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Abstract- Hydrogen is acquiring a promising recognition as a new trend in energy storage technologies
due to its advantageous features including fast response, high energy density, and unconstrained
storage capacity. Thus, it offers an effective solution for addressing the stability challenges posed by
the large-scale integration of renewable energy sources (RESs) into power systems. Accordingly, this
paper presents a comprehensive review of advancements in green hydrogen production (GHP), with a
focus on water electrolyzers (WELSs) and their integration into power systems. Specifically, it examines
WEL types, operational characteristics, and the role of DC converters in system connectivity and
efficient power flow. Furthermore, various control strategies to optimize converter performance are
thoroughly analysed, along with WEL applications in frequency and voltage regulation, congestion
management, and black start operations. Moreover, recent efforts to minimize hydrogen production
costs through optimal system configurations and resource management are reviewed. It’s worth
indicating that alkaline WELs have the lowest capital cost, qualifying them as a cost-effective option
for large-scale hydrogen production. Therefore, this article seeks to aid researchers and stakeholders
by providing an insightful overview of the present status of WEL emergence in modern energy

systems, highlighting key technological advancements, challenges, and prospects.

Keywords: Renewable energy sources; Green hydrogen production; Water electrolyzer; DC converters; Power

system stability.

List of Abbreviations
AEM Anion exchange membrane LCOH Levelized cost of hydrogen
AL Alkaline Li-ion Lithium ion
ANFIS Adaptive neuro-fuzzy inference system LTTS Low temperature thermal storage
BBC Buck-boost converter MPC Model predictive control
CAES Compressed air energy storage Na-s Sodium-sulfur
CES Cryogenic energy storage Ni-cd Nickel-cadmium
DC converter DC-to-DC converter NPV Net present value
DER Distributed energy generator PEM Proton exchange membrane
DL Deep learning PHSS Pumped hydro storage system
DTR Dynamic thermal rating PID Proportional integral derivative
EST Energy storage technology PV Photovoltaic


mailto:hossam-ashraf@g.ecc.u-tokyo.ac.jp
mailto:mmae@g.ecc.u-tokyo.ac.jp
mailto:matu@g.ecc.u-tokyo.ac.jp

EV . Electric vehicle RES :  Renewable energy system

FC . Fuel cell RL . Reinforcement learning

FESS . Flywheel energy storage system SESS . Supercapacitor energy storage system
FIBBC . Floating-interleaved buck-boost converter SL :  Supervised learning

FLC . Fuzzy logic control SO : Solid oxide
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GHP : Green hydrogen production SMSS . Superconducting magnetic storage system
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IBBC . Interleaved buck-boost converter VR : Vanadium redox

IRR :  Internal rate of return WEL : Water electrolyzer
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LCOE . Levelized cost of electricity Zn-Br :  zinc-bromine

1. Introduction

Fossil fuel consumption has raised significant global concerns due to severe ecological drawbacks and
greenhouse gas emissions that accelerate climate change [1]. These fuels also contribute to water
pollution and habitat destruction, and their unsustainability raises doubts about long-term availability
and price stability [2]. Consequently, the global energy landscape is shifting toward renewable energy
sources (RESs), such as photovoltaic (PV), solar thermal, wind turbine (WT), hydro, geothermal, and
biomass, to reduce carbon emissions and achieve energy security [3-5]. Practically, governments and
agencies worldwide have implemented regulations such as the Paris Agreement to boost RES adoption
[6]. For instance, Japan has committed to carbon neutrality by 2050, marking a significant step beyond
earlier targets [7].

While RESs like PV and WT provide abundant clean energy, their dependence on fluctuating weather
conditions can pose stability challenges for modern power grids [8]. Accordingly, energy storage
technologies (ESTs) help mitigate these issues by storing excess power during light-load conditions
and releasing it when demand increases [9]. These ESTs may employ electrochemical, thermal,
electromechanical, or electromagnetic methods [10-12]. Among them, hydrogen energy storage
systems (HESS) derived from green hydrogen production (GHP), where hydrogen is generated from
RESs using water electrolyzers (WELSs), present a particularly promising solution for carbon emission
reduction and power system stabilization [13]. Specifically, hydrogen offers high energy density, can
be stored in gaseous or liquefied form, and is non-toxic, thus it enables flexible use across multiple
applications [14, 15]. Moreover, it can be reconverted into electricity using fuel cells (FCs), signifying

its role as a cornerstone of a carbon-neutral society [16].



In fact, incorporating WEL/FC-based systems within power grids can facilitate demand-supply

balance by converting surplus energy into hydrogen, which is later used during peak demand or

reduced renewable output [17, 18]. This dynamic flexibility aids frequency regulation, voltage control,

and overall grid resilience [19]. However, efficient integration requires suitable DC-to-DC converter

(DC converter) topologies and robust control methodologies to manage power flow. Non-isolated

converters are often employed in smaller-scale applications, while isolated converters provide

electrical isolation for high-power systems [20, 21]. Additionally, advanced control strategies, ranging

from proportional—integral (PI) and fuzzy logic to neural networks, are critical for addressing nonlinear

system dynamics and ensuring stable operation [22-25].

In this regard, several reviews have addressed individual aspects of GHP, such as technical principles,

market potential, and challenges [26-28], the role of WELSs in decarbonized power grids [29, 30], and

WEL/FC-based configurations in AC/DC networks [31]. Other studies focus on FC/WEL control

strategies [32], examine broader energy storage options [33], or perform techno-economic assessments

of different RESs and WEL types [34-36]. Yet, a comprehensive discussion that integrates both

technical and economic dimensions, covering WEL/FC designs, converter topologies, control

schemes, and profit optimization for power grids, is still lacking.

To fill this gap, the present review provides a holistic evaluation of GHP systems, emphasizing their

role in power regulation, grid stability, and economic performance. The key contributions can be

summarized as follows:

a) A systematic comparison of various ESTs, highlighting why hydrogen-based solutions stand out.

b) An in-depth analysis of different WEL types, e.g., alkaline (ALWEL), proton-exchange membrane
(PEMWEL), anion exchange membrane (AEMWEL), and solid oxide (SOWEL), and their best-
fit applications.

c) Areview of mathematical modelling approaches for WELSs, with detailed formulations, particularly
for PEMWEL.

d) Anoverview of DC converter topologies (isolated and non-isolated) and their control strategies for
efficient power transfer with WELSs and FCs.

e) A survey of practical WEL applications in modern power systems, focusing on stability and
ancillary services.

f) Recent approaches to optimizing economic performance when integrating GHP and RESs.

g) Key insights into future research directions and challenges in achieving carbon-neutral power
systems.

The remainder of the article is organized as follows: Section 2 discusses the concept, advantages, and

disadvantages of various ESTs. Section 3 introduces the internal construction and chemical reactions

3



of common WEL types. Section 4 reviews WEL modelling approaches and provides a detailed
mathematical formulation for PEMWEL. Section 5 explores DC converter topologies for connecting
fuel cells and WELSs to the grid, while Section 6 highlights corresponding control strategies. Section 7
illustrates WEL applications in modern power systems, and Section 8 addresses recent efforts to
optimize economic performance. Finally, Section 9 concludes with key findings and future

perspectives. A graphical overview of the scope is shown in Fig. 1.
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Fig. 1. Organization of paper scope



2. Overview of various energy storage technologies

Since the growing integration of RESs in power systems is characterized by a continuous substitution
of synchronous generators with static inverters, significant instability issues have arisen due to power
fluctuations [37, 38]. Such power electronic devices reduce the system’s mechanical inertia making it
vulnerable to instability attacks as a result of any supply-demand imbalance [39]. Actually, minimizing
the mechanical inertia increases the system efficiency, however, it can vigorously trigger frequency
oscillations leading to recurring tripping of under/over frequency relays. Thus, the operator may resort
to shed the loads or automatic series outages may occur [40].

Indeed, ESTs offer an effective solution to overcome the aforementioned problems related to the high
penetration of RESs in power networks [41]. Principally, an EST-based system stores surplus energy
in a form different from its original one for a while then releases it upon a call to support the power
balance [42]. Fig. 2 classifies various ESTs employed in power systems according to the type of stored
energy [43]. Specifically, hydrogen-based energy storage system (HESS) represents chemical ESTs,
and supercapacitor energy storage system (SESS) and superconducting magnetic storage system
(SMSS) are examples of electrical ESTs. Besides, electrochemical ESTs refer to batteries, such as
lithium-ion (Li-ion), lead-acid (LA), nickel-cadmium (Ni-Cd), sodium-sulfur (Na-S), zinc-bromide
(Zn-Br), and vanadium redox (VR) batteries. Additionally, mechanical ESTs include compressed air
energy storage (CAES), flywheel energy storage system (FESS), and pumped hydro storage system
(PHSS), while thermal ESTs comprise cryogenic energy storage (CES), low temperature thermal
storage (LTTS), and high temperature thermal storage (HTTS). Furthermore, the technical
characteristics of such technologies are thoroughly described in Table 1, which are extracted from [44-
47].

Particularly, HESS is a promising technology where hydrogen serves as the energy carrier. Due to its
abundance and ecological benefits, hydrogen supports transportation, power generation, heating, and
industry. However, its sustainability depends on the production process [48]. Hence, the authors in [49]
introduced a quality-based methodology to classify diverse hydrogen production techniques with a
color coding, as revealed in Fig. 3. Among the four methods, green and blue hydrogen gained a wide
popularity for attaining carbon neutrality [50]. Explicitly, green hydrogen attracts research interest due
to its reversibility in power systems [51]. In detail, Excess RES electricity is converted into hydrogen

via WELSs, while fuel cells regenerate electricity from stored hydrogen during peak demand [52].
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Table 1. Practical features of some ESTs
Time span,
Installed Efficiency Capital Charging Discharging
EST Commercial status . . Cycles x 10°
power (MW) (%) cost ($/W) period period
(years)
HESS Growing 0-58.8 25-58 0.5-10 hr - months sec - days 1-20 (5-20)
SESS Growing 0-0.3 90-95 0.1-0.45 sec - hr msec - hr >100 (20)
SMSS Growing 0.1-10 95-98 0.2-0.489 min - hr msec - 8 sec >100 (20)
Li-ion Commercialized 0-100 85-90 0.9-4 min - days min - hr 1-20 (5-15)
LA Mature 0-40 70-90 0.3-0.6 min - days sec - hr 2 (3-15)
Ni-Cd Commercialized 0-40 60-65 0.5-1.5 min - days sec - hr 2-3.5 (10-20)
Na-S Commercialized 0.05-34 80-90 1-3 sec - hr sec - hr 2.5-4.5 (10-15)
Zn-Br Demonstration 0.05-10 75 (average) 0.7-2.5 hr - months sec - 10 hr >2 (5-10)
VR Pre-commercialized 0.03-3 85 (average) 0.6-1.5 hr - months sec - 10 hr >12 (5-10)
CAES Mature 5-1000 70-89 0.4-1 hr - months hr - days >13 (20-40)
msec -
FESS Pre-commercialized 0.1-20 93-95 0.25-0.35 sec - min 15 mi >100 (>15)
min
PHSS Mature 100-5000 75-85 243 hr - months hr - days >13 (40-60)
CES Growing 0.1-300 40-50 0.2-0.3 min - days hr- 8 hr >13 (20-40)
LTTS Growing 0-5 50-90 - min - days hr -8 hr - (10-20)
HTTS Growing 0-60 30-60 - min - months hr - days >13 (5-15)

*sec, min, and hr refer to second, minute, and hour, respectively.
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Fig. 3. Classification of hydrogen production systems

Besides, according to Table 1, HESS provides a longer-term energy solution than other ESTs, making
it ideal for sustaining large loads during power outages. Its rapid response helps regulate power system
frequency, mitigating RES intermittency effects. Additionally, modularity and scalability enhance its
adaptability, while oxygen as a byproduct makes it an environmentally friendly option [53]. Recent
studies suggest that integrating distributed RESs with HESS improves power reliability, resilience, and
continuity. Table 2 highlights global HESS pilot projects, demonstrating its feasibility in power
networks. However, high installation costs and the need for a robust hydrogen infrastructure remain

key challenges [54].



Table 2. Global HESS ongoing projects

WEL Hydrogen tank FC

. Output

Ref. Origin RES’ type Capacity Pressure Volume
Type Type power
(kW) (bar) (Nm®)
(kW)

[55] Germany PV AL 100 30 5000 PAFC 80
[56] Spain PV AL 5 10 24 PEMFC/PAFC  7.5/10
[57] USA PV AL 6 5.7 30 x x
[58] Germany PV PEM 2 15 30 x x
[59] Germany PV AL 26 120 3000 PEMFC 5.6
[60] Canada PV/Wind AL 5 120 40 PEMFC 5
[61] Argentina PV/Wind AL 5 35 10 x x
[62] Spain PV PEM 1 70 30 x x
[63] Norway Wind PEM 1.5 14 16 x x
[64] France PV AL 3.6 0.4 10 x x
[65] Ttaly PV AL 3.4 4 10 x x
[66] USA PV PEM 3.35 15 5.4 PEMFC 2.4
[67] Spain PV AL 15 25 2 x x
[68] Australia x PEM 100 163 14 x x
[69] UK x AL 250 NM 10 NM 100
[70] UK x PEM 500 20 NM x x

“NM” and “%” refer to not mentioned and not existed in the reported article, respectively.

3. Advances in WEL technologies

A WEL utilizes a flow of electrons, injected from an external DC voltage source, to return water to its
forming atoms, hydrogen (H>) and oxygen (O>) [71]. It basically comprises an electrolyte sandwiched
by two electrodes (anode and cathode). So, passing an electrical current via water yields hydrogen at
the cathode and oxygen at the anode [72]. Considering the electrolyte material, WELs have several
types, such as ALWEL [73], AEMWEL [74], PEMWEL [75], and SOWEL [76]. To visualize the main
differences of these types, Fig. 4 encloses their schematic diagrams. Technically, each type has
distinctive characteristics, regarding operating temperature and pressure, efficiency, current density,

input voltage, and lifetime, as indicated in Table 3 [77].
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Table 3. Practical features of various WEL’s types
Type
ALWEL AEMWEL PEMWEL SOWEL
Feature
yttria-stabilized zirconia
Electrolyte KOH/NaOH KOH Solid polymer (Nafion)
(YSZ)
Carrier ion OH" OH" H* or
Temperature 65—100 °C 50—-70°C 70 —-90 °C 600 — 1000 °C
Pressure 2—10 bar <35 bar 15—30 bar <30 bar
Efficiency 62-84% 50-70 % 67-82% <100 %
Voltage/cell 1.8-24V 185V 18-24V 095-130V
Current density 0.2-0.4A.cm? 0.1 -0.5 cm? 0.6 -2.0 cm™ 0.3-1.0cm?
Response time Seconds Seconds Milliseconds Seconds
Lifetime <90 x 103 hr >10 % 10° hr <40 % 103 hr <40 % 10® hr
Scalability High Reasonable Reasonable Reasonable
Applicability status Mature Commercial Commercial Under development

Electrochemical reactions

1 1
At anode: 40H™ - 0, + 2H,0 + 4e™ 40H™ - 0, + 2H,0 + 4e~ 1~120—>2H++202 + 2e” 02‘—>202 + 2e”
At cathode: 2H,0 + 2e™ - Hy, + 20H~  2H,0 +2e™ - H, + 20H" 2H* 4+ 2¢~ - H, H,0 + 2e™ - H, + 40%~
1 1
Overall: 2H,0 - 2H,+0, 2H,0 - 2H,+0, Hy0 = Hy+=0, Hy0 - Hy+=0,

2

2

According to Table 3, PEMWEL has the fastest response time among the other types. Hence,
PEMWELSs find extensive use in power system applications, especially where a swift response is

essential for perceiving system stability. This motivates the authors to focus on modelling this specific



type, thereby ensuring a more concise article. In this context, the reader is invited to check the

following subsection for the PEMWEL mathematical model.

4. Electrical modelling of WELSs

As mentioned earlier, the primary barrier to widespread commercialization of WELSs in power systems
is their capital cost. Thus, a precise and reliable assessment of their behaviour shall be implemented to
identify any system defect before installing such expensive apparatuses [78]. Consequently, numerous
researchers are seeking for properly deriving comprehensive mathematical models that can accurately
simulate WELSs’ performance during various operating conditions [79, 80]. In fact, a robust and
efficient model cannot only evaluate the WEL’s response but also highlight the operational parameters
that optimize and predict WELs’ performance in a wide range of operating scenarios [81].

Given that WELs are multiphysics devices in which various chemical and thermal processes occur
simultaneously during operation, deriving a single model to comprehensively describe all these
phenomena is challenging. So, various electrical models have been introduced each varies depending

on the deriving approach, the studied behaviour, and the mathematical formulation, as depicted in Fig.

582, 83].
@ELS electrical modellina
Derivation T _£ o ‘o -_)_-f T
* Empirical | Semi-empirical )
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Studied -l Steadistate Dyrimic
behavior response response
Mathematical cmly- Linearalgebraic Non-linear algebraic ~ Ordinary differential Non-linear
presentation equations equations equations differential equations

Fig. 5. Categorization of WELs’ modelling
Among these approaches, the electrochemical model plays a significant role in accurately replicating
the polarization characteristics (V-1 curve) of PEMWELSs [84]. This is achieved through the integration
of chemical and physical parameters, including water content, hydrogen production rate, membrane
material, and cell area [85]. As illustrated in the model's equivalent circuit shown in Fig. 6, the

PEMWEL’s input voltage is a resultant of a voltage source, representing the minimum required

10



potential to start the chemical reactions, and a series of operational losses. More precisely, these losses
encompass activation and concentration overpotentials, each depicted by a capacitor-resistor branch,
alongside ohmic voltage drop originating from membrane and connection resistances. The model's

results are illustrated through a V-I curve, as depicted in Fig. 7 [78, 86].
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Fig. 6. Equivalent circuit of the electrochemical model
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As a single WEL cell is inadequate for meeting the demanded hydrogen production, multiple cells are
linked together serially forming a stack, ensuring the required hydrogen output. Thus, input voltage of
the WELS’ stack V; /g in (V) can be mathematically described by (1).

Visst = Neiz X Vijerz (D
where, N, is the number of serially connected cells. V; /1, is the cell input voltage in (V) which is
formulated by (2) [87].

Vijetz = Eoc + Vac + Vo + Vg ()
where, V., V,, and V., symbolize the activation, ohmic, and concentration voltage drops in (V),

respectively. E,. represents the minimum required voltage to initiate the cell in (V) and is given by

Nernst equation, as in (3) [86].
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Py+/ P,
E,, = 5.1822 x 1073 |AG + 0.0821 - T, - ln< HP 0)] 3)
w
where, the change in Gibbs-free-energy is represented by AG in (kJ/mol). T,,;, refers to the WEL’s
operating temperature in (k). Py, Py, and Py, point out the pressure of hydrogen, oxygen, and water in
(bar), respectively.
To describe the initial sluggish of the chemical reaction, the activation overpotential V., is computed

by (4).

1 1
Vact = 4.2545 X 107* - Ty, 6—Sinh_1]26]loz + 6—hsinh_1 g;lz 4)
" no Ut th

where, §,, and &, symbolizes the charge transfer coefficients of anode and cathode, respectively. The
WEL’s current density is denoted by J,;, in (A/cm?). The anode and cathode exchange current
densities are indicated by J,, and J;, in (A/cm?), respectively.
Furthermore, the linear region in the polarization curve, caused by the ohmic losses, can be expressed
by (5) [88].

Vo = Jeiz " (R + Rex) ()
where, R,, refers to the resistance due to the external leads in (€. cm?). The membrane resistance is

represented by R,,, in (€. cm?) and is computed by (6) [86].
Ry = — (6)

where, [, is the thickness of the WEL’s membrane in (cm). The membrane’s resistivity, donated by

O, in Q. cm™2, is function of the WEL’s temperature and the membrane’s water content A, as given by
(.
Te, — 303
om = (0.0051394 — 0.00326) - exp [4.1848 (—)] (7)
elz

At heavy current density, the chemical reaction encounters an impediment due to the high oxygen

concentration at the membrane area. This is represented by the concentration voltage drop and

expressed by (8).
Vop = 42545 x 1074T,;, - In (%) (8)
max ~ ]elz
where, J,,q, Tepresents the maximum current density in (4/cm?).
Finally, the produced hydrogen flowrate Qy in (m3/sec) is expressed by (9) [87].
T,
y = 4.2545 x 10-+JetzTetz 9)
H

12



While the electrochemical model discussed thus far primarily addresses PEMWELs, it is also
instructive to examine alternative electrolyzer technologies, such as ALWELs, AEMWELs and
SOWELSs, and how their modelling approaches differ in response to unique operational conditions. An
ALWEL is typically described by a base thermodynamic voltage plus activation, ohmic, and
concentration overpotentials. The ohmic loss is higher than in PEM systems due to the alkaline
solution’s lower conductivity and the diaphragm thickness. Activation overpotentials, stemming from
electrode kinetics, can be captured via resistor—capacitor (RC) or resistor—inductor—capacitor (RLC)
branches, while concentration overpotentials account for gas bubble formation and mass transport
limitations [89].

AEMWELSs resemble PEMWELSs in having a reference voltage source and similar loss terms, but the
higher ionic resistance of AEM membranes amplifies ohmic losses. Activation overpotentials are
modelled by RC branches, with differences in catalyst composition. Concentration overpotentials can
become significant if water supply or gas evacuation is restricted. Evolving models also consider
membrane carbonation and degradation to predict dynamic performance [90].

SOWEL modelling must integrate electrochemical and thermal dynamics due to elevated temperatures
that alter reaction kinetics and material properties. Multiple overpotential terms, including activation,
ohmic, and concentration, are typically included, with separate RC or RLC branches for different
electrode interfaces. Temperature-sensitive ohmic resistance arises from the electrolyte and
interconnects, while mass transport effects may require diffusion-limited current expressions. Long-
term factors like electrode delamination or electrolyte cracking are also included in advanced models
[91]. Table 4 compares the primary parameters, challenges, and representative equivalent circuit

elements across different electrolyzer types.

Table 4. Comparative overview of modelling approaches across electrolyzer types

Item ALWEL PEMWEL AEM SOWEL
Overpotentials e Activation e Activation e Activation e Activation
e Ohmic e Ohmic e Ohmic e Ohmic
o Concentration o Concentration o Concentration e Electrode polarization
Ohmic loss e Diaphragm/electrolyte e Membrane e Higher ¢ High-temperature
drivers resistance. conductivity membrane electrolyte/interconnect
(hydration- resistance  than resistance.
dependent). PEM.
Equivalent ® Voltage source e Similar multi- e Like PEM, but e More complex.
circuit (thermodynamic). branch RC  with higher e Often featuring multiple
structure e Multi-branch RC (or  structure, with  ohmic resistance =~ RC (or RLC) branches to
RLC) networks for  emphasis on capture temperature-

13



activation and  membrane due to OH- dependent  polarization

concentration resistance and  conduction. effects.
overpotentials. water
management.
Dynamic e Moderate: gas bubble e High: rapid load- e Moderate to e High: must integrate
modelling formation and mass following high: evolving  thermal gradients,
complexity transport influence capability designs require  potential material
transient response. requires  time- tracking degradation, and transient
varying membrane electrochemical
membrane carbonation and  responses.
hydration electrode
modelling. kinetics.
Modelling e Ensuring accurate e Capturing water e Limited data on e Elevated  temperatures
challenges representation of  management membrane accelerate
diaphragm thickness, ion ~ (membrane durability. electrode/electrolyte

transport, and bubble  hydration) and e Higher ohmic degradation

formation. load transients. losses. e Requires coupled thermal-
e Catalyst e Evolving electrochemical
degradation. catalyst designs modelling.
Representative  [89, 92] [93, 94] [90, 95] [91, 96]

references

5. Power electronics for electrolyzers and fuel cells applications

Modern power systems incorporate large amounts of RESs along with conventional power plants, with
distinct volage profiles. Thus, the integration of WELs and FCs in such systems necessitates an
interface to link the system voltage to their operating and generated voltages, respectively [20].
Specifically, the DC converter serves as such an interface since most RESs generate high DC voltage,
whereas WELSs need a low DC voltage input [21]. Conversely, FCs are employed as a standby power
source that can rapidly inject electrical power to the system when the power supplied by RESs is
insufficient. However, the injected power is delivered at a lower voltage than the DC bus. Hence, a
DC converter is also obligatory to step up the FC’s output voltage. Another crucial feature of WELs
and FCs is their inherently non-linear electrical response. Hence, a DC converter is essential to regulate
the voltage regardless of the loading conditions [14]. Fig. 8 offers a schematic explanation for the
configuration of WELs and FCs with RESs in a practical power network [32]. Indeed, a proper DC
converter for WELs and FCs applications shall meet certain features, like low expenses, high
conversion ratio and efficiency, substantial power density, minimized output current ripples and

electromagnetic interference, and capability to operate reliably during switching failure [20, 97].
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Fig. 8. Schematic configuration of WEL/FC-based power network

Particularly, the non-isolated and isolated DC converters dominate the WEL and FC applications

throughout the literature [20, 21, 98-100]. Thus, Table 5 presents a summarized comparison of the key

features of each category. In addition, the following subsection introduces an overview of their

topologies.
Table 5. Basic comparison of DC converters
Converter’s type Non-isolated DC converters Isolated DC converters
k Boost converter Buck-boost converter Flyback converter Full-bridge converter
Electrical isolation x x Via transformer Via transformer

Conversion type Step up

Step up/down

Step up/down based on
the transformer turns
ratio

Step up/down based on
the transformer turns
ratio

Power range Low-medium Low-medium Low-medium Medium-high

Complexity Simple Simple Moderate Complex

Efficiency High Moderate Low High

Cost Low Low-moderate High High

Electromagnetic Low Low Moderate High

compatibility

Switching frequency High High Moderate-high High

Reliability Vulnerable to single Vulnerable to single point of failure  Moderate High with reduced
point of failure capacity

5.1. Non-isolated DC converters

Principally, non-isolated converters are extensively utilized in numerous applications involving low

and medium DC voltages due to their affordability, simplicity, compact design, and ease of control

[101, 102]. Typical examples of such converters are the conventional buck-boost converter (BBC)
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[103], interleaved buck-boost converter (IBBC) [104], bidirectional buck-boost converter [105], and
floating-interleaved buck-boost converter (FIBBC) [106].

Conventional BBCs are distinguished by their low cost and uncomplicated circuit connection. This
augments their wide implementation in WEL-based power systems. However, such converters
experience considerable ripples in output current, which can be mitigated by raising the inductor size
or magnifying the switching frequency [102]. Nevertheless, increasing either of these parameters will
inversely impact energy efficiency, as it will lead to higher core and switching losses. Another concern
is that to attain a high step-up or step-down ratio, BBCs must operate at a significantly low duty cycle,
which can potentially result in interrupted conduction mode. This directly affect the converter’s output
voltage connected to the WEL. Again, this issue is addressed by elevating the inductor rating leading
to a higher loss, price, and size [103]. Moreover, conventional converters suffer also from reverse
recovery power loss due to the diode’s reverse recovery potential. Such loss is function of the initial
current, operating temperature, and the change rate of the switching current [101]. Thus, a synchronous
buck converter, an upgraded version of the conventional buck converter, is proposed in [107] to

minimize the aforementioned loss. In this design, a power transistor replaces the freewheeling diode,

Fig. 9. Circuit diagram of synchronous buck converter

as illustrated in Fig. 9.

out

For the sake of obtaining a high step-down ratio, a quadratic buck converter is proposed in the literature
[108]. In this configuration, two buck converters are serially connected through a single power
transistor, as shown in Fig. 10. Since this type runs only with a single power switch, the converter lacks
fault tolerance. Also, the power transistor encounters a high potential stress throughout the operation.
Thus, the authors in [109] have introduced multiquadric buck converters to minimize the potential
stress across the switches. Another technique to increase the step-down ratio is to use the tapped-
inductor buck converter [110]. In this design, the conventional inductor is replaced by a tapped inductor
with a single primary and single secondary winding, as depicted in Fig. 11. By this architecture, the
step-down voltage ratio is controlled by changing the turns ratio of the tapped winding n, /n, along
with the duty cycle D, as described in (10). Nonetheless, the winding leakage flux between both

windings causes spikes across the switch.
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Vour D
Ve D+ (1+n,/n)(1-D) (10)

For the same reason, a switched inductor-switched capacitor buck converter is developed in [111] to
magnify the voltage stepping ratio, as shown in Fig. 12. However, this design cannot guarantee

continuous operation in faulty conditions as it only includes one power switch.

L, _I_
C,

Fig. 10. Circuit diagram of quadratic buck converter
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Fig. 11. Circuit diagram of tapped-inductor buck converter
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Fig. 12. Circuit diagram of switched inductor-capacitor buck converter

When aiming to amplify the delivered power, the IBBC and FIBBC are the best alternatives to the
traditional BBC because the current is divided through separate legs. Basically, both configurations
are formed by connecting multiple BBCs via a common DC bus. For instance, the 3-legs IBBC, whose
circuit is shown in Fig. 13, offers optimal solution for minimizing output current distortion and
magnifying energy efficiency [112]. Another merit is that the power delivered from/to a WEL/FC
through IBBCs remains unaffected by the failure of a single power switch. Nevertheless, in the case
of 3-legs IBBC, such a failure causes a 50% increase in current stresses on the unfaulty legs compared
to the normal operation. This overstress, accompanied by excessive temperature, can severely affect
the switches’ reliability. Multi-leg IBBCs have also been studied in the literature for WEL/FC
applications. For example, the authors in [113] designed a 1200W silicon-based Multi-leg IBBC for
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FC operation. The results demonstrate a substantial reduction in current ripples by nearly 100%, along

with an energy efficiency of approximately 90%, while operating at a switching frequency of 25 kHz.

Vin Sl Vout

Di:& D& Ds& CJ|=

Fig. 13. Circuit diagram of 3-legs IBBC

5.2. Isolated DC converters

Isolated DC converters are the optimal choice for high-voltage WELs/FCs, as they incorporate an
intermediate AC domain utilizing a high-frequency transformer, as illustrated in Fig. 14 [100].
Particularly, the transformer plays a vital role in ensuring a low voltage input and a low current to the
output side converter [ 114]. The AC phase is considered as an over current protection stage for the FCs
[115]. Practically, it can be composed of various configurations including half-bridges [116], full-
bridges [117], or multi-port interleaved bridges [118]. Conversely, a diode rectifier along with a multi-
stage voltage source inverter represent the DC phase of such converters. Generally, flyback [119], half-
bridge [120], full-bridge [121], forward [122], and push-pull [120] are among the commercial versions
of isolated converters. Specifically, the literature claims that the best appropriate types for FCs are the
half and full-bridge converters due to their galvanic isolation, the high frequency of the transformer
minimize its size, their high voltage stepping ratio, and their smooth switching cycle that improves

their efficiency [122].

C
Vin 1 De AC 1V°“t

Inverter Transformer Rectifier Filter

Fig. 14. Schematic configuration of isolated DC converter

For example, an isolated half-bridge DC converter engaged with a smooth switching technique is
introduced in [123] for an WEL application to diminish the switching losses, as captured in Fig. 15(a).
In fact, this configuration is characterized by regulation simplicity, and applicability to achieve

significant voltage ratio which is a must for WEL/FC systems, as described in (11).
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=— (11)

where, n is the transformer turns ratio.

On the other hand, it experiences high power loss due to the large turns ratio of the transformer which
causes high magnetic flux resulting in excessive leakage reactance. Besides, it lacks the ability to
operate in the event of a switch failure. Furthermore, the reader can browse [ 124] for investigating the
full-bridge version utilized in WEL systems whose circuit diagram is depicted in Fig. 15(b). Primarily,
its main advantage over the half-bridge isolated converter is its superior conversion efficiency.

Moreover, a filter can also be integrated with it to eliminate current spikes on the power electronics.
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(a) Half-bridge DC converter
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(b) Full-bridge DC converter
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Fig. 15. Circuit diagram of isolated DC converters

6. Control methodologies of WELSs/FCs DC converters

An essential factor in optimizing WEL/FC-based systems is the converter control methodology, which
ensures precise and efficient DC converter operation. Controllers regulate output voltage and current,
mitigate power oscillations, and prevent adverse effects on WEL/FC performance [21]. Moreover,
optimal control design enhances energy efficiency, minimizes converter losses, and extends
component lifespan. To reiterate, buck converters step down DC bus voltage to power WELSs, while
boost converters raise FC output voltage to the required DC level [84]. For clarification, Fig. 16
illustrates the integration of controllers with DC converters. Control methods vary by technique,

including analytical (e.g., PID, root locus, lead-lag compensators), model-based (e.g., sliding mode,
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fractional order), and data-trained approaches (e.g., neural networks, fuzzy logic, model predictive
control) [32]. However, only specific types have been recognized in the literature as effective tuners
for DC converters in WELs/FCs-based power systems. Thus, the following subsections offer

discussive illustrations on such types.

Controller

= Control signal _ -
Power flow

~,

(" Reference )
(__ value )

—_—— ——

Fig. 16. Generic configuration of DC converter’s controllers in WEL/FC-based networks

6.1. Proportional-integral controller
The proportional-integral (PI) controller is widely used due to its effectiveness and simple
mathematical formulation. It operates by minimizing the deviation between the actual and desired

values, combining two key components: the proportional term (k,, ), which adjusts the output based on

the current error, and the integral term (k;), which accumulates the error over time to eliminate steady-
state deviations [21, 84]. Accordingly, several studies have demonstrated the effectiveness of PI
controllers in regulating the output voltage of DC converters, ensuring that WELSs receive a consistent
and appropriate power supply, even when the grid voltage fluctuates [32, 125].

In this regard, the authors in [126] proposed a novel PI tuner for an ALWEL-based network, as shown
in Fig. 17(a). It’s worth indicating that V,;, I, Prf, and I,f represent the WEL’s actual voltage and
current, as well as the desired preset power and current, respectively. On the other hand, R, and L.,
denote the buck converter’s resistance and inductance, respectively. Additionally, they developed a
tuning technique for the PI controller’s parameters of the ALWEL, eliminating V,; by assuming it
remains constant throughout the entire operation. They disregarded the internal dynamic response of
the WEL by treating it as a linear resistor. Furthermore, an average switching approach is introduced
for the WEL current control loop, as illustrated in Fig. 17(b). Finally, the authors assert that their design
enhances the controllability of the DC link voltage by implementing the WEL current control as an

inner control loop within the outer DC voltage control loop.
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Fig. 17. PI controller for WEL-based systems

Another contribution, as presented by the authors in [127], involved the development of two cascaded
PI controllers to refine the current control signal more smoothly. Essentially, the inner loop regulates
the WEL’s current based on the reference signal generated by the outer loop, as revealed in Fig. 18.

They employed the state-space representation to derive the transfer function of the WEL.

L —— S e creotrorvrer L i
| 21((5) | '_,|,~A, _’l( Electrolyzer} : e
—_— J T
LPF

Fig. 18. Series PI controller for WEL-based systems

In contrast to previous efforts, the authors in [128] have taken into account the actual dynamic
performance of the ALWEL. They applied control theory to model the WEL by using a step input and
subsequently derived the corresponding second-order transfer function. Their proposed model is
considered as an electrical circuit where it includes inductance L,; and capacitance C,;. These
parameters represent the time delay due to a step input applied to ALWEL. However, L,; may be
assumed zero for PEMWEL since it has a swift response compared to ALWEL. Physically, C,; defines
the double-layer capacitance, R,, symbolizes the mass transport losses, and R; refers to the nonlinear
losses due to the material and external leads. The aforementioned state-space modelling, the proposed
electrical model incorporates two state variables that characterize the controller's response, as

described in (12) and (13) by neglecting R,,.
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(Ler — Lcn)% = dVin — Ve (12)
Wa _,_Va (13)
dt R

where, V;;, and Vy; are the input voltage of the converter and the EL’s electrical double layer voltage
in (V), respectively.

As aresult of (12) and (13), two PI controllers are necessary for both the outer voltage control and the
inner current control in ALWEL. Nevertheless, only a single PI controller is employed in PEMWEL,
as the electrical double layer is nearly neglected, thereby eliminating the need for the outer voltage

control loop, as shown in Fig. 19.
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Fig. 19. PI controller for ALWEL based on control theory

6.2. Sliding mode controller

Sliding mode control (SMC) is a nonlinear control technique that operates by forcing the system to
follow a desired trajectory, known as a sliding surface or sliding manifold, in the state-space. The
system is driven toward this surface using a high-gain control law, where it slides along the surface
toward the desired equilibrium point, as revealed in Fig. 20(a). The main principle behind SMC is to
switch control actions based on the system's state in relation to the sliding surface, allowing the system
to converge to its target behaviour despite uncertainties or disturbances [129].

One of SMC’s most significant advantages is its ability to handle systems with nonlinearities, unknown
dynamics, and external disturbances, as concluded from its conventional structure seen in Fig. 20(b).
However, SMC typically experiences chattering caused by the high-frequency switching in sliding
mode, which can result in mechanical vibrations or excessive switching in power electronics [43,58].
Thus, recent SMC variants have been developed, like higher-order sliding mode control (HOSMC),
terminal sliding mode control (TSMC), and super-twisting sliding mode control (STSMC) [130, 131].
In WEL-based systems, SMC provides precise control of DC converters by optimally regulating input

voltage and current, maintaining efficient hydrogen generation. Thanks to its swift dynamic response,
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SMC can ensure system stability despite load variations and disturbances. Moreover, its capability to
deal with heavy nonlinear systems, like WELs, magnifies its robustness in sustaining the desired
operating scenarios. In this context, the reader is invited to visit [132] for investigating practical

applications of SMC in WEL/FC-based systems.

6.3. Backstepping controller
Principally, backstepping control offers a systematic design approach that utilizes a series of virtual
controllers to stabilize complex systems. Specifically, the backstepping controller is constructed step
by step using a recursive procedure, which ensures stability at each stage. Hence, it outperforms
conventional techniques in managing nonlinear behaviours and unwanted disturbances [133].
Accordingly, backstepping control has several applications in DC converters, where it accurately
controls output voltage and current to minimize energy loss and enhance stability over a wide range of
loading conditions [134]. Furthermore, due to its capability to handle abrupt system changes and
parameter uncertainties, backstepping control can address additional integrated control targets, such
as power management and current limitation. Thus, the backstepping tuner has been employed to
address various control challenges in FC-based power systems. For example, a backstepping controller
is proposed in [135] to ensure smooth tracking of the maximum allowable power generated by the
PEMEFC, thereby extending its operational lifetime.
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(b) Practical steps for designing an SMC
Fig. 20. Basic structure and concept of SMC

6.4. Model predictive controller

The popularity of Model Predictive Control (MPC) in WEL/FC-based power systems arises from its
effectiveness in managing multivariable control systems with constraints and optimizing performance
in real-time applications [136]. Particularly, MPC can predict the future response of WEL/FC
operating variables, such as voltage, current, and hydrogen production/consumption, by utilizing their
dynamic model. It updates the control inputs based on a continuously optimized objective function,
subject to practical constraints, such as power and hydrogen production/consumption boundaries. This
promotes MPC in applications involving WELS/FCs linked to RESs, where unpredictable variations
in power supply may occur. Its robustness and precision in predicting system responses within preset
boundaries contribute to maximizing the efficiency of WELS/FCs, thereby extending their operational
lifetime. Moreover, MPC can adapt to additional control objectives, including hydrogen storage
limitations, downstream applications, and power network stability [137, 138].

Practically, an MPC comprises four principal phases: prediction technique, optimization methodology,
receding horizon, and feedback. The prediction technique is employed to foresee the system’s
upcoming states, while the control task is handled by the optimizer to diminish the fitness function
without violating the system’s constraints. The receding horizon approach implements only the first
control action from the optimized sequence, advancing the horizon with each time step. Finally, the
model is updated according to the latest measured data using the feedback strategy. Fig. 21 illustrates
the basic block diagram of a practical MPC, showing how these phases work together to achieve
efficient control [139].

24



Disturbance, d

( .Y ( Constraints )
(| SOSHRNHN | | = X St ) l
Reference state, X —=— Input, U (TTI T Ty Output, Y
. = .
o —>®—> Bptlmze_rj _>l_ _F‘lint_ _‘J——V
 "Model
| fxug) |
T State, X (— _St_ate_ —\

Fig. 21. Schematic block diagram of MPC

6.5. Fuzzy logic controller

Owing to its ability to address the vagueness and inaccuracy inherent in sophisticated dynamic
systems, fuzzy logic controller (FLC) has recently recognized as a potent control method in WEL/FC-
based systems. In contrast to conventional controllers, FLC doesn’t necessitate a precise mathematical
model of the system, rather, it utilizes human-like reasoning to derive decisions predicated on
imprecise information [140]. Fig. 22 showcases the three primary phases of implementing an FLC:
fuzzification, rule evaluation, and defuzzification. Initially, it transforms distinct inputs, such as error
signals, into fuzzy sets that denote varying degrees of membership within linguistic categories.
Subsequently, it analyses these inputs through the application of specific rules to ascertain the suitable
control action. Ultimately, the fuzzy output is reverted back to a distinct control signal. This
methodology is particularly efficacious for the management of intricate, nonlinear systems without the
necessity for exact mathematical models [141].

In WEL-based systems where variables such as input power, voltage and current can fluctuate due to
RESs, FLC is of great advantage. It allows smooth control of the operation of the WEL by adjusting
parameters to maintain optimal hydrogen production under changing conditions. FLC is perfect for
online applications because of its adaptability in handling nonlinearities and disturbances, which
guarantees the WEL runs effectively and within safe bounds. To further improve system performance
and reliability, FLC can be easily integrated with other control strategies, such as PI or MPC. Because
of its versatility and durability, FLC is a preferred option for handling the complexity of WEL-based
power systems, especially when integrating RESs [142].
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Fig. 22. Schematic block diagram of FLC

6.6. Neural network controller

Without any loops, a feedforward neural network (FNN) processes data in a single direction, from
input to output. Itis made up of an input layer thattakes in data, one or more hidden layers
that use activation functions and weighted transformations, and an output layer that generates the final
prediction. In order to reduce errors during training and enable the network to learn intricate patterns
and produce precise predictions, the network uses backpropagation to modify its weights. Over
time, the network's performance can be enhanced and generalized through this process [143].
FNNs are employed to model and regulate the challenging behaviour of WELs/FCs because they
resemble the human brain's capacity for learning and generalization from data. In these systems,
particularly when connected to RESs, FNN can learn the best control strategies
for managing variables like voltage, current, and hydrogen mass flowrate under variable load and
power conditions. For example, a novel FNN-based maximum power point tracking controller is
proposed in [144] to optimally tune the duty cycle of the DC converter connected to a PEMFC stack.

The FC's voltage V¢ and current I¢. serve as the input data, while the converter's duty cycle represents

the output. Fig. 23 illustrates the proposed FNN structure. The integration of the FNN with the DC

converter ensures zero current ripple, optimizing the performance of the system.

Layer 1 Layer 2

o @
Duty cycle

. . O ——
B—0O OF -+

Input layer Hidden layers Output layer

Fig. 23. Schematic architecture of FNN

6.7. Adaptive neuro-fuzzy inference controller
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Fuzzy logic and neural networks are combined in an adaptive neuro-fuzzy inference system (ANFIS),
which allows it to learn and adjust to changing operating conditions. It functions by transforming input
data into fuzzy sets, assessing relationships, and optimizing the membership functions and rules using
neural network learning. ANFIS modifies these settings during training in order to reduce errors.
Lastly, it transforms fuzzily output values into sharp ones [145]. ANFIS is an optimal solution for
dynamic and nonlinear systems because of its integration of neural learning and fuzzy logic, which
enables it to adapt over time. Because of its flexibility, ANFIS can continuously modify control
parameters to achieve the highest efficiency levels, thereby optimizing the performance
of WEL/FC. ANFIS can be used in FC systems to control output power and increase cell lifetime,
and in WEL systems, itaids in maintaining ideal hydrogen production rates undera range
of load scenarios [146].

Finally, Table 6 offers a comprehensive comparison of the previously discussed control techniques in
terms of operation theory, stability, learning and adaptation capabilities, ability to handle nonlinear
systems, tuning effort, computational burden, and suitability for real-time applications. Furthermore,
an extensive summary of the recent state-of-the-art literature on the practical application of these
techniques in WEL/FC applications is thoroughly covered in Table 7.
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7. Power system integration of WEL-based systems

7.1. WEL’s applications in modern power systems

The rapid expansion of RESs in modern power systems has raised stability concerns due to their
intermittent nature, especially in PV and WT systems [3, 171]. Unlike conventional power plants, RES
output fluctuates with weather conditions, causing frequency and voltage instability [172, 173]. On the
other hand, WELs offer a dual benefit, producing green hydrogen while providing ancillary grid
services. By adjusting their operation, they help balance supply and demand, regulate frequency and
voltage, and enhance grid resilience [26, 29-32]. Thus, the following subsections explore these
services, emphasizing their role in optimizing power system performance and supporting a sustainable

energy transition.

7.1.1. Frequency regulation

Maintaining a stable frequency is crucial for reliable operation and protecting connected equipment.
Frequency fluctuations occur when supply and demand are unbalanced, causing deviations from the
nominal 50 Hz or 60 Hz [174]. In response to these alternations, WELs help stabilize frequency by
adjusting their power consumption. During over-generation, they increase hydrogen production by
consuming excess electricity, reducing frequency to normal levels. Conversely, during under-
generation, they decrease power consumption, freeing capacity to balance the grid, as shown in Fig.
24 175, 176].

Moreover, WELSs are scalable devices capable of adapting to several network configurations and sizes.
For instance, in distribution systems where the integration of RESs is rapidly increasing, small-scale
WELSs can be deployed to provide secondary frequency control. Accordingly, an online simulation of
engaging a generic front-end controlled 120 kW WEL for providing frequency compensation is
reported in [29]. The findings highlight the capability of the PEMWEL to provide an immediate and
appropriate response, thereby significantly reducing frequency errors. On the other hand, placing
larger-scale WEL systems at key locations such as transmission hubs or substations can significantly
enhance grid stability and frequency control over a larger area. By optimal situating these WELs at
specific points in the transmission network, they can effectively stabilize grid frequency and address
larger-scale disturbances. Their rapid response to varying grid conditions aids in mitigating
fluctuations and reinforcing overall system reliability. In this context, the authors in [177] conducted
an efficacy assessment of utilizing PEMWELS in conjunction with PEMFCs for primary frequency

control. This evaluation was based on accurate forecast data derived from an actual grid scenario in
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the Netherlands for the year 2030. The outcomes affirm that PEM devices can effectively compensate
frequency deviations with respect to conventional generators under identical reserve capacity.
However, there are major obstacles that hinder the huge penetration of WELSs in power systems. For
instance, the swift dynamic response still only characterizes specific WEL’s types, such as PEMWELSs
[30]. Furthermore, the WELs’ capital cost of installation and maintenance are still high. Thus,
numerous research attempts are trying to tackle these problems individually [22].

Over-frequency
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Fig. 24. WEL’s contribution to frequency regulation

7.1.2. Voltage regulation

WELs also play a key role in voltage regulation, ensuring stable grid operation [178]. While
traditionally considered DC loads consuming only active power, advancements in power electronics,
such as grid-forming inverters, now enable WELS to control both active and reactive power [128, 179].
By adjusting inverter settings, WELs can absorb reactive power to lower voltage during overvoltage
conditions or inject reactive power to raise voltage when needed. This regulation is achieved without
disrupting hydrogen production, enhancing grid stability and flexibility [29, 32, 180].

Consequently, the authors in [181] propose a novel fleet control of grid-connected WELSs to mitigate
the penetration effect of PV into distribution systems. Their outcomes signify how the implemented
fleet control can effectively reduce voltage oscillations, mitigate overvoltage issues, and stabilize the
intermittent operation of control devices caused by the discontinuous nature of PV generation. This
enhances overall grid stability and ensures smoother operation in systems.

Furthermore, the authors in [182] have fully defined the electrochemical model of a 0.5 MW AWEL
involving its inherent dynamic response and nonlinearity. The studied WEL was connected to the grid
through a phase-shifted full-bridge active front-end converter. The ultimate goal was to mitigate the

voltage harmonic distortion and optimize the system behaviour under diverse operating conditions
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including severe voltage deviations. According to the simulation outcomes, the proposed system
successfully minimized the harmonic contents to match the Danich electricity grid code.

Another attempt is presented in [183] for analysing the gride code requirements for linking mega-scale
WEL to the power network. Specifically, the authors have introduced a detailed model for a grid-
integrated WEL via triple-phase h-bridge converter. Moreover, they developed a low voltage ride-
through methodology. The integrated system has proved its efficacy in supplying sufficient reactive

power to compensate voltage deviations.

7.1.3. Network balancing

Basically, network balancing ensures equilibrium between electricity supply and demand [29]. WELs
contribute by acting as flexible loads, adjusting power consumption based on grid conditions. During
excess generation from PV and WT, WELSs increase hydrogen production, preventing renewable
curtailment and reducing grid overload [180]. On the other hand, during high demand or low RES
output, WELSs reduce or pause consumption, freeing power for critical loads and easing grid strain
[184]. This flexibility helps stabilize supply-demand balance while enabling hydrogen storage for later
energy or industrial use, enhancing profitability, resilience, and renewable integration [185].

In this regard, the authors in [186] discussed how WEL plants can maximize the profit share of a WT-
driven hydrogen production system interconnected to gride services. Particularly, they simulated
practical grid services along with actual data of the energy price and wind energy profile from certain
countries like Norway, France, Spain, and Italy. The findings highlight the capability of WELSs to
maximize economic profit through participation in applicable grid services by utilizing the unexploited

capacity of generated hydrogen.

7.1.4. Grid congestion

Grid congestion occurs when transmission or distribution networks are overloaded, restricting efficient
power flow, especially in high-RES areas where infrastructure struggles to handle peak generation.
Traditional solutions focus on grid expansion and modernization, while smart grids with ESTs offer
real-time monitoring, demand-side management, and enhanced RES integration, providing a flexible
approach to congestion management [3, 16, 29, 173].

WELSs help alleviate congestion by acting as controllable loads in congestion-prone areas. They absorb
surplus electricity, converting it into hydrogen for storage, preventing bottlenecks and renewable
curtailment. Their dynamic operation allows real-time energy flow control, reducing grid strain while
maximizing RES utilization. Additionally, WELs lower the need for costly infrastructure upgrades,

making green energy integration more efficient and economically viable [128, 187].
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In this context, the authors in [188] conducted a techno-economic assessment of a GHP system
connected to a medium-voltage grid, supplemented with RESs. The case study was implemented in
the Netherlands, considering price-aware electricity customers who adjust their consumption based on
fluctuating electricity prices. Besides, the proposed economic-incentive optimization methodology
involves single leader, grid utility, and several followers, including RESs’ owners and electricity
consumers. Specifically, the utility allocates the time-variant congestion tariffs at each individual
busbar, accordingly, the followers adjust their power generation or dissipation to minimize the fitness
function, which is the operational cost. Herein, WELs demonstrate their ability not only to adapt to
dynamic pricing strategies but also to contribute to the grid’s profit share. By responding to fluctuating
electricity prices, WELs can optimize their operation, consuming energy when prices are low and
generating hydrogen efficiently.

For the same purpose, the authors in [ 189] discussed how WELSs could effectively support the network
management, configuration, and congestion in Germany. They proposed a generalized optimization
approach comprising electricity price’s variations and congestion management for diverse operating
modes and strategies. Particularly, different WELs’ operating scenarios, distinct WELs’ installed
capacities, and various industrial carbon-neutrality strategies are comprehensively evaluated. The
outcomes underscore that WELs demonstrate superior performance in addressing power congestion

issues, particularly when implemented within a distributed-industries framework.

7.1.5. Black start

Black start refers to restoring power to a grid after a shutdown without external energy sources.
Conventional power plants require external power to restart, making grid re-energization challenging.
Black start-capable units, typically small self-sufficient generators, play a key role in this process
[190]. Although WELs are still underexplored for black start, they can serve this function when
coupled with hydrogen storage and FCs. Stored hydrogen can be converted back into electricity,
supplying the initial power needed to restart larger generators and gradually restore the grid. Their
independent operation, quick response, and sustainability make WELs valuable for grid recovery. As
RES penetration increases, reliance on fossil-fuel-based black start resources may become impractical,
positioning WELS as a green and efficient solution for power system restoration [191].

A systematic summary of recent attempts to utilize¢ WELSs in various power system applications is
presented in Table 8. Several assessment criteria have been used to evaluate the effectiveness of WEL
control methodologies in achieving goals such as frequency and voltage regulation, power balancing,
and grid congestion management. Commonly employed criteria include the integral absolute error

(IAE), integral time absolute error (ITAE), integral square error (ISE), integral time square error
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(ITSE), and mean square error (MSE), all of which measure the deviation between reference and actual
values for frequency, voltage, or power.

7.2. Advanced grid strategies for hydrogen integration

As concluded from the previous subsection, GHP via WELSs presents significant benefits for power
systems in terms of long-term energy storage and ancillary services. However, fully realizing these
advantages requires not just technological innovation in WELSs but also advanced grid management.
Consequently, this section explores how flexible network topology, dynamic thermal rating (DTR),
and other distributed energy resources (DERs) can synergize with GHP to enhance overall system
reliability and resilience.

Flexible network topology adjusts circuit breakers and tie lines in real time to redistribute power flows
resulting in congestion reduction and greater renewable penetration [192, 193]. Furthermore, DTR
raises transmission limits based on real-time ambient conditions, allowing operators to channel
otherwise-curtailed renewable energy toward WELs. This reduces hydrogen costs by boosting WEL
utilization and deferring major infrastructure upgrades. Accordingly, short-term measures like
topology reconfiguration and DTR pair effectively with hydrogen’s longer-term buffering capacity
which create a robust approach to handling intermittent RESs.

Other DERs, such as batteries, offer high-power but short-duration buffering, while hydrogen excels
at longer timescales [194]. Hence, coordinating these technologies helps manage both immediate
fluctuations and prolonged renewable deficits. For instance, batteries stabilize frequency or voltage
quickly, while hydrogen addresses seasonal imbalances. On the other hand, DTR optimizes power flow
so that grid operators can dispatch smoothly excess wind or solar to WEL.

Case studies show that network reconfiguration and DTR can jointly reduce wind curtailment, bolster
grid stability, and improve economic returns [192-194]. Achieving this synergy, however, demands
investments in sensor technology, real-time monitoring, and advanced control algorithms. Thus,
ongoing research targets multi-objective optimizations that integrate WEL dispatch with grid
reconfiguration to ensure cost-effectiveness and decarbonization without compromising reliability. As
technology matures and costs decline, coupling hydrogen with flexible grids is poised to become a key
pillar of future resilient power systems.

7.3. Hierarchical and distributed energy management in hybrid grids

The integration of GHP into modern power systems requires advanced energy management strategies
to optimize efficiency and ensure stability. Thus, hierarchical and distributed energy management
frameworks can play a key role in coordinating WELs, energy storage, and DERs in hybrid AC/DC

grids [195, 196]. Particularly, hierarchical energy management operates across multiple levels. At the
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supervisory level, long-term hydrogen production is optimized based on market conditions and load
forecasts. The network management layer balances AC/DC power flows, WELSs, and storage assets to
improve grid flexibility. Finally, device-level control autonomously adjusts power converters and WEL
operation in real time [197]. This structured approach can optimize energy use, reduces congestion,
and enhances grid resilience.

In contrast, distributed energy management shifts decision-making to interconnected control nodes,
enhancing scalability and adaptability. Using cloud-edge-device cooperation, cloud intelligence
performs system-wide optimization, edge computing manages local grid conditions, and device
controllers can adjust hydrogen production in response to real-time demand [196]. This approach can
improve direct DC coupling for WEL, reduces conversion losses, and ensures efficient RESs
utilization.

A key advantage of hierarchical and distributed energy management frameworks is their ability to
coordinate hydrogen storage with other energy assets. For example, the synergistic operation between
hydrogen and electric vehicle (EV) fleets can enhance grid flexibility, as EVs can act as mobile storage
units, supporting short-term demand response, while hydrogen provides deeper storage capabilities for
extended grid balancing [197]. This layered approach to energy resource coordination strengthens grid

resilience, particularly in networks with high renewable penetration.
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8. Economic perspectives of GHP

Fundamentally, conducting a thorough economic feasibility assessment is a crucial step in determining
the viability and practicality of any project [210]. In fact, the cost of GHP in power systems is
influenced by several factors, making it a complex and multi-faceted topic. The cost is primarily driven
by the price of electricity, which accounts for a significant portion of the total production cost, often
ranging between 50-70%. The WEL?’s efficiency is another critical factor, as higher efficiency reduces
energy consumption and, consequently, the cost of hydrogen. WEL’s capital cost, which includes the
cost of the equipment, installation, and maintenance, also plays a significant role. WEL’s type (e.g.,
PEM, AL, or SO) affects both efficiency and capital costs, with PEMWELSs typically having higher
costs but better adaptability to variable renewable energy inputs [211-213].

In addition, there are several external elements affecting the overall cost of GHP. These include
government policies, subsidies, and carbon pricing, which can incentivize or penalize certain energy
production methods. Technological advancements in WELs and RESs, as well as grid infrastructure
improvements, can also reduce costs over time. Moreover, the cost of transporting and storing
hydrogen, which can vary depending on the distance and method used, plays a substantial role in
determining the final cost to the end-user. Ultimately, the integration of green hydrogen in power
systems is expected to become more cost competitive as renewable energy prices decline, technology
improves, and economies of scale are achieved [214, 215].

Numerically, the levelized cost of hydrogen (LCOH) is a metric used to evaluate the overall cost of
producing hydrogen over the lifetime of a project. It’s similar to the levelized cost of electricity
(LCOE) and provides an average cost per kilogram of hydrogen produced, accounting for all expenses
such as capital investment, operation, maintenance, and fuel costs, as formulated in (14) [216-218].

Coox + X0 (CL, +CLY)X (A +1)7E
LCOH = cex Zt;ll( ortn elc) _( ) (14)
i MEx(A+r)t

where, the capital expenditure, initial investment cost for the WEL system, ($) is represented by C,,.
Cty and C,. are the operational and maintenance cost and electricity cost used for hydrogen
production in year t, respectively. Mf, 7, and t symbolize the amount of hydrogen produced in year t
(kg), discount rate (the cost of capital or interest rate), and project lifetime (years), respectively. It’s
worth mentioning that load factor, stack degradation rates, and energy tariffs, especially if the WEL
relies on intermittent renewables, are the key inputs for LCOH calculations.

In this context, several studies have focused on reducing the LCOH through the optimal design and

configuration of WEL-based power systems. These efforts aim to enhance the economic viability of
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GHP by optimizing system components, improving energy efficiency, and reducing overall costs. Table

9 summarizes some of the recent efforts in this regard.

Table 9. Analysis of published attempts to minimize hydrogen production costs

Ref. Grid RESs ESTs WEL H, Tank Location LCOH
mode Type Capacity Capacity Efficiency Cf:p acity (8/kg)
(W) factor (%) (%) g)
[219] On PV BESS PEM 900 NM 15.35 270 Canada 4.76*
(Overall)
[211] Off PV BESS PEM NM NM 90 10.97 Spain 6.71-
Italy 7.82%
[212] Off PV x PEM NM 90 61 x NM 6.22
[213] Off PV x AL 4500 20 NM M Korea 9.55
BESS 22 Graphed 11.67
[214] Off WT x AL 4800 NM 80 x Germany 4.84%*
[215] Off WT BESS NM NM NM 75 3375 China 3.073-
3.155
[216] On PV x NM 30 10 <75 30 Turkey 1.78-
3.40
[217] Off WT BESS AL 250 NM 85 2022 NM 33.70
[218] Off WT BESS NM 750 NM 59 900 Australia 28.10
[220] Off PV x PEM 1000 NM NM x Poland 14.13-
15.06%*
[221] Off WT x PEM 185 NM 8.72 x Badakhshan  3.887-
(Overall) 10.827
[222] Off PV/WT x AL 75 NM 62.8 NM Egypt 4.54-
7.48
[223] On WT x PEM 3700-4400 60 85 11.45-12.75  Croatia 17.1-
(10%) 27.2
[224] Off PV/WT BESS PEM 250 NM NM 700 Canada 21.9-
37.7
[225] Off PV/WT BESS NM 1500 NM 76.9 2000 India 3.00-
322
[226] Off PV BESS AL 70000 28 85 x Australia 3.1
[227] Off WT x PEM NM NM 50.7 x Algeria 6.1-6.8
[228] On PV x PEM/AL  62/49 NM NM x Germany 6.83-
8.10
[229] On PV x PEM 800 NM NM 1200 Oman 6.8
[230] Off Solar thermal x PEM NM NM NM NM Iran NM
/Geothermal
[231] Off WT x AL NM 97 NM NM Chile 1.78-
PEM 97 NM 2.45
SO 97 NM 2.61-
3.47
3.52-
4.11
[232] Off PV/WT x AL 75 NM 77 NM Egypt 3.73-
4.656

*Converted to $ (browse the article for the original currency).
"Overall" denotes that the value corresponds to the total efficiency of the GHP system, accounting for all contributing

sources.

Beyond LCOH, other financial indicators, such as net present value (NPV), internal rate of return
(IRR), and payback period, offer a broader investment perspective [233]. Specifically, NPV determines
whether the discounted sum of future cash flows is positive or negative, IRR identifies the discount
rate at which NPV is zero, thus reflecting project profitability, and the payback period estimates the
time required to recoup initial expenditures. When used in conjunction with LCOH, these metrics
capture project-specific risk tolerance, making the analysis more robust for stakeholders and potential

investors.
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On the other side, given the uncertainties involved, sensitivity analyses are often performed to identify
how changes in parameters, such as electricity price, WEL capital expenditure, efficiency, and policy
incentives, impact GHP feasibility [213]. Scenario analyses can also explore various market conditions
or policy frameworks, illuminating how GHP economics might evolve under different assumptions
(e.g., high vs. moderate renewable deployment). These methodologies help pinpoint cost drivers and

guide strategic planning, risk mitigation, or policy-making efforts [234].

9. Conclusion and future insights
In this article, a thorough review is presented to emphasize the transformative potential of green
hydrogen as an EST through the integration of WELs into modern power grids. A key aspect
highlighted in this work is the significance of the electrochemical model of WELs in understanding
their internal dynamics, which enables accurate performance predictions, effective control design, and
the optimization of hydrogen production processes. Furthermore, WELs have demonstrated their
potential to enhance grid stability and reliability as a result of their diverse applications, from frequency
and voltage control to grid congestion management and black start capabilities. It’s worth highlighting
that PEMWELs have the fastest dynamic response, enabling rapid adaptation to grid demand
fluctuations, real-time supply balancing, and mitigating intermittent RES impacts. On the contrary,
ALWELSs boast lower capital costs, extended lifespans, and reduced degradation rates, making them
an excellent choice for large-scale capacity projects. Moreover, the review underscores the importance
of advanced control techniques, such as PI, FLC, FNN, and ANFIS, for optimizing DC converters
connected to WELs/FCs. With ongoing research efforts focused on reducing hydrogen production
costs, the future of green hydrogen in energy systems appears promising. This review not only sheds
light on current technological advancements but also paves the way for future innovations in
sustainable energy systems.

Herein, various future perspectives are presented to accelerate the shift towards GHP systems, aimed

at enhancing power system stability and facilitating the large-scale penetration of RESs.

1. Enhancing the precision of WEL mathematical models can lead to more accurate real-time
operations and control strategies. Accordingly, novel mathematical models shall be developed to
combine the whole operation aspects of GHP system, including hydrogen fluid dynamics in
pipelines and storage medium.

2. Future advancements in WEL efficiency can significantly lower hydrogen production costs and
enhance their role in power systems. For instance, developing more efficient and durable catalysts,
such as using platinum-group metals or non-precious metal alternatives, can reduce energy losses

and enhance reaction rates during electrolysis. GHP efficiency can also be enhanced by further
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developments in PEM and AEM for augmenting ion conductivity. Moreover, better utilization of
the generated heat during hydrogen production phase can improve the overall efficiency by
directing it to preheat water or serve other thermal processes.

3. The integration between advanced converters topologies and control approaches can optimize
power system stability. For example, the concept of grid-forming converters can provide ancillary
services to power systems, like frequency and voltage regulation due to their rapid response to
power fluctuations. Thus, they can optimally synchronize the hydrogen production with the grid’s
demands.

4. Recent evolution of Al-based controllers can further facilitate the utilization of GHP systems in
dynamic grid support. Particularly, different machine learning control techniques, such as
supervised learning (SL), unsupervised learning (UL), reinforcement learning (RL), and deep
learning (DL), can significantly enhance the rapid integration of WELs. SL algorithms can predict
energy demand patterns according to recorded historical data, while UL models determine the
operation characteristics and abnormalities in WEL performance. Besides, RL techniques support
dynamic operation of WELS in response to power oscillations by offering on-time decision-making
capabilities. Lastly, DL approaches are appropriate for complex analyses of large datasets

regarding GHP processes.
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