onal and off-diagonal dynamics to compensate for interaction
through learning from data with less modeling effort of MIMO
motion systems.

2.3. Problem description

In this paper, the controller design problem is with respect
to the following requirements:

Requirement 1. The sampled-data characteristics with sam-
pler and zero-order-hold should be considered in the discrete-
time basis function design to improve continuous-time tracking
performance.

Requirement 2. The basis functions should be parameterized
with physically interpretable tuning parameters considering the
dynamics and interaction of MIMO motion systems.

Requirement 1 is dealt with in Section 3 and it results in
Contribution 1. Requirement 2 is dealt with in Section 5 and it
results in Contribution 2.

3. Basis function design for sampled-data motion system

In this section, the basis function design using a sampled-
data differentiator is presented. The approach improves the
continuous-time tracking performance of the feedforward con-
troller in sampled-data control. First, the conventional approach
using a backward differentiator is analyzed in sampled-data con-
trol. Second, the single-rate zero-order-hold differentiator is
introduced for on-sample performance in sampled-data control.
Third, the idea of state compatibility is defined to improve inter-
sample performance. Finally, the multirate zero-order-hold dif-
ferentiator is developed to design the sampled-data basis func-
tions that satisfy state compatibility. It results in Contribution 1.

3.1. Challenge in sampled-data basis function design

The continuous-time feedforward controller can be param-
eterized using the reference signals r and its derivatives. It re-
sults in the combination with the tuning parameters θ and the
continuous-time basis functions that consist of a continuous-
time differentiator d

dt . For example, the continuous-time ac-
celeration feedforward controller F(θ) can be designed for a
single-mass motion system G(s) = 1

ms2 as F(θ) = θ d2

dt2 . In this
example, the basis function isΨ = d2

dt2 r(t) and the tuning param-
eter is θ = m. However, for applications of mechatronic systems
in industries, the motion controllers are typically implemented
in discrete time. Therefore, to design the discrete-time basis
function Ψ , the continuous-time differentiator d

dt should be re-
placed by the sampled-data differentiator ξ defined as follows.

Definition 4 (Sampled-data differentiator). The nth order sampled-
data differentiator ξn with sampling time Ts is the conversion
from the continuous-time signal r(t) to the discrete-time signal

Ψn[k] that is compatible with the nth order derivative of r(t) and
defined as

Ψn[k] = ξnr(t). (5)

In the conventional approach [10, 16], the discrete-time ba-
sis functions are designed by the continuous-time reference r(t)
and the backward differentiator defined as follows.

Definition 5 (Backward differentiator). The nth order backward
differentiator ξnbd is given by

ξnbd =


(

1−z−1

Ts

)n
z

n
2S (n : even)(

1−z−1

Ts

)n 1+z−1

2 z
n+1

2 S (n : odd)
, (6)

where z is the discrete-time shift operator with sampling time
Ts defined as znr[k] = r[k + n]. z

n
2 denotes the phase compen-

sation. When n is odd, the phase compensation consists of the
half sample shift z

1
2 that is a combination of one sample shift

and the first order approximation of averaging the current and
previous value [16].

The backward differentiator does not take into account the
sampled-data characteristics with sampler and zero-order-hold,
the performance deteriorates when the sampling frequency is
not sufficiently high.

3.2. Single-rate zero-order-hold differentiator for on-sample per-
formance

The state-space representation of the continuous-time nth

order integrator in the controllable canonical form is given by

Hnc
s
=

[
Anc bnc

cnc 0

]
=



0 1 0 0 0

0
. . .

. . . 0
...

0 0
. . . 1 0

0 0 0 0 1
1 0 · · · 0 0


, (7)

where Anc ∈ Rn×n, bnc ∈ Rn×1, and cnc ∈ R1×n.
To consider the sampled-data characteristics for on-sample

tracking performance, the single-rate zero-order-hold differen-
tiator is defined as follows.

Definition 6. (Single-rate zero-order-hold differentiator.)
Considering the inverse of the continuous-time nth order inte-
grator discretized by sampler S and zero-order-hold H with
one sample shift, the nth order single-rate zero-order-hold dif-
ferentiator ξnsr is given by

ξnsr = {(SHncH) z}−1 . (8)

Although the discrete-time signal with the continuous-time
signal and nth order single-rate zero-order-hold differentiator is
compatible on-sample with the nth order derivative signal of
the continuous-time signal, the generated discrete-time signal
can be oscillated or diverge. The reason is that the single-
rate zero-order-hold differentiator has unstable or oscillating
poles because of the inverse of discretization zeros when the
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degree of the continuous-time integrator is 2 or more as Euler-
Frobenius polynomials [25]. Therefore, even if the single-rate
zero-order-hold differentiator is compatible on-sample, there
are mismatches in other states and it deteriorates intersample
performance.

3.3. State compatibility for intersample performance

The sampled-data characteristics with intersample perfor-
mance can be taken into account by the state-tracking control
framework [19, 20, 21]. In the n samples lifted system, the ex-
act state-tracking can be achieved in every n sample. In such
cases, the states in every n sample are given by the multirate
sampler defined as follows.

Definition 7 (Multirate sampler). The multirate sampler Sn in
every n sample with sampling time Ts is defined as

Sn : r(t) 7→ r[in], r[in] = r(innTs). (9)

To improve both on-sample and intersample performance in
sampled-data systems with zero-order-hold and integrators, the
basis functions should satisfy the state compatibility defined as
follows.

Definition 8 (State compatibility). The discrete-time signalΨn[k],
that is compatible with the nth order derivative signal of the
continuous-time signal r(t), satisfies state compatibility if the
output through the system, that consists of the continuous-time
(n − m)th order integrator H(n−m)c and zero-order-hold H , is
equal to the continuous-time mth order derivative signal of r(t)
in every n sample with multirate sampler Sn and defined as

Sn
dm

dtm r(t) = SnH(n−m)cHΨn[k], (10)

where m = 0, 1, . . . , n − 1.

The sampled-data differentiator that satisfies the state com-
patibility enables the feedforward controller parameterization
with basis functions to improve continuous-time tracking per-
formance.

3.4. Multirate zero-order-hold differentiator with state compat-
ibility

To improve the intersample performance in the discrete-
time system, not only the output but also the states of the ref-
erence trajectory are considered. The multirate zero-order-hold
differentiator is designed by the inverse of the continuous-time
integrator discretized by sampler and zero-order-hold to satisfy
the state compatibility. In this paper, the reference is assumed
to be sufficiently smooth and satisfies the following assumption.

Assumption 1 (Smoothness of reference). The continuous-time
reference r(t) for n states tracking is Cn−1 class and differen-
tiable at least n − 1 times.

To satisfy the n states compatibility in every n sample, the
lifted signal is considered using the lifting operator defined as
follows.

Definition 9 (Lifting operator). The lifting operatorLn in every
n sample is defined as

Ln : u[k] 7→ u[in], (11)

where

u[in] =
[
u[nin] u[nin + 1] · · · u[nin + (n − 1)]

]T
∈ Rn. (12)

The n samples lifted system is defined as follows.

Definition 10 (Lifted system). Consider a discrete-time
system Hd

z
= Cd(zI − Ad)−1Bd + Dd. The relation between the

input and the output in the n samples lifted system of Hd is given
by

y[in] = Lny[k] = (LnHdL
−1
n )(Lnu[k]) = Hdu[in], (13)

where

y[in] =
[
y[nin] y[nin + 1] · · · y[nin + (n − 1)]

]T
∈ Rn, (14)

and the lifted system Hd is defined as

Hd
zn

= LnHdL
−1
n =

[
Ad Bd
Cd Dd

]

=



An
d An−1

d Bd An−2
d Bd · · · Ad Bd Bd

Cd Dd O · · · · · · O

Cd Ad Cd Bd Dd
. . .

...
...

...
. . .

. . .
. . .

...

Cd An−2
d Cd An−3

d Bd Cd An−4
d Bd

. . . Dd O
Cd An−1

d Cd An−2
d Bd Cd An−3

d Bd · · · Cd Bd Dd


. (15)

Considering the states in discrete-time, the nth order inte-
grator discretized by sampler and zero-order-hold is given by

Hnd
z
= SHncH =

[
And bnd

cnd 0

]
=

[
eAncTs A−1

nc (eAncTs − I)bnc

cnc 0

]
. (16)

To design the inverse of the nth order integrator discretized
by sampler and zero-order-hold, the n samples lifted system is
given by

Hnd
zn

= LnHndL
−1
n =

[
And Bnd
Cnd Dnd

]
, (17)

and in state-space representation defined as

xn[in + 1] = And xn[in] + Bndu[in] (18)
y[in] = Cnd xn[in] + Dndu[in] (19)

where

xn[in] =
[
x0[in] x1[in] · · · xn−1[in]

]T
∈ Rn. (20)

Satisfying the state compatibility, the relationship between
the reference and the states is given by

rn[in] = xn[in], (21)
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r(t)
Sn

Ψn[k]
B−1

nd (znIn − And) L−1
n

rn[in][
1 d

dt · · · dn−1

dtn−1

]T

Figure 2: Block diagram of basis function design using multirate zero-order-
hold differentiator. The dotted and dashed lines denote the discrete-time signal
sampled by Ts and nTs, respectively.

where

rn[in] = Sn

[
1 d

dt · · · dn−1

dtn−1

]T
r(t)

=
[
r0[in] r1[in] · · · rn−1[in]

]T
∈ Rn. (22)

From the discussions above, the multirate zero-order-hold
differentiator is defined as follows.

Definition 11. (Multirate zero-order-hold differentiator.)
From (18) and (21), considering the inverse of the state equa-
tion in the continuous-time nth order integrator discretized by
sampler and zero-order-hold using the multirate feedforward
control [19], the nth order multirate zero-order-hold differen-
tiator ξnmr that satisfies the state compatibility is given by

ξnmr = L
−1
n B−1

nd (znIn − And)Sn

[
1 d

dt · · · dn−1

dtn−1

]T
. (23)

The basis function design procedure using the multirate zero-
order-hold differentiator is shown in Figure 2. The sampled-
data characteristics are not considered in conventional differ-
entiator implementations. The multirate zero-order-hold differ-
entiator has the advantage that it can consider the sampled-data
characteristics only replacing the continuous-time differentiator
and it results in continuous-time tracking performance improve-
ment.

4. Demonstration in SISO sampled-data motion system

In this section, the continuous-time tracking performance of
the linearly parameterized feedforward control using the mul-
tirate zero-order-hold differentiator is demonstrated. First, the
comparison is conducted in the acceleration feedforward con-
trol using the backward differentiator, the single-rate zero-order-
hold differentiator, and the multirate zero-order-hold differen-
tiator. Second, the comparison is conducted between the lin-
early parameterized feedforward control using the multirate zero-
order-hold differentiator and the multirate feedforward control
based on exact model inversion.

4.1. Comparison in acceleration feedforward control
The continuous-time tracking performance improvement by

considering sampled-data characteristics can be seen clearly in
a single-mass motion system example.

4.1.1. Conditions
The controlled system is given as G(s) = 1

ms2 where m = 1
is the mass of the rigid body. The sampling time is set to
Ts = 5 ms. The continuous-time reference is the 1st order poly-
nomial trajectory. The top of Figure 3 shows control inputs with
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1
×10−3
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t [s]
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Figure 3: Simulation results of the open-loop tracking in a single-mass motion
system with acceleration feedforward control using the backward differentiator
( ), that using the single-rate zero-order-hold differentiator ( ), and that
using the multirate zero-order-hold differentiator ( ). Top: control inputs.
Center: 1st order reference ( ) and outputs. Bottom: tracking errors. The ac-
celeration feedforward using multirate zero-order-hold differentiator considers
state compatibility and it results in smaller error. (•) and (◦) show the sampling
points every Ts and 2Ts.

the acceleration feedforward control using the backward differ-
entiator u[k] = mξ2bdr(t), that using the single-rate zero-order-
hold differentiator u[k] = mξ2srr(t), and that using the multirate
zero-order-hold differentiator u[k] = mξ2mrr(t). The simulation
is conducted in an open loop without a feedback controller.

4.1.2. Comparison in continuous-time tracking performance
In Figure 3, the center and the bottom show the comparison

of outputs and tracking errors in the open-loop simulation. It
shows that the acceleration feedforward control using the mul-
tirate zero-order-hold differentiator outperforms because of the
state compatibility compensating for the controlled system dis-
cretized by sampler and zero-order-hold.

The limitation of the continuous-time tracking performance
with the acceleration feedforward control using the backward
differentiator is described by the sampled-data analysis that is
given by

y[k] = {SGH} u[k] =
{

T 2
s (1 + z−1)

2z(1 − z−1)2

}{
(1 − z−1)2

T 2
s

zSr(t)
}

=
1 + z−1

2
r[k]. (24)

The result shows that the on-sample error appears as the 1st or-
der approximated half-sample delay of the reference because of
the zero-order-hold. It means that the perfect on-sample track-
ing can be achieved by a half-sample forward shifted reference
with the 1st order reference condition but cannot be achieved
with higher-order references.

The intersample oscillation in the continuous-time tracking
performance with the acceleration feedforward control using
the single-rate zero-order-hold differentiator is described by the
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2

r[2k]

ṙ[2k]

lifted inverse

B−1
2d (z2I2 −A2d)

basis function design

r[k]

ṙ[k]

Ψa[k]r(t)

ξ2
mr = L−1

2 B−1
2d (z2I2 −A2d)S2

[
1 d

dt

]T

Figure 4: Graphical description of state compatibility with multirate zero-order
hold differentiator in 2nd order integrator and zero-order-hold (ZOH).

sampled-data analysis that is given by

ξ2sr = {(SH2cH) z}−1 =
2(z − 1)2

T 2
s z(z + 1)

. (25)

The result shows that the 2nd order single-rate zero-order-hold
differentiator has a pole at z = −1 and that causes the oscil-
lation. If the degree of the continuous-time integrator is more
than 2, the single-rate zero-order-hold differentiator has unsta-
ble poles and generates the unbounded signal. Although the
unstable poles of the single-rate zero-order-hold differentiator
can be compensated by the stable inversion approach [18], the
oscillating pole at z = −1 cannot be compensated.

The state compatibility of the multirate zero-order-hold dif-
ferentiator in 2nd order integrator and zero-order-hold is illus-
trated in Figure 4. The multirate zero-order-hold differentiator
stands on not only the reference trajectory but also its deriva-
tives and it results in better continuous-time tracking perfor-
mance with higher-order references. Note that the linearly pa-
rameterized feedforward control using the multirate zero-order-
hold differentiator is identical to the exact model inversion us-
ing the multirate feedforward control only if it consists of only
one basis function.

Although the sampling time in industrial applications is typ-
ically shorter than 5 ms, sampled-data dynamics are affected
by the relative condition between the length of sampling time
and the steepness of reference. The preliminary result [24] also
shows that the continuous-time tracking performance improve-
ment is experimentally validated in a SISO multi-modal motion
system but not in MIMO motion systems.

4.2. Comparison with multirate feedforward control

The comparison of continuous-time tracking performance
between the linearly parameterized feedforward control using
the multirate zero-order-hold differentiator and the exact model
inversion using the multirate feedforward control is demonstrated
in motion system examples of a 2nd order mass-damper-spring
model and a 4th order mass-spring-mass model.

m
b

k

y

u

(a) G2: Mass-damper-spring model.

m2
k

yu
m1

(b) G4: mass-spring-mass model.

Figure 5: Model of motion systems.

4.2.1. Controller design for mass-damper-spring motion sys-
tem

The model G2 of the mass-damper-spring motion system
shown in Figure 5(a) is given by

G2(s) =
1

ms2 + bs + k
, (26)

where m = 4 × 10−4, b = 8 × 10−2, and k = 4.
In the linearly parameterized feedforward control, the basis

functions are given by

Ψ[k] =
[
1 ξ1mr ξ2mr

]
r(t), (27)

and the tuning parameters are given by

θ =
[
k b m

]T
. (28)

The multirate feedforward control provides perfect state track-
ing at every 2 sample for the 2nd order model without modeling
error.

4.2.2. Controller design for mass-spring-mass motion system
The model G4 of the mass-spring-mass motion system shown

in Figure 5(b) is given by

G4(s) =
1

m1m2

k
s4 + (m1 + m2)s2

, (29)

where m1 = m2 = 2 × 10−4 and k = 20.
In the linearly parameterized feedforward control, the basis

functions are given by

Ψ[k] =
[
ξ2mr ξ4mr

]
r(t), (30)

and the tuning parameters are given by

θ =
[
m1 + m2

m1m2

k

]T
. (31)

The multirate feedforward control provides perfect state track-
ing at every 4 sample for the 4th order model without modeling
error.

4.2.3. Conditions
The continuous-time reference r(t) is the 4th order polyno-

mial trajectory shown in Figure 6(a). The sampling time of
the discrete-time controller is Ts = 5 ms. The continuous-time
output y(t) is obtained by higher sampling frequency in every
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(c) Tracking error in mass-spring-mass motion system G4. (•) and (◦)
show sampling point every Ts and 4Ts.

Figure 6: Simulation results using multirate feedforward control with model
parameters ( ), linearly parameterized feedforward control with model pa-
rameters ( ), and linearly parameterized feedforward control with tuning
min∥e[k]∥2 ( ).

0.5 ms only for evaluation of the continuous-time tracking er-
ror e(t). The continuous-time tracking error e(t) is compared to
the multirate feedforward control with model parameters, the
linearly parameterized feedforward control with model param-
eters, and the linearly parameterized feedforward control with
tuning as min∥e[k]∥2. The simulation is conducted in an open
loop without a feedback controller.

4.2.4. Comparison in continuous-time tracking performance
The tracking errors of simulations in the mass-damper-spring

motion system are shown in Figure 6(b). It shows that the lin-
early parameterized feedforward control with the model param-
eter makes a large error at constant velocity regions because of
the mismatch between the model of the feedforward controller
and the discretized model of the controlled system. After tuning
as min∥e[k]∥2, the linearly parameterized feedforward control
provides a smaller error than that of the multirate feedforward
control at constant velocity regions. Note that although the mul-
tirate feedforward control guarantees the perfect state tracking
of position and velocity for every 2 sample in the 2nd order mo-
tion system, it causes the intersample oscillation because of the
mismatch of acceleration and jerk in the continuous-time refer-
ence of the 4th order polynomial trajectory.

The tracking errors of simulations in the mass-spring-mass

Table 1: Root Mean Square error RMS(e(t)) with multirate feedforward
(MRFF) control and linearly parameterized feedforward (LPFF) control using
multirate zero-order-hold differentiator in simulation.

RMS(e(t)) G2 G4

MRFF with model parameters 1.81 × 10−3 4.65 × 10−4

LPFF with model parameters 1.78 × 10−1 4.14 × 10−3

LPFF with tuning min∥e[k]∥2 2.20 × 10−3 8.35 × 10−4

motion system are shown in Figure 6(c). It shows that the lin-
early parameterized feedforward control with the model param-
eter makes a large oscillating error because of the mismatch of
the resonance frequency between the model of the feedforward
controller and the discretized model of the controlled system.
The large oscillating error is improved in the linearly parame-
terized feedforward control with tuning as min∥e[k]∥2.

The Root Mean Square of the continuous-time tracking er-
rors with the multirate feedforward control and the linearly pa-
rameterized feedforward control using the multirate zero-order-
hold differentiator in simulations is shown in Table 1. It shows
that the tracking error of the linearly parameterized feedforward
control with tuning as min∥e[k]∥2 is around the same scale as
that of the multirate feedforward control even though the so-
lution space of the linearly parameterized feedforward control
is limited in the linear space. It means that the basis functions
using the multirate zero-order-hold differentiator provide a rea-
sonable linear solution space for the sampled-data feedforward
control. As a result, it is shown that the linearly parameterized
feedforward control can provide around the same performance
as the multirate feedforward control through a tuning process
using the experimental data.

5. ILC with MIMO structured basis functions

In this section, the feedforward controller parameterization
and the parameter updating framework using ILC with basis
functions are presented. The structured feedforward controller
parameterization for MIMO motion systems is formulated with
physically interpretable tuning parameters. Parameter update
through learning is described with the monotonic convergence
condition in MIMO motion systems. It results in Contribu-
tion 2.

5.1. MIMO fixed-structure feedforward controller parameteri-
zation

The dynamics of mechatronic systems are typically dom-
inated by the mechanics assuming that electronics are much
faster than mechanics. This results in a situation where rigid
body modes dominate the lower frequency and there are several
flexible modes at a higher frequency due to limited mechanical
stiffness. The nu-input ny-output continuous-time multi-modal
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motion system [26] is defined as

Gc(s) = Gr(s) + G f (s)

=

nr∑
kr=1

ckr bkr

(s2 + 2ζkrωkr s + ω2
kr

)︸                          ︷︷                          ︸
rigid body modes

+

n f∑
k f=1

ck f bk f

(s2 + 2ζk fωk f s + ω2
k f

)︸                           ︷︷                           ︸
flexible modes

, (32)

where nr ∈ N+ and n f ∈ N+ are the number of rigid body
and flexible modes, ω ∈ R+ and ζ ∈ R+ are the resonance
angular frequency and the damping coefficient. The vectors b ∈
R1×nu and c ∈ Rny×1 are associated with the inputs, the outputs,
and the mode shapes. In this paper, the system is assumed to
be square as nu = ny after the static decoupling based on the
coordinate transformation.

To compensate for not only the rigid body modes but also
the flexible modes in MIMO motion systems, the traditional
rigid body feedforward control is extended with the additional
snap feedforward control [14] and the ideal feedforward con-
troller F∗(s) is defined as

F∗(s) = G−1
r (s) + D∗(s)s4, (33)

where D∗(s) is the coefficient of the snap feedforward control
aiming to compensate for the compliance of the flexible modes.

The objective of the feedforward controller F∗(s) is to min-
imize the closed-loop error given by

e(s) = S(s)r(s) − S(s)Gc(s)F∗(s)r(s), (34)

where S(s) denotes the sensitivity function matrix that is de-
fined as S(s) = (I + Gc(s)Kc(s))−1. It results in F∗(s) = G−1

c (s)
and D∗(s) is given by

D∗(s) =
1
s4 (G−1

c (s) − G−1
r (s)). (35)

Assuming the reference trajectory in the mechatronic sys-
tems mainly contains the low-frequency components and the
resonance frequencies of the rigid body modes are enough smaller
than that of flexible modes approximated to ωkr ≃ 0, the com-
pliance that corresponds to the low-frequency behavior of the
flexible modes is given by

D = lim
s→0

D∗(s) = lim
s→0

{
1
s4 (G−1

c (s) − G−1
r (s))

}

= −

 nr∑
kr=1

ckr bkr

−1  n f∑
k f=1

ck f bk f

ω2
k f


 nr∑

kr=1

ckr bkr

−1

. (36)

Hence, the fixed-structure feedforward controller for MIMO
motion systems is parameterized as

F(θ) = Θp + Θv
d
dt
+ Θa

d2

dt2︸                   ︷︷                   ︸
rigid body

compensation

+ Θs
d4

dt4︸︷︷︸
compliance

compensation

, (37)

where Θp,Θv,Θa,Θs ∈ Rnu×ny are the parameter matrices of the
feedforward controller corresponding to the position, velocity,

+
−

rj ej yjuj

uffj

+
+

+
+θj+1

θj

ufbj

GK

L

Q

Memory

F (θ)

Figure 7: Block diagram of iterative learning control with basis functions.

acceleration and snap basis functions. Finally, the continuous-
time differentiator d

dt is replaced by the sampled-data differen-
tiator ξ, and the fixed-structure sampled-data feedforward con-
troller for MIMO motion systems is given by

F(θ) = Θp + Θvξ + Θaξ
2 + Θsξ

4. (38)

It enables low-complexity parameterization with physical inter-
pretability, flexibility for varying references, and consideration
of sampled-data dynamics at the same time. Although using
jerk feedforward control as a basis function can improve control
performance, in this paper from the viewpoint of interpretabil-
ity, jerk feedforward control has a less physical meaning, and
only snap feedforward control for compliance compensation is
included in basis functions in addition to rigid body feedfor-
ward control.

In this paper, the developed approach combines the multi-
rate zero-order-hold differentiator in (23) and the fixed-structure
sampled-data feedforward controller for MIMO motion systems
in (38). The developed approach considers both continuous-
time tracking performance in Requirement 1 and interaction
compensation in Requirement 2.

5.2. Norm-optimal ILC with basis functions
Achieving higher performance and ease of tuning for the

MIMO feedforward controller, ILC with basis functions is im-
plemented. ILC with basis functions has an advantage in task
flexibility compared to traditional ILC. The controller structure
is shown in Figure 7. To update the parameters of the feed-
forward controller through learning, the optimization criterion
from the present study [10] is defined as follows.

Definition 12 (Norm-optimal MIMO ILC with basis functions).
The optimization criterion for norm-optimal ILC with basis func-
tions is given by

J(θ j+1) = ∥e j+1∥We + ∥u f f j+1∥W f f + ∥u f f j+1 − u f f j∥W∆ f f , (39)

where the weighting matrices are We ≻ 0, W f f ,W∆ f f ⪰ 0, the
parameters of the feedforward controller are θ j ∈ Rnθ , and the
feedforward control input in next iteration is u f f j+1 = F(θ j+1)r.

Here, the weighting matrices We, W f f , W∆ f f correspond to
optimal performance, robustness for model uncertainty, and ro-
bustness for trial varying disturbances including noise, respec-
tively. For the practical tuning procedure of the weighting ma-
trices in the experiment, see [10].
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The error in trial j + 1 is given by

e j+1 = Sr − SGu f f j+1 (40)
= e j − SG(u f f j+1 − u f f j ), (41)

where S = (I + GK)−1.
The feedforward controller parameter update is given by

θ∗j+1 = arg min
θ j+1

J(θ j+1). (42)

When the feedforward control input is linearly parameter-
ized in parameters θ j+1 and basis functions Ψ , and is defined
as

u f f j+1 = F(θ j+1)r = Ψθ j+1, (43)

the optimization criterion (39) is quadratic in θ j+1 from (41),
and an analytic solution to (42) exists [10]. By solving the nec-
essary condition for optimality ∂J(θ j+1)

∂θ j+1
= 0 with basis func-

tionsΨ = ∂
∂θ j

F(θ j)r ∈ Rnu×nθ and weighting matrices We, W f f ,
W∆ f f , the analytic solution of (42) for the parameter update law
that minimizes J(θ j+1) is given by

θ j+1 = Qθ j + Le j, (44)

where the learning filters Q and L are given by

Q = (ΨT((SG)TWe(SG) +W f f +W∆ f )Ψ)−1ΨT((SG)TWe(SG) +W∆ f f )Ψ, (45)
L = (ΨT((SG)TWe(SG) +W f f +W∆ f f )Ψ)−1ΨT(SG)TWe. (46)

From (40), (43), and (44), the parameter update law is writ-
ten as

θ j+1 = (Q − LSGΨ)θ j + LSr. (47)

The parameter update law (47) leads to the monotonic conver-
gence condition of the parameters θ j if the provided weighting
matrices We, W f f , W∆ f f are selected properly to satisfy

σ(Q − LSGΨ) < 1⇔
σ((ΨT((SG)TWe(SG) +W f f +W∆ f f )Ψ)−1ΨTW∆ f fΨ) < 1, (48)

where σ(·) is the maximum singular value of the matrix.
The monotonic convergence of the parameters θ j results

in the convergence of the feedforward control input u f f j from
(43) when the basis functions Ψ from the reference r are fixed
through iterations. From (40), (43), and (44), the feedforward
control input update law is written as

u f f j+1 = (Q′ −ΨLSG)u f f j +ΨLSr, (49)

where the learning filter Q′ is given by

Q′ = Ψ(ΨT((SG)TWe(SG) +W f f +W∆ f )Ψ)−1ΨT((SG)TWe(SG) +W∆ f f ). (50)

The feedforward control input update law (49) leads to the mono-
tonic convergence condition of the feedforward control input

u f f j if the provided weighting matrices We, W f f , W∆ f f are se-
lected properly to satisfy

σ(Q′ −ΨLSG) < 1⇔
σ(Ψ(ΨT((SG)TWe(SG) +W f f +W∆ f f )Ψ)−1ΨTW∆ f f ) < 1. (51)

From (48) and (51), the monotonic convergence conditions of
both θ j and u f f j are guaranteed if

ΨT((SG)TWe(SG) +W f f +W∆ f f )Ψ ≻ 0. (52)

Note that these monotonic convergence conditions of the pa-
rameters θ j and the feedforward control input u f f j are derived
from that of the norm-optimal ILC [27, 28] that also can be
applied to MIMO systems [29, 30, 31]. Specifically, the mono-
tonic convergence condition of the norm-optimal ILC with ba-
sis functions is derived in Section 3.1 and Section 4.1 of [32].

In [10], the basis functions are designed using the backward
differentiator that does not take into account the sampled-data
characteristics with sampler and zero-order-hold. The theoreti-
cal performance limitation is linked to how much the basis func-
tions contain the dynamics of the controlled system, and the
lack of the sampled-data characteristics deteriorates the track-
ing performance. In this paper, the developed approach consid-
ers the sampled-data characteristics by using the multirate zero-
order-hold differentiator in (23). [10] also does not contain the
guidelines for extending to MIMO motion systems. This paper
introduces the guidelines with the fixed-structure sampled-data
feedforward controller for MIMO motion systems in (38). The
performance improvement of the developed approach with the
combination of (23) and (38) is validated in Section 6.

6. Validation in MIMO sampled-data motion system

In this section, the developed approach combining Section 3
and Section 5 is applied to a MIMO motion system. The re-
sults demonstrate the performance improvement with interac-
tion compensation and sampled-data characteristics in both the
simulation and the experiment.

6.1. Motion system
The experimental flexible beam setup of a MIMO motion

system is shown in Figure 8. The setup exhibits dominant flex-
ible behavior and coupling dynamics that are expected to arise
in high-precision mechatronic systems in industries. Although
typical high-precision mechatronic systems operate in six de-
grees of freedom, the four degrees of freedom are elastically
suspended by the leaf spring to facilitate the control design and
analysis as shown in Figure 8(a). The real-time controller based
on Raspberry Pi with EtherCAT connection is used with the
computation frequency 1024 Hz. After the static decoupling
of the system with dual-inputs (u1, u2) and dual-outputs (y1, y2)
based on coordinate transformation as shown in Figure 8(b),
the controlled system G is given in translation and rotation with
dual-inputs (Fy,Tz) and dual-outputs (y,Rz) as shown in Fig-
ure 8(c). The frequency response data obtained by multisine
excitation, the continuous-time model Gc with the higher-order
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(ii)
(i)

(iv)

(a) Overview photograph of the experimental setup. The system con-
sists of (i) a steel flexible beam (500 mm × 20 mm × 2 mm), (ii) three
current-driven voice-coil actuators (Akribis Systems: AVM19-5), (iii)
five contact-less fiber-optic sensors (Philtec: D64-NQ) with a resolu-
tion ∼ 1 µm, and (iv) a leaf spring. The flexible beam is elastically
suspended by the leaf spring with a stroke of ∼ 1 mm.

u1 u2

y1 y2x
y

z

(b) Top view photograph of the experimental setup. Two actuators and
two sensors are used as dual-inputs (u1, u2) and dual-outputs (y1, y2).

u2

y1 y2

x
y

z

Fy, y

Tz, Rzu1

(c) Schematic illustration of the experimental setup. After the static de-
coupling based on coordinate transformation, the controlled system G
is in translation and rotation with dual-inputs (Fy,Tz) and dual-outputs
(y,Rz). The setup exhibits dominant flexible behavior based on reso-
nance mode and coupling dynamics in translation and rotation.

Figure 8: Experimental flexible beam setup of MIMO motion system.

dynamics for the simulation, and the discrete-time model Gd

with the only diagonal rigid body dynamics for parameter up-
date and feedback controller design are shown in Figure 9.

6.2. Conditions
The continuous-time reference of the translation y is the 4th

order polynomial trajectory as shown in Figure 10, and that
of the rotation Rz is set to 0 rad for all time. The sampling
frequency of the discrete-time controller is Fs = 128 Hz, as
Nyquist frequency is enough higher than the first resonance
mode, and the sampling time is Ts = 1/Fs. Although the
sampling frequency in industrial applications is typically higher
than 128 Hz, sampled-data dynamics are affected by the relative
condition between the length of sampling time and the steep-
ness of reference. The continuous-time outputs y and Rz are
also measured in higher sampling frequency 1024 Hz only for
evaluation of the continuous-time tracking errors e(t). To in-
vestigate the intersample performance by using the real-time
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Figure 9: Bode magnitude plot of the experimental setup: frequency response
data ( ), continuous-time model Gc ( ) with the higher-order dynamics
for the simulation, and discrete-time model Gd ( ) with the only diago-
nal rigid body dynamics for parameter update and feedback controller design.
Nyquist frequency of the controller is shown in a black dotted line ( ).
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Figure 10: Reference of y: continuous-time 4th order polynomial trajectory and
its derivatives. Reference of Rz is set to 0 rad for all time.

controller with the computation frequency 1024 Hz, the control
frequency is set to 128 Hz, and the continuous-time output is
measured in 8 times higher sampling frequency 1024 Hz that is
equal to the computation frequency of the real-time controller.
The feedback controller K is designed diagonally with a PD
controller and a notch filter as a 5 Hz closed-loop bandwidth
and a 6 dB modulus margin for compensation to disturbance
and unmodeled dynamics.
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6.3. Feedforward controller design

From Section 5, the fixed-structure feedforward controller
for a MIMO motion system is parameterized as

F(θ) =
[
θp11 θp12
θp21 θp22

] [
1
1

]
+

[
θv11 θv12
θv21 θv22

] [
ξ
ξ

]
+

[
θa11 θa12
θa21 θa22

] [
ξ2

ξ2

]
+

[
θs11 θs12
θs21 θs22

] [
ξ4

ξ4

]
, (53)

where ξ is a sampled-data differentiator. The basis functions of
each output are defined as

Ψy =
[
ry ξry ξ2ry ξ4ry

]
, (54)

ΨRz =
[
rRz ξrRz ξ2rRz ξ4rRz

]
, (55)

and the tuning parameter vectors are defined as

θ11 =
[
θp11 θv11 θa11 θs11

]
, θ12 =

[
θp12 θv12 θa12 θs12

]
,

θ21 =
[
θp21 θv21 θa21 θs21

]
, θ22 =

[
θp22 θv22 θa22 θs22

]
. (56)

In the conventional approach, only the diagonal terms of the
feedforward controller are considered. The feedforward control
input in the conventional approach is parameterized as

u f f = F(θ)r = Ψθ =
[
Ψy 0
0 ΨRz

] [
θ11 θ22

]T
. (57)

In the developed approach, not only the diagonal terms but
also the off-diagonal terms of the feedforward controller are
taken into account. The off-diagonal terms also can be obtained
for interaction compensation through learning even if only a di-
agonal model is used for parameter update. The feedforward
control input in the developed approach is parameterized as

u f f = F(θ)r = Ψθ

=

[
Ψy ΨRz 0 0
0 0 Ψy ΨRz

] [
θ11 θ12 θ21 θ22

]T
. (58)

In both the simulation and the experiment, the weighting
matrices are set to We = I and W f f = W∆ f f = O, and all ap-
proaches in this validation satisfy the monotonic convergence
condition in (48). The basis functions corresponding to the ref-
erence signal and its derivatives are orthogonal and have an an-
alytical solution in the norm-optimal ILC.

6.4. Validation with interaction compensation

To validate the performance improvement with interaction
compensation, the simulations and the experiments without and
with interaction compensation in (57) and (58) are conducted
through 20 iterations. In both approaches, the multirate zero-
order-hold differentiator ξmr in (23) is used as a sampled-data
differentiator ξ to consider sampled-data characteristics. The
continuous-time tracking errors, Root Mean Square of track-
ing errors, and tuning parameters learned through iterations are
shown in Figure 11, Figure 12, and Figure 13 for the simulation,
and Figure 14, Figure 15, and Figure 16 for the experiment. The

results show that the errors are roughly converged after 10th it-
eration. The translation error ey is also improved a little in the
simulation and the experiment, but the interaction effect is not
serious in the translation y because the reference of the rotation
Rz is set to 0 rad for all time. The frequency of the residual error
ey with the feedback controller corresponds to the sensitivity
peak around 5 Hz of the closed-loop bandwidth. The rotation
error eRz is improved significantly with interaction compensa-
tion of about factor 100 in the simulation and of about factor 10
in the experiment. Note that the scales of the errors in simula-
tion and experiment are different of about factor 10 in transla-
tion y and of about factor 4 in rotation Rz because of the dynam-
ics not included in the simulation model, measurement noise,
quantization of the sensors and actuators, and communication
delay. The controller using the multirate zero-order-hold differ-
entiator does not generate the control inputs that cause the inter-
sample oscillation, and Figure 12 and Figure 15 show that Root
Mean Square of the discrete-time and continuous-time tracking
errors are approximately the same that is the definition of the
continuous-time tracking performance improvement. The val-
idation results demonstrate that effective interaction compen-
sation can improve the tracking performance in multivariable
motion systems.

6.5. Validation with sampled-data characteristics

To validate the performance improvement with sampled-
data characteristics, the simulations and the experiments with
interaction compensation using the backward differentiator in
(6) and the multirate zero-order-hold differentiator in (23) are
conducted through 20 iterations. The continuous-time track-
ing errors, Root Mean Square of tracking errors, and tuning
parameters learned through iterations are shown in Figure 17,
Figure 18, and Figure 19 for the simulation, and Figure 20, Fig-
ure 21, and Figure 22 for the experiment. The translation error
ey is also improved significantly of about factor 5 in the simu-
lation but is improved a little in the experiment because of the
unmodeled dynamics in the simulation such as communication
delay. The rotation error eRz is improved a little in both the sim-
ulation and the experiment. Note that the scales of the errors
in simulation and experiment are different about factor 10 in
translation y and about factor 20 in rotation Rz because of the
dynamics not included in the simulation model, measurement
noise, and quantization of the sensors and actuators. The vali-
dation results demonstrate that considering sampled-data char-
acteristics has the potential to push the envelope of the tracking
performance in sampled-data motion systems.
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Figure 11: Tracking error e(t) in simulation using the multirate zero-order-
hold differentiator: without ( ) and with ( ) interaction compensation.
Rotation error eRz is improved about factor 100.
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Figure 12: Root Mean Square (RMS) of tracking error in simulation using the
multirate zero-order-hold differentiator: e[k] ( ) e(t) ( ) without and e[k]
( ) e(t) ( ) with interaction compensation.
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Figure 13: Tuning parameters learned through iterations in simulation using
the multirate zero-order-hold differentiator. θ•11 ( ) is without interaction
compensation. θ•11 ( ) and θ•21 ( ) are with interaction compensation.
Other tuning parameters are θ12 = θ22 = O because the reference of the rotation
Rz is set to 0 rad for all time.
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Figure 14: Tracking error e(t) in experiment using the multirate zero-order-
hold differentiator: without ( ) and with ( ) interaction compensation.
Rotation error eRz is improved about factor 10.
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Figure 15: Root Mean Square (RMS) of tracking error in experiment using the
multirate zero-order-hold differentiator: e[k] ( ) e(t) ( ) without and e[k]
( ) e(t) ( ) with interaction compensation.
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Figure 16: Tuning parameters learned through iterations in experiment using
the multirate zero-order-hold differentiator. θ•11 ( ) is without interaction
compensation. θ•11 ( ) and θ•21 ( ) are with interaction compensation.
Other tuning parameters are θ12 = θ22 = O because the reference of the rotation
Rz is set to 0 rad for all time.
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Figure 17: Tracking error e(t) in simulation with interaction compensation:
using the backward differentiator ( ) and the multirate zero-order-hold dif-
ferentiator ( ).
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Figure 18: Root Mean Square (RMS) of tracking error in simulation with inter-
action compensation: e[k] ( ) e(t) ( ) using the backward differentiator
and e[k] ( ) e(t) ( ) using the multirate zero-order-hold differentiator.

0

0.5

1
×102

θ p

0

2

4

θ v

0

0.2

0.4

θ a

2 4 6 8 10 12 14 16 18 20

−1

0

1
×10−4

Iteration

θ s

Figure 19: Tuning parameters learned through iterations in simulation with in-
teraction compensation. θ•11 ( ) and θ•21 ( ) are using the multirate
zero-order-hold differentiator. θ•11 ( ) and θ•21 ( ) are using the multi-
rate zero-order-hold differentiator. Other tuning parameters are θ12 = θ22 = O
because the reference of the rotation Rz is set to 0 rad for all time.
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Figure 20: Tracking error e(t) in experiment with interaction compensation:
using the backward differentiator ( ) and the multirate zero-order-hold dif-
ferentiator ( ).
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Figure 21: Root Mean Square (RMS) of tracking error in experiment with inter-
action compensation: e[k] ( ) e(t) ( ) using the backward differentiator
and e[k] ( ) e(t) ( ) using the multirate zero-order-hold differentiator.
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Figure 22: Tuning parameters learned through iterations in experiment with
interaction compensation. θ•11 ( ) and θ•21 ( ) are using the multirate
zero-order-hold differentiator. θ•11 ( ) and θ•21 ( ) are using the multirate
zero-order-hold differentiator. Other tuning parameters are θ12 = θ22 = O
because the reference of the rotation Rz is set to 0 rad for all time.
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7. Conclusion

Fixed-structure feedforward control considering sampled-
data characteristics and interactions in MIMO motion systems
is developed. The feedforward controller that is parameterized
by MIMO sampled-data basis functions and physically inter-
pretable tuning parameters are updated through learning. Ap-
plication to the sampled-data MIMO motion system demon-
strates a significant improvement in tracking performance with
interaction compensation compared to the conventional diag-
onal approach in both the simulation and the experiment. In
engineering practice, the discrete-time basis functions that cor-
respond to the continuous-time reference are designed using the
multirate zero-order-hold differentiator. The feedforward con-
trol signal is generated by the MIMO fixed-structure feedfor-
ward controller parameterization using the basis functions. The
tuning parameters of the feedforward controller are updated
through iterative learning control on batch-to-batch. Ongoing
research focuses on ILC with rational sampled-data basis func-
tions and basis function design with higher-order dynamics.
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