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Abstract- Hydrogen is acquiring a promising recognition as a new trend in energy storage technologies 

due to its advantageous features including fast response, high energy density, and unconstrained 

storage capacity. Thus, it offers an effective solution for addressing the stability challenges posed by 

the large-scale integration of renewable energy sources (RESs) into power systems. Accordingly, this 

paper presents a comprehensive review of advancements in green hydrogen production (GHP), with a 

focus on water electrolyzers (WELs) and their integration into power systems. Specifically, it examines 

WEL types, operational characteristics, and the role of DC converters in system connectivity and 

efficient power flow. Furthermore, various control strategies to optimize converter performance are 

thoroughly analysed, along with WEL applications in frequency and voltage regulation, congestion 

management, and black start operations. Moreover, recent efforts to minimize hydrogen production 

costs through optimal system configurations and resource management are reviewed. It’s worth 

indicating that alkaline WELs have the lowest capital cost, qualifying them as a cost-effective option 

for large-scale hydrogen production. Therefore, this article seeks to aid researchers and stakeholders 

by providing an insightful overview of the present status of WEL emergence in modern energy 

systems, highlighting key technological advancements, challenges, and prospects. 

Keywords: Renewable energy sources; Green hydrogen production; Water electrolyzer; DC converters; Power 

system stability. 
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EV : Electric vehicle  RES : Renewable energy system 

FC : Fuel cell  RL : Reinforcement learning 

FESS : Flywheel energy storage system  SESS : Supercapacitor energy storage system 

FIBBC : Floating-interleaved buck-boost converter  SL : Supervised learning 

FLC : Fuzzy logic control  SO : Solid oxide 

FNN : Feedforward neural network  SMC : Sliding mode control 

GHP : Green hydrogen production  SMSS : Superconducting magnetic storage system 

HESS : Hydrogen energy storage system  STSMC : Super-twisting sliding mode control 

HOSMC : Higher-order sliding mode control  TSMC : Terminal sliding mode control 

HTTS : High temperature thermal storage  UL : Unsupervised learning 

IBBC : Interleaved buck-boost converter  VR : Vanadium redox 

IRR : Internal rate of return  WEL : Water electrolyzer 

LA : Lead acid  WT : Wind turbine 

LCOE : Levelized cost of electricity  Zn-Br : zinc-bromine 

1. Introduction 

Fossil fuel consumption has raised significant global concerns due to severe ecological drawbacks and 

greenhouse gas emissions that accelerate climate change [1]. These fuels also contribute to water 

pollution and habitat destruction, and their unsustainability raises doubts about long-term availability 

and price stability [2]. Consequently, the global energy landscape is shifting toward renewable energy 

sources (RESs), such as photovoltaic (PV), solar thermal, wind turbine (WT), hydro, geothermal, and 

biomass, to reduce carbon emissions and achieve energy security [3-5]. Practically, governments and 

agencies worldwide have implemented regulations such as the Paris Agreement to boost RES adoption 

[6]. For instance, Japan has committed to carbon neutrality by 2050, marking a significant step beyond 

earlier targets [7]. 

While RESs like PV and WT provide abundant clean energy, their dependence on fluctuating weather 

conditions can pose stability challenges for modern power grids [8]. Accordingly, energy storage 

technologies (ESTs) help mitigate these issues by storing excess power during light-load conditions 

and releasing it when demand increases [9]. These ESTs may employ electrochemical, thermal, 

electromechanical, or electromagnetic methods [10-12]. Among them, hydrogen energy storage 

systems (HESS) derived from green hydrogen production (GHP), where hydrogen is generated from 

RESs using water electrolyzers (WELs), present a particularly promising solution for carbon emission 

reduction and power system stabilization [13]. Specifically, hydrogen offers high energy density, can 

be stored in gaseous or liquefied form, and is non-toxic, thus it enables flexible use across multiple 

applications [14, 15]. Moreover, it can be reconverted into electricity using fuel cells (FCs), signifying 

its role as a cornerstone of a carbon-neutral society [16]. 
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In fact, incorporating WEL/FC-based systems within power grids can facilitate demand-supply 

balance by converting surplus energy into hydrogen, which is later used during peak demand or 

reduced renewable output [17, 18]. This dynamic flexibility aids frequency regulation, voltage control, 

and overall grid resilience [19]. However, efficient integration requires suitable DC-to-DC converter 

(DC converter) topologies and robust control methodologies to manage power flow. Non-isolated 

converters are often employed in smaller-scale applications, while isolated converters provide 

electrical isolation for high-power systems [20, 21]. Additionally, advanced control strategies, ranging 

from proportional–integral (PI) and fuzzy logic to neural networks, are critical for addressing nonlinear 

system dynamics and ensuring stable operation [22-25]. 

In this regard, several reviews have addressed individual aspects of GHP, such as technical principles, 

market potential, and challenges [26-28], the role of WELs in decarbonized power grids [29, 30], and 

WEL/FC-based configurations in AC/DC networks [31]. Other studies focus on FC/WEL control 

strategies [32], examine broader energy storage options [33], or perform techno-economic assessments 

of different RESs and WEL types [34-36]. Yet, a comprehensive discussion that integrates both 

technical and economic dimensions, covering WEL/FC designs, converter topologies, control 

schemes, and profit optimization for power grids, is still lacking. 

To fill this gap, the present review provides a holistic evaluation of GHP systems, emphasizing their 

role in power regulation, grid stability, and economic performance. The key contributions can be 

summarized as follows: 

a) A systematic comparison of various ESTs, highlighting why hydrogen-based solutions stand out. 

b) An in-depth analysis of different WEL types, e.g., alkaline (ALWEL), proton-exchange membrane 

(PEMWEL), anion exchange membrane (AEMWEL), and solid oxide (SOWEL), and their best-

fit applications. 

c) A review of mathematical modelling approaches for WELs, with detailed formulations, particularly 

for PEMWEL. 

d) An overview of DC converter topologies (isolated and non-isolated) and their control strategies for 

efficient power transfer with WELs and FCs. 

e) A survey of practical WEL applications in modern power systems, focusing on stability and 

ancillary services. 

f) Recent approaches to optimizing economic performance when integrating GHP and RESs. 

g) Key insights into future research directions and challenges in achieving carbon-neutral power 

systems. 

The remainder of the article is organized as follows: Section 2 discusses the concept, advantages, and 

disadvantages of various ESTs. Section 3 introduces the internal construction and chemical reactions 
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of common WEL types. Section 4 reviews WEL modelling approaches and provides a detailed 

mathematical formulation for PEMWEL. Section 5 explores DC converter topologies for connecting 

fuel cells and WELs to the grid, while Section 6 highlights corresponding control strategies. Section 7 

illustrates WEL applications in modern power systems, and Section 8 addresses recent efforts to 

optimize economic performance. Finally, Section 9 concludes with key findings and future 

perspectives. A graphical overview of the scope is shown in Fig. 1. 
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Fig. 1. Organization of paper scope 



5 
 

2. Overview of various energy storage technologies 

Since the growing integration of RESs in power systems is characterized by a continuous substitution 

of synchronous generators with static inverters, significant instability issues have arisen due to power 

fluctuations [37, 38]. Such power electronic devices reduce the system’s mechanical inertia making it 

vulnerable to instability attacks as a result of any supply-demand imbalance [39]. Actually, minimizing 

the mechanical inertia increases the system efficiency, however, it can vigorously trigger frequency 

oscillations leading to recurring tripping of under/over frequency relays. Thus, the operator may resort 

to shed the loads or automatic series outages may occur [40]. 

Indeed, ESTs offer an effective solution to overcome the aforementioned problems related to the high 

penetration of RESs in power networks [41]. Principally, an EST-based system stores surplus energy 

in a form different from its original one for a while then releases it upon a call to support the power 

balance [42]. Fig. 2 classifies various ESTs employed in power systems according to the type of stored 

energy [43]. Specifically, hydrogen-based energy storage system (HESS) represents chemical ESTs, 

and supercapacitor energy storage system (SESS) and superconducting magnetic storage system 

(SMSS) are examples of electrical ESTs. Besides, electrochemical ESTs refer to batteries, such as 

lithium-ion (Li-ion), lead-acid (LA), nickel-cadmium (Ni-Cd), sodium-sulfur (Na-S), zinc-bromide 

(Zn-Br), and vanadium redox (VR) batteries. Additionally, mechanical ESTs include compressed air 

energy storage (CAES), flywheel energy storage system (FESS), and pumped hydro storage system 

(PHSS), while thermal ESTs comprise cryogenic energy storage (CES), low temperature thermal 

storage (LTTS), and high temperature thermal storage (HTTS). Furthermore, the technical 

characteristics of such technologies are thoroughly described in Table 1, which are extracted from [44-

47]. 

Particularly, HESS is a promising technology where hydrogen serves as the energy carrier. Due to its 

abundance and ecological benefits, hydrogen supports transportation, power generation, heating, and 

industry. However, its sustainability depends on the production process [48]. Hence, the authors in [49] 

introduced a quality-based methodology to classify diverse hydrogen production techniques with a 

color coding, as revealed in Fig. 3. Among the four methods, green and blue hydrogen gained a wide 

popularity for attaining carbon neutrality [50]. Explicitly, green hydrogen attracts research interest due 

to its reversibility in power systems [51]. In detail, Excess RES electricity is converted into hydrogen 

via WELs, while fuel cells regenerate electricity from stored hydrogen during peak demand [52]. 



6 
 

Energy storage 

technologies

Chemical Electrical Electrochemical

HESS SESS
Li-ion 

Batteries

Mechanical

LA BatteriesSMSS

CAES

FESS

Thermal

CES

LTTS

Ni-Cd 

Batteries

Na-S Batteries

Zn-Br 

Batteries

VR Batteries

PHSS HTTS

 

Fig. 2. Classifications of ESTs 

Table 1. Practical features of some ESTs 

EST Commercial status 
Installed 

power (MW) 

Efficiency 

(%) 

Capital 

cost ($/W) 

Charging 

period 

Discharging 

period 

Time span,  

Cycles × 103 

(years) 

HESS Growing 0-58.8 25-58 0.5-10 hr - months sec - days 1-20 (5-20) 

SESS Growing 0-0.3 90-95 0.1-0.45 sec - hr msec - hr <100 (20) 

SMSS Growing 0.1-10 95-98 0.2-0.489 min - hr msec - 8 sec <100 (20) 

Li-ion Commercialized 0-100 85-90 0.9-4 min - days min - hr 1-20 (5-15) 

LA Mature 0-40 70-90 0.3-0.6 min - days sec - hr 2 (3-15) 

Ni-Cd Commercialized 0-40 60-65 0.5-1.5 min - days sec - hr 2-3.5 (10-20) 

Na-S Commercialized 0.05-34 80-90 1-3 sec - hr sec - hr 2.5-4.5 (10-15) 

Zn-Br Demonstration 0.05-10 75 (average) 0.7-2.5 hr - months sec - 10 hr <2 (5-10) 

VR Pre-commercialized 0.03-3 85 (average) 0.6-1.5 hr - months sec - 10 hr <12 (5-10) 

CAES Mature 5-1000 70-89 0.4-1 hr - months hr - days <13 (20-40) 

FESS Pre-commercialized 0.1-20 93-95 0.25-0.35 sec - min 
msec -  

15 min 
<100 ( <15) 

PHSS Mature 100-5000 75-85 2-4.3 hr - months hr - days <13 (40-60) 

CES Growing 0.1-300 40-50 0.2-0.3 min - days hr - 8 hr <13 (20-40) 

LTTS Growing 0-5 50-90 - min - days hr - 8 hr - (10-20) 

HTTS Growing 0-60 30-60 - min - months hr - days <13 (5-15) 

*sec, min, and hr refer to second, minute, and hour, respectively. 
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Fig. 3. Classification of hydrogen production systems 

Besides, according to Table 1, HESS provides a longer-term energy solution than other ESTs, making 

it ideal for sustaining large loads during power outages. Its rapid response helps regulate power system 

frequency, mitigating RES intermittency effects. Additionally, modularity and scalability enhance its 

adaptability, while oxygen as a byproduct makes it an environmentally friendly option [53]. Recent 

studies suggest that integrating distributed RESs with HESS improves power reliability, resilience, and 

continuity. Table 2 highlights global HESS pilot projects, demonstrating its feasibility in power 

networks. However, high installation costs and the need for a robust hydrogen infrastructure remain 

key challenges [54]. 
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Table 2. Global HESS ongoing projects 

Ref. Origin RES’ type 

WEL Hydrogen tank FC 

Type 
Capacity 

(kW) 

Pressure 

(bar) 

Volume 

(Nm3) 
Type 

Output 

power 

(kW) 

[55] Germany PV AL 100 30 5000 PAFC 80 

[56] Spain PV AL 5 10 24 PEMFC/PAFC 7.5/10 

[57] USA PV AL 6 5.7 30   

[58] Germany PV PEM 2 15 30   

[59] Germany PV AL 26 120 3000 PEMFC 5.6 

[60] Canada PV/Wind AL 5 120 40 PEMFC 5 

[61] Argentina PV/Wind AL 5 35 10   

[62] Spain PV PEM 1 70 30   

[63] Norway Wind PEM 1.5 14 16   

[64] France PV AL 3.6 0.4 10   

[65] Italy PV AL 3.4 4 10   

[66] USA PV PEM 3.35 15 5.4 PEMFC 2.4 

[67] Spain PV AL 15 25 2   

[68] Australia  PEM 100 163 14   

[69] UK  AL 250 NM 10 NM 100 

[70] UK  PEM 500 20 NM   

“NM” and “” refer to not mentioned and not existed in the reported article, respectively.  

3. Advances in WEL technologies 

A WEL utilizes a flow of electrons, injected from an external DC voltage source, to return water to its 

forming atoms, hydrogen (H2) and oxygen (O2) [71]. It basically comprises an electrolyte sandwiched 

by two electrodes (anode and cathode). So, passing an electrical current via water yields hydrogen at 

the cathode and oxygen at the anode [72]. Considering the electrolyte material, WELs have several 

types, such as ALWEL [73], AEMWEL [74], PEMWEL [75], and SOWEL [76]. To visualize the main 

differences of these types, Fig. 4 encloses their schematic diagrams. Technically, each type has 

distinctive characteristics, regarding operating temperature and pressure, efficiency, current density, 

input voltage, and lifetime, as indicated in Table 3 [77]. 
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Table 3. Practical features of various WEL’s types 

               Type 

Feature 
ALWEL AEMWEL PEMWEL SOWEL 

Electrolyte KOH/NaOH KOH Solid polymer (Nafion) 
yttria-stabilized zirconia 

(YSZ) 

Carrier ion OH- OH- H+ O2- 

Temperature 65 – 100 ℃ 50 – 70 ℃ 70 – 90 ℃ 600 – 1000 ℃ 

Pressure 2 – 10 bar ≤ 35 bar 15 – 30 bar < 30 bar 

Efficiency 62 – 84 % 50 – 70 % 67 – 82 % ≤ 100 % 

Voltage/cell 1.8 - 2.4 V 1.85 V 1.8 - 2.4 V  0.95 – 1.30 V 

Current density  0.2 – 0.4 A. cm-2 0.1 – 0.5 cm-2 0.6 – 2.0 cm-2 0.3 – 1.0 cm-2 

Response time  Seconds Seconds Milliseconds Seconds 

Lifetime < 90 × 103 hr > 10 × 103 hr < 40 × 103 hr < 40 × 103 hr 

Scalability High Reasonable Reasonable Reasonable 

Applicability status Mature Commercial Commercial Under development 

Electrochemical reactions 

At anode: 4𝑂𝐻− → 𝑂2 + 2𝐻2𝑂 + 4𝑒− 4𝑂𝐻− → 𝑂2 + 2𝐻2𝑂 + 4𝑒− 𝐻2𝑂 → 2𝐻++
1

2
𝑂2 + 2𝑒− 𝑂2− →

1

2
𝑂2 + 2𝑒− 

At cathode: 2𝐻2𝑂 + 2𝑒− → 𝐻2 + 2𝑂𝐻− 2𝐻2𝑂 + 2𝑒− → 𝐻2 + 2𝑂𝐻− 2𝐻+ + 2𝑒− → 𝐻2 𝐻2𝑂 + 2𝑒− → 𝐻2 + 4𝑂2− 

Overall: 2𝐻2𝑂 → 2𝐻2+𝑂2  2𝐻2𝑂 → 2𝐻2+𝑂2  𝐻2𝑂 → 𝐻2+
1

2
𝑂2 𝐻2𝑂 → 𝐻2+

1

2
𝑂2 

According to Table 3, PEMWEL has the fastest response time among the other types. Hence, 

PEMWELs find extensive use in power system applications, especially where a swift response is 

essential for perceiving system stability. This motivates the authors to focus on modelling this specific 
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type, thereby ensuring a more concise article. In this context, the reader is invited to check the 

following subsection for the PEMWEL mathematical model.  

4. Electrical modelling of WELs 

As mentioned earlier, the primary barrier to widespread commercialization of WELs in power systems 

is their capital cost. Thus, a precise and reliable assessment of their behaviour shall be implemented to 

identify any system defect before installing such expensive apparatuses [78]. Consequently, numerous 

researchers are seeking for properly deriving comprehensive mathematical models that can accurately 

simulate WELs’ performance during various operating conditions [79, 80]. In fact, a robust and 

efficient model cannot only evaluate the WEL’s response but also highlight the operational parameters 

that optimize and predict WELs’ performance in a wide range of operating scenarios [81]. 

Given that WELs are multiphysics devices in which various chemical and thermal processes occur 

simultaneously during operation, deriving a single model to comprehensively describe all these 

phenomena is challenging. So, various electrical models have been introduced each varies depending 

on the deriving approach, the studied behaviour, and the mathematical formulation, as depicted in Fig. 

5 [82, 83]. 
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Fig. 5. Categorization of WELs’ modelling 

Among these approaches, the electrochemical model plays a significant role in accurately replicating 

the polarization characteristics (V-I curve) of PEMWELs [84]. This is achieved through the integration 

of chemical and physical parameters, including water content, hydrogen production rate, membrane 

material, and cell area [85]. As illustrated in the model's equivalent circuit shown in Fig. 6, the 

PEMWEL’s input voltage is a resultant of a voltage source, representing the minimum required 
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potential to start the chemical reactions, and a series of operational losses. More precisely, these losses 

encompass activation and concentration overpotentials, each depicted by a capacitor-resistor branch, 

alongside ohmic voltage drop originating from membrane and connection resistances. The model's 

results are illustrated through a V-I curve, as depicted in Fig. 7 [78, 86]. 

Ielz
Eoc Cac CcnRex

rac rcn

Vi/elz  + -
 

Fig. 6. Equivalent circuit of the electrochemical model 

 

Fig. 7. Typical polarization curve of PEMWEL 

As a single WEL cell is inadequate for meeting the demanded hydrogen production, multiple cells are 

linked together serially forming a stack, ensuring the required hydrogen output. Thus, input voltage of 

the WELs’ stack 𝑉𝑖/𝑠𝑡 in (𝑉) can be mathematically described by (1). 

𝑉𝑖/𝑠𝑡 = 𝑁𝑒𝑙𝑧 × 𝑉𝑖/𝑒𝑙𝑧 (1) 

where,  𝑁𝑒𝑙𝑧 is the number of serially connected cells. 𝑉𝑖/𝑒𝑙𝑧 is the cell input voltage in (𝑉) which is 

formulated by (2) [87]. 

𝑉𝑖/𝑒𝑙𝑧 = 𝐸𝑜𝑐 + 𝑉𝑎𝑐 + 𝑉𝛺 + 𝑉𝑐𝑛 (2) 

where, 𝑉𝑎𝑐, 𝑉𝛺, and 𝑉𝑐𝑛 symbolize the activation, ohmic, and concentration voltage drops in (𝑉), 

respectively. 𝐸𝑜𝑐 represents the minimum required voltage to initiate the cell in (𝑉) and is given by 

Nernst equation, as in (3) [86]. 
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𝐸𝑜𝑐 = 5.1822 × 10−3 [∆𝐺 + 0.0821 ∙ 𝑇𝑒𝑙𝑧 ∙ 𝑙𝑛 (
𝑃𝐻√𝑃𝑂

𝑃𝑊
)] (3) 

where, the change in Gibbs-free-energy is represented by ∆𝐺 in (𝑘𝐽/𝑚𝑜𝑙). 𝑇𝑒𝑙𝑧 refers to the WEL’s 

operating temperature in (𝑘). 𝑃𝐻, 𝑃𝑂, and 𝑃𝑊 point out the pressure of hydrogen, oxygen, and water in 

(𝑏𝑎𝑟), respectively. 

To describe the initial sluggish of the chemical reaction, the activation overpotential 𝑉𝑎𝑐𝑡 is computed 

by (4). 

𝑉𝑎𝑐𝑡 = 4.2545 × 10−4 ∙ 𝑇𝑒𝑙𝑧 [
1

𝛿𝑛
sinh−1

𝐽𝑒𝑙𝑧

2𝐽𝑛
°

+
1

𝛿𝑡ℎ
sinh−1

𝐽𝑒𝑙𝑧

2𝐽𝑡ℎ
°

] (4) 

where, 𝛿𝑛 and 𝛿𝑡ℎ symbolizes the charge transfer coefficients of anode and cathode, respectively. The 

WEL’s current density is denoted by 𝐽𝑒𝑙𝑧 in (𝐴/𝑐𝑚2). The anode and cathode exchange current 

densities are indicated by 𝐽𝑛
°  and 𝐽𝑡ℎ

°  in (𝐴/𝑐𝑚2), respectively. 

Furthermore, the linear region in the polarization curve, caused by the ohmic losses, can be expressed 

by (5) [88].  

𝑉𝛺 = 𝐽𝑒𝑙𝑧 ∙ (𝑅𝑚 + 𝑅𝑒𝑥) (5) 

where, 𝑅𝑒𝑥 refers to the resistance due to the external leads in (Ω. 𝑐𝑚2). The membrane resistance is 

represented by 𝑅𝑚 in (Ω. 𝑐𝑚2) and is computed by (6) [86]. 

𝑅𝑚 =
𝑙𝑚

𝜎𝑚
 (6) 

where, 𝑙𝑚 is the thickness of the WEL’s membrane in (𝑐𝑚). The membrane’s resistivity, donated by 

𝜎𝑚 in Ω. 𝑐𝑚−2, is function of the WEL’s temperature and the membrane’s water content 𝜆, as given by 

(7). 

𝜎𝑚 = (0.005139𝜆 − 0.00326) ∙ exp [4.1848 (
𝑇𝑒𝑙𝑧 − 303

𝑇𝑒𝑙𝑧
)] (7) 

At heavy current density, the chemical reaction encounters an impediment due to the high oxygen 

concentration at the membrane area. This is represented by the concentration voltage drop and 

expressed by (8). 

𝑉𝑐𝑛 = 4.2545 × 10−4𝑇𝑒𝑙𝑧 ∙ 𝑙𝑛 (
𝐽𝑚𝑎𝑥

𝐽𝑚𝑎𝑥 − 𝐽𝑒𝑙𝑧
) (8) 

where, 𝐽𝑚𝑎𝑥 represents the maximum current density in (𝐴/𝑐𝑚2). 

Finally, the produced hydrogen flowrate 𝑄𝐻 in (𝑚3/𝑠𝑒𝑐) is expressed by (9) [87]. 

𝑄𝐻  = 4.2545 × 10−4
𝐽𝑒𝑙𝑧 . 𝑇𝑒𝑙𝑧

𝑃𝐻
 (9) 
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While the electrochemical model discussed thus far primarily addresses PEMWELs, it is also 

instructive to examine alternative electrolyzer technologies, such as ALWELs, AEMWELs and 

SOWELs, and how their modelling approaches differ in response to unique operational conditions. An 

ALWEL is typically described by a base thermodynamic voltage plus activation, ohmic, and 

concentration overpotentials. The ohmic loss is higher than in PEM systems due to the alkaline 

solution’s lower conductivity and the diaphragm thickness. Activation overpotentials, stemming from 

electrode kinetics, can be captured via resistor–capacitor (RC) or resistor–inductor–capacitor (RLC) 

branches, while concentration overpotentials account for gas bubble formation and mass transport 

limitations [89]. 

AEMWELs resemble PEMWELs in having a reference voltage source and similar loss terms, but the 

higher ionic resistance of AEM membranes amplifies ohmic losses. Activation overpotentials are 

modelled by RC branches, with differences in catalyst composition. Concentration overpotentials can 

become significant if water supply or gas evacuation is restricted. Evolving models also consider 

membrane carbonation and degradation to predict dynamic performance [90]. 

SOWEL modelling must integrate electrochemical and thermal dynamics due to elevated temperatures 

that alter reaction kinetics and material properties. Multiple overpotential terms, including activation, 

ohmic, and concentration, are typically included, with separate RC or RLC branches for different 

electrode interfaces. Temperature-sensitive ohmic resistance arises from the electrolyte and 

interconnects, while mass transport effects may require diffusion-limited current expressions. Long-

term factors like electrode delamination or electrolyte cracking are also included in advanced models 

[91]. Table 4 compares the primary parameters, challenges, and representative equivalent circuit 

elements across different electrolyzer types. 

Table 4. Comparative overview of modelling approaches across electrolyzer types 

Item ALWEL PEMWEL AEM SOWEL 

Overpotentials • Activation 

• Ohmic 

• Concentration 

• Activation 

• Ohmic 

• Concentration 

• Activation 

• Ohmic 

• Concentration 

• Activation 

• Ohmic 

• Electrode polarization 

Ohmic loss 

drivers 

• Diaphragm/electrolyte 

resistance. 

• Membrane 

conductivity 

(hydration-

dependent). 

• Higher 

membrane 

resistance than 

PEM. 

• High-temperature 

electrolyte/interconnect 

resistance. 

Equivalent 

circuit 

structure 

• Voltage source 

(thermodynamic). 

• Multi-branch RC (or 

RLC) networks for 

• Similar multi-

branch RC 

structure, with 

emphasis on 

• Like PEM, but 

with higher 

ohmic resistance 

• More complex. 

• Often featuring multiple 

RC (or RLC) branches to 

capture temperature-
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activation and 

concentration 

overpotentials. 

membrane 

resistance and 

water 

management. 

due to OH⁻ 

conduction. 

dependent polarization 

effects. 

Dynamic 

modelling 

complexity 

• Moderate: gas bubble 

formation and mass 

transport influence 

transient response. 

• High: rapid load-

following 

capability 

requires time-

varying 

membrane 

hydration 

modelling. 

• Moderate to 

high: evolving 

designs require 

tracking 

membrane 

carbonation and 

electrode 

kinetics. 

• High: must integrate 

thermal gradients, 

potential material 

degradation, and transient 

electrochemical 

responses. 

Modelling 

challenges 

• Ensuring accurate 

representation of 

diaphragm thickness, ion 

transport, and bubble 

formation. 

• Capturing water 

management 

(membrane 

hydration) and 

load transients. 

• Catalyst 

degradation. 

• Limited data on 

membrane 

durability. 

• Higher ohmic 

losses. 

• Evolving 

catalyst designs 

• Elevated temperatures 

accelerate 

electrode/electrolyte 

degradation 

• Requires coupled thermal-

electrochemical 

modelling. 

Representative 

references 

[89, 92] [93, 94] [90, 95] [91, 96] 

5. Power electronics for electrolyzers and fuel cells applications 

Modern power systems incorporate large amounts of RESs along with conventional power plants, with 

distinct volage profiles. Thus, the integration of WELs and FCs in such systems necessitates an 

interface to link the system voltage to their operating and generated voltages, respectively [20]. 

Specifically, the DC converter serves as such an interface since most RESs generate high DC voltage, 

whereas WELs need a low DC voltage input [21]. Conversely, FCs are employed as a standby power 

source that can rapidly inject electrical power to the system when the power supplied by RESs is 

insufficient. However, the injected power is delivered at a lower voltage than the DC bus. Hence, a 

DC converter is also obligatory to step up the FC’s output voltage. Another crucial feature of WELs 

and FCs is their inherently non-linear electrical response. Hence, a DC converter is essential to regulate 

the voltage regardless of the loading conditions [14]. Fig. 8 offers a schematic explanation for the 

configuration of WELs and FCs with RESs in a practical power network [32]. Indeed, a proper DC 

converter for WELs and FCs applications shall meet certain features, like low expenses, high 

conversion ratio and efficiency, substantial power density, minimized output current ripples and 

electromagnetic interference, and capability to operate reliably during switching failure [20, 97]. 
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Fig. 8. Schematic configuration of WEL/FC-based power network 

Particularly, the non-isolated and isolated DC converters dominate the WEL and FC applications 

throughout the literature [20, 21, 98-100]. Thus, Table 5 presents a summarized comparison of the key 

features of each category. In addition, the following subsection introduces an overview of their 

topologies. 

Table 5. Basic comparison of DC converters 

           Converter’s type 

 

Index 

Non-isolated DC converters Isolated DC converters 

Boost converter Buck-boost converter Flyback converter Full-bridge converter 

Electrical isolation   Via transformer Via transformer 

Conversion type Step up Step up/down Step up/down based on 
the transformer turns 

ratio 

Step up/down based on 
the transformer turns 

ratio 

Power range Low-medium Low-medium Low-medium Medium-high 

Complexity Simple Simple Moderate Complex 

Efficiency High Moderate Low High 

Cost Low Low-moderate High High 

Electromagnetic 

compatibility 

Low Low Moderate High 

Switching frequency High High  Moderate-high High  

Reliability Vulnerable to single 

point of failure 

Vulnerable to single point of failure Moderate High with reduced 

capacity 

5.1. Non-isolated DC converters 

Principally, non-isolated converters are extensively utilized in numerous applications involving low 

and medium DC voltages due to their affordability, simplicity, compact design, and ease of control 

[101, 102]. Typical examples of such converters are the conventional buck-boost converter (BBC) 
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[103], interleaved buck-boost converter (IBBC) [104], bidirectional buck-boost converter [105], and 

floating-interleaved buck-boost converter (FIBBC) [106]. 

Conventional BBCs are distinguished by their low cost and uncomplicated circuit connection. This 

augments their wide implementation in WEL-based power systems. However, such converters 

experience considerable ripples in output current, which can be mitigated by raising the inductor size 

or magnifying the switching frequency [102]. Nevertheless, increasing either of these parameters will 

inversely impact energy efficiency, as it will lead to higher core and switching losses. Another concern 

is that to attain a high step-up or step-down ratio, BBCs must operate at a significantly low duty cycle, 

which can potentially result in interrupted conduction mode. This directly affect the converter’s output 

voltage connected to the WEL. Again, this issue is addressed by elevating the inductor rating leading 

to a higher loss, price, and size [103]. Moreover, conventional converters suffer also from reverse 

recovery power loss due to the diode’s reverse recovery potential. Such loss is function of the initial 

current, operating temperature, and the change rate of the switching current [101]. Thus, a synchronous 

buck converter, an upgraded version of the conventional buck converter, is proposed in [107] to 

minimize the aforementioned loss. In this design, a power transistor replaces the freewheeling diode, 

as illustrated in Fig. 9. 
 S2S1

Vin C

L

 

Vout

 

Fig. 9. Circuit diagram of synchronous buck converter 

For the sake of obtaining a high step-down ratio, a quadratic buck converter is proposed in the literature 

[108]. In this configuration, two buck converters are serially connected through a single power 

transistor, as shown in Fig. 10. Since this type runs only with a single power switch, the converter lacks 

fault tolerance. Also, the power transistor encounters a high potential stress throughout the operation. 

Thus, the authors in [109] have introduced multiquadric buck converters to minimize the potential 

stress across the switches. Another technique to increase the step-down ratio is to use the tapped-

inductor buck converter [110]. In this design, the conventional inductor is replaced by a tapped inductor 

with a single primary and single secondary winding, as depicted in Fig. 11. By this architecture, the 

step-down voltage ratio is controlled by changing the turns ratio of the tapped winding 𝑛𝑝 𝑛𝑠⁄  along 

with the duty cycle 𝐷, as described in (10). Nonetheless, the winding leakage flux between both 

windings causes spikes across the switch.  
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𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 =

𝐷

𝐷 + (1 + 𝑛𝑝 𝑛𝑠⁄ )(1 − 𝐷)
 (10) 

For the same reason, a switched inductor-switched capacitor buck converter is developed in [111] to 

magnify the voltage stepping ratio, as shown in Fig. 12. However, this design cannot guarantee 

continuous operation in faulty conditions as it only includes one power switch. 
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Fig. 10. Circuit diagram of quadratic buck converter 
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Fig. 11. Circuit diagram of tapped-inductor buck converter 
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Fig. 12. Circuit diagram of switched inductor-capacitor buck converter 

When aiming to amplify the delivered power, the IBBC and FIBBC are the best alternatives to the 

traditional BBC because the current is divided through separate legs. Basically, both configurations 

are formed by connecting multiple BBCs via a common DC bus. For instance, the 3-legs IBBC, whose 

circuit is shown in Fig. 13, offers optimal solution for minimizing output current distortion and 

magnifying energy efficiency [112]. Another merit is that the power delivered from/to a WEL/FC 

through IBBCs remains unaffected by the failure of a single power switch. Nevertheless, in the case 

of 3-legs IBBC, such a failure causes a 50% increase in current stresses on the unfaulty legs compared 

to the normal operation. This overstress, accompanied by excessive temperature, can severely affect 

the switches’ reliability. Multi-leg IBBCs have also been studied in the literature for WEL/FC 

applications. For example, the authors in [113] designed a 1200W silicon-based Multi-leg IBBC for 
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FC operation. The results demonstrate a substantial reduction in current ripples by nearly 100%, along 

with an energy efficiency of approximately 90%, while operating at a switching frequency of 25 kHz. 
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Fig. 13. Circuit diagram of 3-legs IBBC 

5.2. Isolated DC converters 

Isolated DC converters are the optimal choice for high-voltage WELs/FCs, as they incorporate an 

intermediate AC domain utilizing a high-frequency transformer, as illustrated in Fig. 14 [100]. 

Particularly, the transformer plays a vital role in ensuring a low voltage input and a low current to the 

output side converter [114]. The AC phase is considered as an over current protection stage for the FCs 

[115]. Practically, it can be composed of various configurations including half-bridges [116], full-

bridges [117], or multi-port interleaved bridges [118]. Conversely, a diode rectifier along with a multi-

stage voltage source inverter represent the DC phase of such converters. Generally, flyback [119], half-

bridge [120], full-bridge [121], forward [122], and push-pull [120] are among the commercial versions 

of isolated converters. Specifically, the literature claims that the best appropriate types for FCs are the 

half and full-bridge converters due to their galvanic isolation, the high frequency of the transformer 

minimize its size, their high voltage stepping ratio, and their smooth switching cycle that improves 

their efficiency [122].  

DC

AC

 
AC

DC

  
C

L
 

FilterRectifierTransformerInverter

Vin Vout

 

Fig. 14. Schematic configuration of isolated DC converter 

For example, an isolated half-bridge DC converter engaged with a smooth switching technique is 

introduced in [123] for an WEL application to diminish the switching losses, as captured in Fig. 15(a). 

In fact, this configuration is characterized by regulation simplicity, and applicability to achieve 

significant voltage ratio which is a must for WEL/FC systems, as described in (11).  



19 
 

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 =

𝐷

2𝑛
 (11) 

where, 𝑛 is the transformer turns ratio. 

On the other hand, it experiences high power loss due to the large turns ratio of the transformer which 

causes high magnetic flux resulting in excessive leakage reactance. Besides, it lacks the ability to 

operate in the event of a switch failure. Furthermore, the reader can browse [124] for investigating the 

full-bridge version utilized in WEL systems whose circuit diagram is depicted in Fig. 15(b). Primarily, 

its main advantage over the half-bridge isolated converter is its superior conversion efficiency. 

Moreover, a filter can also be integrated with it to eliminate current spikes on the power electronics. 
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(a) Half-bridge DC converter 
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(b) Full-bridge DC converter 

Fig. 15. Circuit diagram of isolated DC converters 

6. Control methodologies of WELs/FCs DC converters 

An essential factor in optimizing WEL/FC-based systems is the converter control methodology, which 

ensures precise and efficient DC converter operation. Controllers regulate output voltage and current, 

mitigate power oscillations, and prevent adverse effects on WEL/FC performance [21]. Moreover, 

optimal control design enhances energy efficiency, minimizes converter losses, and extends 

component lifespan. To reiterate, buck converters step down DC bus voltage to power WELs, while 

boost converters raise FC output voltage to the required DC level [84]. For clarification, Fig. 16 

illustrates the integration of controllers with DC converters. Control methods vary by technique, 

including analytical (e.g., PID, root locus, lead-lag compensators), model-based (e.g., sliding mode, 
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fractional order), and data-trained approaches (e.g., neural networks, fuzzy logic, model predictive 

control) [32]. However, only specific types have been recognized in the literature as effective tuners 

for DC converters in WELs/FCs-based power systems. Thus, the following subsections offer 

discussive illustrations on such types.  

 

EL or DC bus
FC or DC bus

Controller

Reference 

value

Control signal

Power flow

 

Fig. 16. Generic configuration of DC converter’s controllers in WEL/FC-based networks 

6.1. Proportional-integral controller 

The proportional-integral (PI) controller is widely used due to its effectiveness and simple 

mathematical formulation. It operates by minimizing the deviation between the actual and desired 

values, combining two key components: the proportional term (𝑘𝑝), which adjusts the output based on 

the current error, and the integral term (𝑘𝑖), which accumulates the error over time to eliminate steady-

state deviations [21, 84]. Accordingly, several studies have demonstrated the effectiveness of PI 

controllers in regulating the output voltage of DC converters, ensuring that WELs receive a consistent 

and appropriate power supply, even when the grid voltage fluctuates [32, 125].  

In this regard, the authors in [126] proposed a novel PI tuner for an ALWEL-based network, as shown 

in Fig. 17(a). It’s worth indicating that 𝑉𝑒𝑙, 𝐼𝑒𝑙, 𝑃𝑟𝑓, and 𝐼𝑟𝑓 represent the WEL’s actual voltage and 

current, as well as the desired preset power and current, respectively. On the other hand, 𝑅𝑐𝑛 and 𝐿𝑐𝑛 

denote the buck converter’s resistance and inductance, respectively. Additionally, they developed a 

tuning technique for the PI controller’s parameters of the ALWEL, eliminating 𝑉𝑒𝑙 by assuming it 

remains constant throughout the entire operation. They disregarded the internal dynamic response of 

the WEL by treating it as a linear resistor. Furthermore, an average switching approach is introduced 

for the WEL current control loop, as illustrated in Fig. 17(b). Finally, the authors assert that their design 

enhances the controllability of the DC link voltage by implementing the WEL current control as an 

inner control loop within the outer DC voltage control loop. 
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(a) PI controller’s construction 

Ki / s

Kp

+

+

PI controller

+
-

+
- 1

𝑅𝑐𝑛 + 𝑠𝐿𝑐𝑛
 

Irf Iel

Vel

Vcn

 

(b) Small signal current control loop of WEL 

Fig. 17. PI controller for WEL-based systems 

Another contribution, as presented by the authors in [127], involved the development of two cascaded 

PI controllers to refine the current control signal more smoothly. Essentially, the inner loop regulates 

the WEL’s current based on the reference signal generated by the outer loop, as revealed in Fig. 18. 

They employed the state-space representation to derive the transfer function of the WEL. 

+
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Fig. 18. Series PI controller for WEL-based systems 

In contrast to previous efforts, the authors in [128] have taken into account the actual dynamic 

performance of the ALWEL. They applied control theory to model the WEL by using a step input and 

subsequently derived the corresponding second-order transfer function. Their proposed model is 

considered as an electrical circuit where it includes inductance 𝐿𝑒𝑙 and capacitance 𝐶𝑒𝑙. These 

parameters represent the time delay due to a step input applied to ALWEL. However, 𝐿𝑒𝑙 may be 

assumed zero for PEMWEL since it has a swift response compared to ALWEL. Physically, 𝐶𝑒𝑙 defines 

the double-layer capacitance, 𝑅𝑚 symbolizes the mass transport losses, and 𝑅𝑖 refers to the nonlinear 

losses due to the material and external leads. The aforementioned state-space modelling, the proposed 

electrical model incorporates two state variables that characterize the controller's response, as 

described in (12) and (13) by neglecting 𝑅𝑐𝑛. 
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(𝐿𝑒𝑙 − 𝐿𝑐𝑛)
d𝐼𝑒𝑙

dt
 = 𝑑𝑉𝑖𝑛 − 𝑉𝑒𝑙 (12) 

𝐶𝑒𝑙

d𝑉𝑑𝑙

dt
 = 𝐼𝑒𝑙 −

𝑉𝑑𝑙

𝑅𝑚
 

(13) 

where, 𝑉𝑖𝑛 and 𝑉𝑑𝑙 are the input voltage of the converter and the EL’s electrical double layer voltage 

in (𝑉), respectively.  

As a result of (12) and (13), two PI controllers are necessary for both the outer voltage control and the 

inner current control in ALWEL. Nevertheless, only a single PI controller is employed in PEMWEL, 

as the electrical double layer is nearly neglected, thereby eliminating the need for the outer voltage 

control loop, as shown in Fig. 19. 
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Fig. 19. PI controller for ALWEL based on control theory 

6.2. Sliding mode controller 

Sliding mode control (SMC) is a nonlinear control technique that operates by forcing the system to 

follow a desired trajectory, known as a sliding surface or sliding manifold, in the state-space. The 

system is driven toward this surface using a high-gain control law, where it slides along the surface 

toward the desired equilibrium point, as revealed in Fig. 20(a). The main principle behind SMC is to 

switch control actions based on the system's state in relation to the sliding surface, allowing the system 

to converge to its target behaviour despite uncertainties or disturbances [129].  

One of SMC’s most significant advantages is its ability to handle systems with nonlinearities, unknown 

dynamics, and external disturbances, as concluded from its conventional structure seen in Fig. 20(b). 

However, SMC typically experiences chattering caused by the high-frequency switching in sliding 

mode, which can result in mechanical vibrations or excessive switching in power electronics [43,58]. 

Thus, recent SMC variants have been developed, like higher-order sliding mode control (HOSMC), 

terminal sliding mode control (TSMC), and super-twisting sliding mode control (STSMC) [130, 131]. 

In WEL-based systems, SMC provides precise control of DC converters by optimally regulating input 

voltage and current, maintaining efficient hydrogen generation. Thanks to its swift dynamic response, 



23 
 

SMC can ensure system stability despite load variations and disturbances. Moreover, its capability to 

deal with heavy nonlinear systems, like WELs, magnifies its robustness in sustaining the desired 

operating scenarios. In this context, the reader is invited to visit [132] for investigating practical 

applications of SMC in WEL/FC-based systems. 

6.3. Backstepping controller 

Principally, backstepping control offers a systematic design approach that utilizes a series of virtual 

controllers to stabilize complex systems. Specifically, the backstepping controller is constructed step 

by step using a recursive procedure, which ensures stability at each stage. Hence, it outperforms 

conventional techniques in managing nonlinear behaviours and unwanted disturbances [133]. 

Accordingly, backstepping control has several applications in DC converters, where it accurately 

controls output voltage and current to minimize energy loss and enhance stability over a wide range of 

loading conditions [134]. Furthermore, due to its capability to handle abrupt system changes and 

parameter uncertainties, backstepping control can address additional integrated control targets, such 

as power management and current limitation. Thus, the backstepping tuner has been employed to 

address various control challenges in FC-based power systems. For example, a backstepping controller 

is proposed in [135] to ensure smooth tracking of the maximum allowable power generated by the 

PEMFC, thereby extending its operational lifetime. 
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(a) Typical trajectory of a standard SMC 
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(b) Practical steps for designing an SMC 

Fig. 20. Basic structure and concept of SMC 

6.4. Model predictive controller 

The popularity of Model Predictive Control (MPC) in WEL/FC-based power systems arises from its 

effectiveness in managing multivariable control systems with constraints and optimizing performance 

in real-time applications [136]. Particularly, MPC can predict the future response of WEL/FC 

operating variables, such as voltage, current, and hydrogen production/consumption, by utilizing their 

dynamic model. It updates the control inputs based on a continuously optimized objective function, 

subject to practical constraints, such as power and hydrogen production/consumption boundaries. This 

promotes MPC in applications involving WELs/FCs linked to RESs, where unpredictable variations 

in power supply may occur. Its robustness and precision in predicting system responses within preset 

boundaries contribute to maximizing the efficiency of WELs/FCs, thereby extending their operational 

lifetime. Moreover, MPC can adapt to additional control objectives, including hydrogen storage 

limitations, downstream applications, and power network stability [137, 138]. 

Practically, an MPC comprises four principal phases: prediction technique, optimization methodology, 

receding horizon, and feedback. The prediction technique is employed to foresee the system’s 

upcoming states, while the control task is handled by the optimizer to diminish the fitness function 

without violating the system’s constraints. The receding horizon approach implements only the first 

control action from the optimized sequence, advancing the horizon with each time step. Finally, the 

model is updated according to the latest measured data using the feedback strategy. Fig. 21 illustrates 

the basic block diagram of a practical MPC, showing how these phases work together to achieve 

efficient control [139]. 
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Fig. 21. Schematic block diagram of MPC 

6.5. Fuzzy logic controller 

Owing to its ability to address the vagueness and inaccuracy inherent in sophisticated dynamic 

systems, fuzzy logic controller (FLC) has recently recognized as a potent control method in WEL/FC-

based systems. In contrast to conventional controllers, FLC doesn’t necessitate a precise mathematical 

model of the system, rather, it utilizes human-like reasoning to derive decisions predicated on 

imprecise information [140]. Fig. 22 showcases the three primary phases of implementing an FLC: 

fuzzification, rule evaluation, and defuzzification. Initially, it transforms distinct inputs, such as error 

signals, into fuzzy sets that denote varying degrees of membership within linguistic categories. 

Subsequently, it analyses these inputs through the application of specific rules to ascertain the suitable 

control action. Ultimately, the fuzzy output is reverted back to a distinct control signal. This 

methodology is particularly efficacious for the management of intricate, nonlinear systems without the 

necessity for exact mathematical models [141]. 

In WEL-based systems where variables such as input power, voltage and current can fluctuate due to 

RESs, FLC is of great advantage. It allows smooth control of the operation of the WEL by adjusting 

parameters to maintain optimal hydrogen production under changing conditions. FLC is perfect for 

online applications because of its adaptability in handling nonlinearities and disturbances, which 

guarantees the WEL runs effectively and within safe bounds. To further improve system performance 

and reliability, FLC can be easily integrated with other control strategies, such as PI or MPC. Because 

of its versatility and durability, FLC is a preferred option for handling the complexity of WEL-based 

power systems, especially when integrating RESs [142]. 
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Fig. 22. Schematic block diagram of FLC 

6.6. Neural network controller 

Without any loops, a feedforward neural network (FNN) processes data in a single direction, from 

input to output. It is made up of an input layer that takes in data, one or more hidden layers 

that use activation functions and weighted transformations, and an output layer that generates the final 

prediction. In order to reduce errors during training and enable the network to learn intricate patterns 

and produce precise predictions, the network uses backpropagation to modify its weights. Over 

time, the network's performance can be enhanced and generalized through this process [143]. 

FNNs are employed to model and regulate the challenging behaviour of WELs/FCs because they 

resemble the human brain's capacity for learning and generalization from data. In these systems, 

particularly when connected to RESs, FNN can learn the best control strategies 

for managing variables like voltage, current, and hydrogen mass flowrate under variable load and 

power conditions. For example, a novel FNN-based maximum power point tracking controller is 

proposed in [144] to optimally tune the duty cycle of the DC converter connected to a PEMFC stack. 

The FC's voltage 𝑉𝑓𝑐 and current 𝐼𝑓𝑐 serve as the input data, while the converter's duty cycle represents 

the output. Fig. 23 illustrates the proposed FNN structure. The integration of the FNN with the DC 

converter ensures zero current ripple, optimizing the performance of the system. 

Ifc

Vfc

Layer 1 Layer 2

Input layer Output layerHidden layers

Duty cycle

 

Fig. 23. Schematic architecture of FNN 

6.7. Adaptive neuro-fuzzy inference controller 
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Fuzzy logic and neural networks are combined in an adaptive neuro-fuzzy inference system (ANFIS), 

which allows it to learn and adjust to changing operating conditions. It functions by transforming input 

data into fuzzy sets, assessing relationships, and optimizing the membership functions and rules using 

neural network learning. ANFIS modifies these settings during training in order to reduce errors. 

Lastly, it transforms fuzzily output values into sharp ones [145]. ANFIS is an optimal solution for 

dynamic and nonlinear systems because of its integration of neural learning and fuzzy logic, which 

enables it to adapt over time. Because of its flexibility, ANFIS can continuously modify control 

parameters to achieve the highest efficiency levels, thereby optimizing the performance 

of WEL/FC. ANFIS can be used in FC systems to control output power and increase cell lifetime, 

and in WEL systems, it aids in maintaining ideal hydrogen production rates under a range 

of load scenarios [146].  

Finally, Table 6 offers a comprehensive comparison of the previously discussed control techniques in 

terms of operation theory, stability, learning and adaptation capabilities, ability to handle nonlinear 

systems, tuning effort, computational burden, and suitability for real-time applications. Furthermore, 

an extensive summary of the recent state-of-the-art literature on the practical application of these 

techniques in WEL/FC applications is thoroughly covered in Table 7. 
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ch
an

g
es

. 

[1
5
2

] 
O

ff
 

P
V

 


 
P

E
M

 
N

M
 


 


 

Q
u

ad
ra

ti
c 

b
u

ck
 

3
7
 

S
M

C
 

T
h

e 
au

th
o

rs
 a

d
d

re
ss

 t
h
e 

in
d
ir

ec
t 

co
u
p
li

n
g
 o

f 
P

V
 a

n
d

 W
E

L
 t

h
ro

u
g

h
 a

 D
C

 c
o

n
v

er
te

r 

u
si

n
g

 
S

M
C

 
to

 
o
p

ti
m

al
ly

 
tu

n
e 

it
s 

d
u

ty
 

cy
cl

e.
 

T
h

e 
fi

n
d

in
g

s 
re

v
ea

l 
th

at
 

en
er

g
y
 

u
ti

li
za

ti
o
n

 r
am

p
s 

u
p

 t
o
 7

7
.6

%
 w

h
en

 e
m

p
lo

y
in

g
 t

h
e 

S
M

C
 f

o
r 

tu
n

in
g

 t
h
e 

co
n
v

er
te

r’
s 

d
u
ty

 c
y

cl
e.

 

[1
5
3

] 
O

n
 

W
T

 
B

E
S

S
 

S
E

S
S

 
N

M
 

N
M

 
N

M
 

N
M

 
T

ra
d
it

io
n
al

 
b

u
ck

 
4

0
0
 

S
M

C
 

In
 t

h
is

 a
tt

em
p

t,
 a

n
 S

M
C

 i
s 

em
p
lo

y
ed

 f
o

r 
o
p

ti
m

al
 m

an
ag

in
g

 t
h

e 
p

o
w

er
 f

lo
w

 o
f 

g
ri

d
-

co
n

n
ec

te
d
 W

T
 a

lo
n
g

 w
it

h
 W

E
L

, 
F

C
, B

E
S

S
, 
an

d
 S

E
S

S
 s

ee
k

in
g
 a

 s
ta

b
le

 p
o

w
er

 s
u

p
p

ly
 

sy
st

em
 f

o
r 

el
ec

tr
ic

 t
ra

ct
io

n
 a

p
p
li

ca
ti

o
n

s.
 

[1
5
4

] 
O

ff
 


 


 

P
E

M
 

0
.4

 


 


 
T

ra
d
it

io
n
al

 
b

u
ck

 
1

0
0

-
2

0
0
 

B
ac

k
st

ep
p
in

g
 

T
S

M
C

 
A

 n
o
v

el
 a

p
p

li
ca

ti
o
n

 o
f 

ad
ap

ti
v
e 

b
ac

k
st

ep
p

in
g

 T
S

M
C

 f
o

r 
v
o

lt
ag

e 
re

g
u
la

ti
o

n
 o

f 
th

e 
D

C
 

co
n

v
er

te
r 

is
 

ad
d

re
ss

ed
. 

N
u

m
er

ic
al

ly
, 

at
 

u
n

ex
p

ec
te

d
 

v
ar

ia
ti

o
n
 

o
f 

o
p

er
at

io
n
al

 

sc
en

ar
io

s,
 t

h
e 

co
n

tr
o

ll
er

 a
tt

ai
n

s 
th

e 
lo

w
es

t 
se

tt
li

n
g

 t
im

e 
an

d
 p

er
ce

n
ta

g
e 

o
v

er
sh

o
o

t 
o

f 

0
.0

2
5

 a
n
d

 1
7

.5
%

, 
re

sp
ec

ti
v
el

y.
 

[1
5
5

] 
O

ff
 

P
V

 
B

E
S

S
 


 


 

V
ir

tu
al

 
N

M
 

D
u

al
 i

n
p

u
t 

tr
ip

le
 o

u
tp

u
t 

b
u
ck

 

3
0
 

In
te

g
ra

l 

b
ac

k
st

ep
p
in

g
 

T
h

e 
au

th
o

rs
 e

la
b

o
ra

te
 o

n
 d

es
ig

n
in

g
 a

n
 i
n
te

g
ra

l 
b
ac

k
st

ep
p
in

g
 c

o
n

tr
o

ll
er

 f
o

r 
ex

tr
ac

ti
n

g
 

la
rg

es
t 

al
lo

w
ab

le
 P

V
 p

o
w

er
, 
st

ab
il

iz
in

g
 t

h
e 

co
m

m
o
n

 b
u

s 
v
o

lt
ag

e,
 a

n
d

 c
o
n

tr
o
ll

in
g

 t
h
e 

b
at

te
ry

’s
 

st
at

e
-o

f-
ch

ar
g

e.
 

F
o

r 
fu

rt
h
er

 
v

al
id

at
io

n
, 

th
e 

st
ab

il
it

y
 

o
f 

th
e 

p
ro

p
o

se
d
 

co
n

tr
o

ll
er

 i
s 

ev
al

u
at

ed
 u

si
n

g
 L

y
ap

u
n

o
v

 m
et

h
o
d

. 

[1
5
6

] 
O

ff
 


 


 


 


 

P
E

M
 

1
0
0
 

B
u
ck

/b
o
o

st
 

1
2
 

B
ac

k
st

ep
p
in

g
 

S
M

C
 

T
h

is
 

w
o

rk
 

p
ro

p
o

se
s 

a 
b

ac
k

st
ep

p
in

g
 

S
M

C
 

fo
r 

a 
st

an
d
al

o
n

e 
sy

st
em

 
co

m
p

ri
si

n
g
 

P
E

M
F

C
 s

ta
ck

 f
ee

d
in

g
 a

d
ju

st
ab

le
 r

es
is

ti
v

e 
lo

ad
 t

h
ro

u
g

h
 b

u
ck

/b
o
o

st
 D

C
 c

o
n

v
er

te
r.

 
T

h
e 

su
g
g

es
te

d
 c

o
n

tr
o

ll
er

 s
ig

n
if

ic
an

tl
y

 m
in

im
iz

es
 c

h
at

te
ri

n
g
 o

f 
th

e 
tr

ad
it

io
n
al

 o
n

e,
 

en
su

ri
n

g
 a

 s
ta

b
le

 o
p

er
at

io
n

 r
eg

ar
d

le
ss

 t
h
e 

in
je

ct
ed

 d
is

tu
rb

an
ce

s.
 

[1
5
7

] 
O

ff
 

P
V

 


 
A

L
 

1
0
 

P
E

M
 

1
0
 

B
u
ck

/b
o
o

st
 

3
0
0
 

D
is

tr
ib

u
te

d
 

ec
o
n
o

m
ic

 M
P

C
 

T
h

is
 a

rt
ic

le
 i

n
tr

o
d
u

ce
s 

an
 i

n
n
o

v
at

iv
e 

d
is

tr
ib

u
te

d
 m

at
h

em
at

ic
al

 m
o
d

el
li

n
g

 o
f 

th
e 

D
C

 

co
n

v
er

te
rs

 c
o

n
tr

o
ll

ed
 b

y
 t

h
re

e 
se

p
ar

at
ed

 c
o
n

tr
o

ll
er

s 
fo

r 
o
p
ti

m
al

 t
ec

h
n
o

-e
co

n
o
m

ic
 

o
p
er

at
io

n
 o

f 
P

V
, 
F

C
, 
an

d
 W

E
L

. 
F

u
rt

h
er

m
o

re
, 
th

e 
au

th
o

rs
 p

ro
p
o

se
d
 a

 c
o

m
m

u
n

ic
at

io
n
 

st
ra

te
g
y

 f
o

r 
th

e 
th

re
e 

co
n
tr

o
ll

er
s 

to
 a

ch
ie

v
e 

su
p
p
ly

-d
em

an
d

 p
o

w
er

 b
al

an
ce

, 
re

g
u
la

te
d
 

D
C

 b
u

s 
v
o

lt
ag

e,
 a

n
d

 c
o

st
-e

ff
ec

ti
v

e 
o
p
er

at
io

n
. 

[1
5
8

] 
O

ff
 

P
V

 
W

T
 

B
E

S
S

 
A

L
 

1
 

P
E

M
 

1
 

B
id

ir
ec

ti
o
n

al
 

2
3
0
 

M
P

C
 

A
 t

w
o

-l
ay

er
 c

o
n

tr
o

l 
ap

p
ro

ac
h
 i

s 
ad

d
re

ss
ed

 i
n

 t
h
is

 w
o

rk
 f

o
r 

a 
su

st
ai

n
ed

 p
o

w
er

 f
lo

w
 t

o
 

th
e 

lo
ad

s 
an

d
 a

n
 e

n
su

re
d

 h
ig

h
-q

u
al

it
y

 f
o

r 
th

e 
m

ic
ro

g
ri

d
’s

 v
ar

ia
b
le

s.
 S

p
ec

if
ic

al
ly

, 
th

e 

M
P

C
 r

ep
re

se
n

ts
 t

h
e 

su
p
er

v
is

o
ry

 c
o

n
tr

o
l 

la
y
er

 t
h
at

 d
et

er
m

in
e 

th
e 

d
es

ir
ed

 v
al

u
es

 f
o

r 

th
e 

p
ri

m
ar

y
 c

o
n

tr
o

l 
la

y
er

 l
ea

d
in

g
 t

o
 z

er
o
 e

rr
o

r 
in

 t
h

e 
re

fe
re

n
ce

 v
al

u
es

. 
B

es
id

es
, 

it
 

en
su

re
s 

th
at

 F
C

, 
B

E
S

S
 a

n
d
 W

E
L

 o
p
er

at
e 

sa
fe

ly
 w

it
h
in

 t
h

ei
r 

p
ra

ct
ic

al
 c

o
n

st
ra

in
ts

 f
o

r 

ex
te

n
d
in

g
 t

h
ei

r 
li

fe
ti

m
e.

 

[1
5
9

] 
O

ff
 

P
V

 
W

T
 


 

P
E

M
 

0
.4

 


 


 
S

ta
ck

ed
 

in
te

rl
ea

v
ed

 

b
u
ck

 

1
0
0

-
2

0
0
 

D
o

u
b

le
-l

o
o
p

 P
I 

T
h

e 
p

ro
p
o

se
d

 c
o

n
tr

o
ll

er
 o

f 
th

e 
st

ac
k

 i
n
te

rl
ea

v
ed

 b
u
ck

 D
C

 c
o
n
v

er
te

r 
p

re
ci

se
ly

 a
ll

o
ca

te
 

th
e 

o
p
ti

m
al

 p
o

w
er

 d
el

iv
er

ed
 t

o
 t

h
e 

P
E

M
W

E
L

 a
lo

n
g
 w

it
h

 s
ta

b
il

iz
in

g
 t

h
e 

co
n
v

er
te

r 

o
u
tp

u
t 

v
o

lt
ag

e 
an

d
 m

in
im

iz
in

g
 i

ts
 o

u
tp

u
t 

cu
rr

en
t 

ri
p
p
le

s.
 M

o
re

o
v

er
, 
th

e 
au

th
o

rs
 h

av
e 

ad
d

re
ss

ed
 
th

e 
st

at
e 

sp
ac

e 
m

o
d

el
li

n
g
 

o
f 

th
e 

co
n

v
er

te
r,

 
al

o
n

g
 

w
it

h
 

th
e 

d
y

n
am

ic
 

m
o

d
el

li
n
g

 o
f 

th
e 

co
n
v

er
te

r.
 

[1
6
0

] 
O

ff
 

P
V

 
B

E
S

S
 

S
E

S
S

 

P
E

M
 

1
.2

6
 

P
E

M
 

1
 

T
ra

d
it

io
n
al

 

b
u
ck

 
In

te
rl

ea
v
ed

 

b
o
o

st
 

8
0
 

P
I 

A
n

 i
so

la
te

d
 m

ic
ro

g
ri

d
 c

o
m

p
ri

si
n
g

 P
V

, 
al

o
n

g
 w

it
h

 E
S

T
s,

 s
u
p
p

ly
in

g
 a

 D
C

 l
o

ad
 a

n
d
 

h
y
d

ro
g
en

 p
ro

d
u
ct

io
n
 s

y
st

em
. 
A

 P
I 

co
n

tr
o

ll
er

 i
s 

u
ti

li
ze

d
 t

o
 r

eg
u

la
te

 t
h
e 

in
n
er

 c
u

rr
en

t 
co

n
tr

o
l 

lo
o
p

. 
 

[1
6
1

] 
O

ff
 


 


 

P
E

M
 

0
.4

 


 


 
T

h
re

e-
le

v
el

 
in

te
rl

ea
v

ed
 

b
u
ck

 

1
0
0

-
2

0
0
 

P
I 

T
h

is
 a

tt
em

p
t 

re
v

ea
ls

 o
p

ti
m

al
 d

es
ig

n
 o

f 
a 

P
I 

co
n

tr
o

ll
er

 r
el

y
in

g
 o

n
 t

h
e 

sm
al

l 
si

g
n

al
 

an
al

y
si

s 
o

f 
th

e 
th

re
e
-l

ev
el

 i
n

te
rl

ea
v
ed

 b
u

ck
 c

o
n
v

er
te

r,
 e

n
h

an
ce

d
 b

y
 e

x
p

er
im

en
ta

l 

se
tu

p
. 

T
h

e 
in

tr
o

d
u

ce
d

 w
o

rk
 e

n
su

re
s 

an
 a

cc
u

ra
te

 c
o

n
tr

o
l 

o
f 

th
e 

p
ro

d
u

ce
d
 h

y
d

ro
g
en

 

q
u
an

ti
ty

 f
o

r 
o
p

ti
m

al
 D

C
 b

u
s 

v
o

lt
ag

e 
b
al

an
ci

n
g
 i

n
 t

h
e 

p
re

se
n

ce
 o

f 
R

E
S

s.
  



3
0

 
 [1

3
5

] 
O

ff
 


 


 


 


 

P
E

M
 

0
.5

 
F

o
u

r-
p
h

as
e 

in
te

rl
ea

v
ed

 

b
o
o

st
 

2
6
 

B
ac

k
st

ep
p
in

g
 

S
T

S
M

C
 

A
 n

o
v
el

 c
o

n
tr

o
l 

m
et

h
o

d
o
lo

g
y

 i
s 

p
re

se
n
te

d
 f

o
r 

tu
n

in
g

 f
o
u

r-
p
h

as
e 

in
te

rl
ea

v
ed

 b
o
o

st
 

co
n

v
er

te
r 

li
n

k
ed

 t
o
 P

E
M

F
C

 s
ta

ck
. 

S
p
ec

if
ic

al
ly

, 
it

 i
n
v

o
lv

es
 b

ac
k

st
ep

p
in

g
 c

o
n

tr
o

ll
er

 

fo
r 

th
e 

in
si

d
e 

lo
o
p

, 
w

h
il

e 
S

T
S

M
C

 i
s 

fo
r 

th
e 

o
u

ts
id

e 
lo

o
p

. 
T

h
e 

d
es

ig
n

ed
 a

p
p

ro
ac

h
 

g
u
ar

an
te

es
 a

 s
ta

b
il

iz
ed

 D
C

 b
u

s 
v

o
lt

ag
e 

w
it

h
in

 d
iv

er
se

 l
ev

el
s,

 r
o
b

u
st

 c
ap

ab
il

it
y
 o

f 
w

it
h
st

an
d

in
g

 
st

ro
n

g
 
su

d
d

en
 
d
is

tu
rb

an
ce

s,
 
an

d
 
ef

fe
ct

iv
e 

su
p

p
re

ss
io

n
 
o

f 
th

e 
F

C
’s

 

cu
rr

en
t 

ri
p
p
le

s.
 

[1
6
2

] 
O

n
 

P
V

 
W

T
 


 

P
E

M
 

1
0
0
0

0
 


 


 

T
ra

d
it

io
n
al

 
b

u
ck

 
5

0
0
 

M
P

C
 

A
n

 i
n
n

o
v

at
iv

e 
m

o
d
el

li
n
g

 o
f 

a 
g

ri
d

-c
o
n

n
ec

te
d

 o
ff

sh
o

re
 h

y
b

ri
d
 R

E
S

s-
b
as

ed
 n

et
w

o
rk

 
is

 t
h
o

ro
u
g

h
ly

 d
is

cu
ss

ed
 f

o
r 

o
p

ti
m

al
 p

o
w

er
 d

is
p
at

ch
 b

et
w

ee
n
 t

h
e 

g
ri

d
 a

n
d
 P

E
M

W
E

L
 

fo
r 

co
st

-e
ff

ec
ti

v
e 

h
y
d

ro
g
en

 g
en

er
at

io
n
. 

T
h

e 
M

P
C

 i
s 

ap
p

li
ed

 t
o

 t
h
e 

W
E

L
’s

 b
u

ck
 

co
n

v
er

te
r,

 
b

as
ed

 
o
n

 
th

e 
al

lo
ca

te
d

 
h

y
d

ro
g
en

 
p

ro
d
u

ct
io

n
 

st
ra

te
g

y,
 

fo
r 

o
p
ti

m
al

 
ec

o
n
o

m
ic

al
 h

y
d

ro
g
en

 p
ro

d
u

ct
io

n
. 

[1
6
3

] 
O

ff
 

P
V

 


 
A

L
 

1
0
 


 


 

T
ra

d
it

io
n
al

 

b
u
ck

 

7
0
 

C
en

tr
al

iz
ed

 

ec
o
n
o

m
ic

 M
P

C
 

T
h

e 
p

ro
p

o
se

d
 m

et
h

o
d
o

lo
g
y

 e
n

g
ag

es
 t

h
e 

en
er

g
y
 a

ll
o

ca
ti

o
n

 s
y

st
em

 w
it

h
 t

h
e 

lo
ca

l 

fe
ed

b
ac

k
 c

o
n

tr
o

l 
fo

r 
an

 o
p
ti

m
al

 i
n
d

iv
id

u
al

 c
o
n

tr
o

ll
er

. 
T

h
e 

fi
n

d
in

g
s 

re
v

ea
l 

th
at

 t
h
e 

ce
n
tr

al
iz

ed
 e

co
n
o

m
ic

 M
P

C
 o

u
tp

er
fo

rm
s 

th
e 

o
th

er
s 

in
 a

tt
ai

n
in

g
 t

h
e 

m
in

im
u

m
 r

o
u

t 

m
ea

n
 s

q
u
ar

e 
er

ro
r 

b
et

w
ee

n
 t

h
e 

d
es

ir
ed

 a
n
d

 a
ct

u
al

 p
o

w
er

s 
o

f 
0
.1

2
6

7
. 

 
[1

6
4

] 
O

ff
 

P
V

 

W
T

 

B
E

S
S

 
P

E
M

 
1
 

P
E

M
 

1
 

T
ra

d
it

io
n
al

 

b
u
ck

 

N
M

 
E

co
n
o

m
ic

 

M
P

C
 

T
h

e 
au

th
o

rs
 

in
tr

o
d

u
ce

 
a 

n
o

v
el

 
si

zi
n

g
 

te
ch

n
iq

u
e 

in
v

o
lv

ed
 

w
it

h
 

o
p
ti

m
al

 
en

er
g
y
 

m
an

ag
em

en
t 
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7. Power system integration of WEL-based systems 

7.1. WEL’s applications in modern power systems 

The rapid expansion of RESs in modern power systems has raised stability concerns due to their 

intermittent nature, especially in PV and WT systems [3, 171]. Unlike conventional power plants, RES 

output fluctuates with weather conditions, causing frequency and voltage instability [172, 173]. On the 

other hand, WELs offer a dual benefit, producing green hydrogen while providing ancillary grid 

services. By adjusting their operation, they help balance supply and demand, regulate frequency and 

voltage, and enhance grid resilience [26, 29-32]. Thus, the following subsections explore these 

services, emphasizing their role in optimizing power system performance and supporting a sustainable 

energy transition. 

7.1.1. Frequency regulation 

Maintaining a stable frequency is crucial for reliable operation and protecting connected equipment. 

Frequency fluctuations occur when supply and demand are unbalanced, causing deviations from the 

nominal 50 Hz or 60 Hz [174]. In response to these alternations, WELs help stabilize frequency by 

adjusting their power consumption. During over-generation, they increase hydrogen production by 

consuming excess electricity, reducing frequency to normal levels. Conversely, during under-

generation, they decrease power consumption, freeing capacity to balance the grid, as shown in Fig. 

24 [175, 176]. 

Moreover, WELs are scalable devices capable of adapting to several network configurations and sizes. 

For instance, in distribution systems where the integration of RESs is rapidly increasing, small-scale 

WELs can be deployed to provide secondary frequency control. Accordingly, an online simulation of 

engaging a generic front-end controlled 120 kW WEL for providing frequency compensation is 

reported in [29]. The findings highlight the capability of the PEMWEL to provide an immediate and 

appropriate response, thereby significantly reducing frequency errors. On the other hand, placing 

larger-scale WEL systems at key locations such as transmission hubs or substations can significantly 

enhance grid stability and frequency control over a larger area. By optimal situating these WELs at 

specific points in the transmission network, they can effectively stabilize grid frequency and address 

larger-scale disturbances. Their rapid response to varying grid conditions aids in mitigating 

fluctuations and reinforcing overall system reliability. In this context, the authors in [177] conducted 

an efficacy assessment of utilizing PEMWELs in conjunction with PEMFCs for primary frequency 

control. This evaluation was based on accurate forecast data derived from an actual grid scenario in 
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the Netherlands for the year 2030. The outcomes affirm that PEM devices can effectively compensate 

frequency deviations with respect to conventional generators under identical reserve capacity. 

However, there are major obstacles that hinder the huge penetration of WELs in power systems. For 

instance, the swift dynamic response still only characterizes specific WEL’s types, such as PEMWELs 

[30]. Furthermore, the WELs’ capital cost of installation and maintenance are still high. Thus, 

numerous research attempts are trying to tackle these problems individually [22]. 
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Fig. 24. WEL’s contribution to frequency regulation 

7.1.2. Voltage regulation 

WELs also play a key role in voltage regulation, ensuring stable grid operation [178]. While 

traditionally considered DC loads consuming only active power, advancements in power electronics, 

such as grid-forming inverters, now enable WELs to control both active and reactive power [128, 179]. 

By adjusting inverter settings, WELs can absorb reactive power to lower voltage during overvoltage 

conditions or inject reactive power to raise voltage when needed. This regulation is achieved without 

disrupting hydrogen production, enhancing grid stability and flexibility [29, 32, 180]. 

Consequently, the authors in [181] propose a novel fleet control of grid-connected WELs to mitigate 

the penetration effect of PV into distribution systems. Their outcomes signify how the implemented 

fleet control can effectively reduce voltage oscillations, mitigate overvoltage issues, and stabilize the 

intermittent operation of control devices caused by the discontinuous nature of PV generation. This 

enhances overall grid stability and ensures smoother operation in systems. 

Furthermore, the authors in [182] have fully defined the electrochemical model of a 0.5 MW AWEL 

involving its inherent dynamic response and nonlinearity. The studied WEL was connected to the grid 

through a phase-shifted full-bridge active front-end converter. The ultimate goal was to mitigate the 

voltage harmonic distortion and optimize the system behaviour under diverse operating conditions 
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including severe voltage deviations. According to the simulation outcomes, the proposed system 

successfully minimized the harmonic contents to match the Danich electricity grid code. 

Another attempt is presented in [183] for analysing the gride code requirements for linking mega-scale 

WEL to the power network. Specifically, the authors have introduced a detailed model for a grid-

integrated WEL via triple-phase h-bridge converter. Moreover, they developed a low voltage ride-

through methodology. The integrated system has proved its efficacy in supplying sufficient reactive 

power to compensate voltage deviations. 

7.1.3. Network balancing 

Basically, network balancing ensures equilibrium between electricity supply and demand [29]. WELs 

contribute by acting as flexible loads, adjusting power consumption based on grid conditions. During 

excess generation from PV and WT, WELs increase hydrogen production, preventing renewable 

curtailment and reducing grid overload [180]. On the other hand, during high demand or low RES 

output, WELs reduce or pause consumption, freeing power for critical loads and easing grid strain 

[184]. This flexibility helps stabilize supply-demand balance while enabling hydrogen storage for later 

energy or industrial use, enhancing profitability, resilience, and renewable integration [185]. 

In this regard, the authors in [186] discussed how WEL plants can maximize the profit share of a WT-

driven hydrogen production system interconnected to gride services. Particularly, they simulated 

practical grid services along with actual data of the energy price and wind energy profile from certain 

countries like Norway, France, Spain, and Italy. The findings highlight the capability of WELs to 

maximize economic profit through participation in applicable grid services by utilizing the unexploited 

capacity of generated hydrogen.  

7.1.4. Grid congestion 

Grid congestion occurs when transmission or distribution networks are overloaded, restricting efficient 

power flow, especially in high-RES areas where infrastructure struggles to handle peak generation. 

Traditional solutions focus on grid expansion and modernization, while smart grids with ESTs offer 

real-time monitoring, demand-side management, and enhanced RES integration, providing a flexible 

approach to congestion management [3, 16, 29, 173]. 

WELs help alleviate congestion by acting as controllable loads in congestion-prone areas. They absorb 

surplus electricity, converting it into hydrogen for storage, preventing bottlenecks and renewable 

curtailment. Their dynamic operation allows real-time energy flow control, reducing grid strain while 

maximizing RES utilization. Additionally, WELs lower the need for costly infrastructure upgrades, 

making green energy integration more efficient and economically viable [128, 187]. 
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In this context, the authors in [188] conducted a techno-economic assessment of a GHP system 

connected to a medium-voltage grid, supplemented with RESs. The case study was implemented in 

the Netherlands, considering price-aware electricity customers who adjust their consumption based on 

fluctuating electricity prices. Besides, the proposed economic-incentive optimization methodology 

involves single leader, grid utility, and several followers, including RESs’ owners and electricity 

consumers. Specifically, the utility allocates the time-variant congestion tariffs at each individual 

busbar, accordingly, the followers adjust their power generation or dissipation to minimize the fitness 

function, which is the operational cost. Herein, WELs demonstrate their ability not only to adapt to 

dynamic pricing strategies but also to contribute to the grid’s profit share. By responding to fluctuating 

electricity prices, WELs can optimize their operation, consuming energy when prices are low and 

generating hydrogen efficiently. 

For the same purpose, the authors in [189] discussed how WELs could effectively support the network 

management, configuration, and congestion in Germany. They proposed a generalized optimization 

approach comprising electricity price’s variations and congestion management for diverse operating 

modes and strategies. Particularly, different WELs’ operating scenarios, distinct WELs’ installed 

capacities, and various industrial carbon-neutrality strategies are comprehensively evaluated. The 

outcomes underscore that WELs demonstrate superior performance in addressing power congestion 

issues, particularly when implemented within a distributed-industries framework. 

7.1.5. Black start 

Black start refers to restoring power to a grid after a shutdown without external energy sources. 

Conventional power plants require external power to restart, making grid re-energization challenging. 

Black start-capable units, typically small self-sufficient generators, play a key role in this process 

[190]. Although WELs are still underexplored for black start, they can serve this function when 

coupled with hydrogen storage and FCs. Stored hydrogen can be converted back into electricity, 

supplying the initial power needed to restart larger generators and gradually restore the grid. Their 

independent operation, quick response, and sustainability make WELs valuable for grid recovery. As 

RES penetration increases, reliance on fossil-fuel-based black start resources may become impractical, 

positioning WELs as a green and efficient solution for power system restoration [191]. 

A systematic summary of recent attempts to utilize WELs in various power system applications is 

presented in Table 8. Several assessment criteria have been used to evaluate the effectiveness of WEL 

control methodologies in achieving goals such as frequency and voltage regulation, power balancing, 

and grid congestion management. Commonly employed criteria include the integral absolute error 

(IAE), integral time absolute error (ITAE), integral square error (ISE), integral time square error 
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(ITSE), and mean square error (MSE), all of which measure the deviation between reference and actual 

values for frequency, voltage, or power. 

7.2. Advanced grid strategies for hydrogen integration 

As concluded from the previous subsection, GHP via WELs presents significant benefits for power 

systems in terms of long-term energy storage and ancillary services. However, fully realizing these 

advantages requires not just technological innovation in WELs but also advanced grid management. 

Consequently, this section explores how flexible network topology, dynamic thermal rating (DTR), 

and other distributed energy resources (DERs) can synergize with GHP to enhance overall system 

reliability and resilience. 

Flexible network topology adjusts circuit breakers and tie lines in real time to redistribute power flows 

resulting in congestion reduction and greater renewable penetration [192, 193]. Furthermore, DTR 

raises transmission limits based on real-time ambient conditions, allowing operators to channel 

otherwise-curtailed renewable energy toward WELs. This reduces hydrogen costs by boosting WEL 

utilization and deferring major infrastructure upgrades. Accordingly, short-term measures like 

topology reconfiguration and DTR pair effectively with hydrogen’s longer-term buffering capacity 

which create a robust approach to handling intermittent RESs. 

Other DERs, such as batteries, offer high-power but short-duration buffering, while hydrogen excels 

at longer timescales [194]. Hence, coordinating these technologies helps manage both immediate 

fluctuations and prolonged renewable deficits. For instance, batteries stabilize frequency or voltage 

quickly, while hydrogen addresses seasonal imbalances. On the other hand, DTR optimizes power flow 

so that grid operators can dispatch smoothly excess wind or solar to WEL. 

Case studies show that network reconfiguration and DTR can jointly reduce wind curtailment, bolster 

grid stability, and improve economic returns [192-194]. Achieving this synergy, however, demands 

investments in sensor technology, real-time monitoring, and advanced control algorithms. Thus, 

ongoing research targets multi-objective optimizations that integrate WEL dispatch with grid 

reconfiguration to ensure cost-effectiveness and decarbonization without compromising reliability. As 

technology matures and costs decline, coupling hydrogen with flexible grids is poised to become a key 

pillar of future resilient power systems. 

7.3. Hierarchical and distributed energy management in hybrid grids 

The integration of GHP into modern power systems requires advanced energy management strategies 

to optimize efficiency and ensure stability. Thus, hierarchical and distributed energy management 

frameworks can play a key role in coordinating WELs, energy storage, and DERs in hybrid AC/DC 

grids [195, 196]. Particularly, hierarchical energy management operates across multiple levels. At the 
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supervisory level, long-term hydrogen production is optimized based on market conditions and load 

forecasts. The network management layer balances AC/DC power flows, WELs, and storage assets to 

improve grid flexibility. Finally, device-level control autonomously adjusts power converters and WEL 

operation in real time [197]. This structured approach can optimize energy use, reduces congestion, 

and enhances grid resilience. 

In contrast, distributed energy management shifts decision-making to interconnected control nodes, 

enhancing scalability and adaptability. Using cloud-edge-device cooperation, cloud intelligence 

performs system-wide optimization, edge computing manages local grid conditions, and device 

controllers can adjust hydrogen production in response to real-time demand [196]. This approach can 

improve direct DC coupling for WEL, reduces conversion losses, and ensures efficient RESs 

utilization. 

A key advantage of hierarchical and distributed energy management frameworks is their ability to 

coordinate hydrogen storage with other energy assets. For example, the synergistic operation between 

hydrogen and electric vehicle (EV) fleets can enhance grid flexibility, as EVs can act as mobile storage 

units, supporting short-term demand response, while hydrogen provides deeper storage capabilities for 

extended grid balancing [197]. This layered approach to energy resource coordination strengthens grid 

resilience, particularly in networks with high renewable penetration.
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8. Economic perspectives of GHP 

Fundamentally, conducting a thorough economic feasibility assessment is a crucial step in determining 

the viability and practicality of any project [210]. In fact, the cost of GHP in power systems is 

influenced by several factors, making it a complex and multi-faceted topic. The cost is primarily driven 

by the price of electricity, which accounts for a significant portion of the total production cost, often 

ranging between 50-70%. The WEL’s efficiency is another critical factor, as higher efficiency reduces 

energy consumption and, consequently, the cost of hydrogen. WEL’s capital cost, which includes the 

cost of the equipment, installation, and maintenance, also plays a significant role. WEL’s type (e.g., 

PEM, AL, or SO) affects both efficiency and capital costs, with PEMWELs typically having higher 

costs but better adaptability to variable renewable energy inputs [211-213]. 

In addition, there are several external elements affecting the overall cost of GHP. These include 

government policies, subsidies, and carbon pricing, which can incentivize or penalize certain energy 

production methods. Technological advancements in WELs and RESs, as well as grid infrastructure 

improvements, can also reduce costs over time. Moreover, the cost of transporting and storing 

hydrogen, which can vary depending on the distance and method used, plays a substantial role in 

determining the final cost to the end-user. Ultimately, the integration of green hydrogen in power 

systems is expected to become more cost competitive as renewable energy prices decline, technology 

improves, and economies of scale are achieved [214, 215]. 

Numerically, the levelized cost of hydrogen (LCOH) is a metric used to evaluate the overall cost of 

producing hydrogen over the lifetime of a project. It’s similar to the levelized cost of electricity 

(LCOE) and provides an average cost per kilogram of hydrogen produced, accounting for all expenses 

such as capital investment, operation, maintenance, and fuel costs, as formulated in (14) [216-218]. 

𝐿𝐶𝑂𝐻 =
𝐶𝑐𝑒𝑥 + ∑ (𝐶𝑜𝑚

𝑡 + 𝐶𝑒𝑙𝑐
𝑡 ) × (1 + 𝑟)−𝑡𝑛

𝑡=1

∑ 𝑀𝐻
𝑡 × (1 + 𝑟)−𝑡𝑛

𝑡=1

 (14) 

where, the capital expenditure, initial investment cost for the WEL system, ($) is represented by 𝐶𝑐𝑒𝑥. 

𝐶𝑜𝑚
𝑡  and 𝐶𝑒𝑙𝑐

𝑡  are the operational and maintenance cost and electricity cost used for hydrogen 

production in year t, respectively. 𝑀𝐻
𝑡 , 𝑟, and 𝑡 symbolize the amount of hydrogen produced in year t 

(kg), discount rate (the cost of capital or interest rate), and project lifetime (years), respectively. It’s 

worth mentioning that load factor, stack degradation rates, and energy tariffs, especially if the WEL 

relies on intermittent renewables, are the key inputs for LCOH calculations. 

In this context, several studies have focused on reducing the LCOH through the optimal design and 

configuration of WEL-based power systems. These efforts aim to enhance the economic viability of 
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GHP by optimizing system components, improving energy efficiency, and reducing overall costs. Table 

9 summarizes some of the recent efforts in this regard. 

Table 9. Analysis of published attempts to minimize hydrogen production costs 

Ref. Grid 

mode 

RESs ESTs WEL H2 Tank 

capacity 
(kg) 

Location LCOH 

($/kg) 
Type Capacity 

(kW) 

Capacity 

factor (%) 

Efficiency 

(%) 

[219] On PV BESS PEM 900 NM 15.35 

(Overall) 

270 Canada 4.76* 

[211] Off PV BESS PEM NM NM 90 10.97 Spain 

Italy 

6.71-

7.82* 
[212] Off PV  PEM NM 90 61  NM 6.22 

[213] Off PV  AL 4500 20 NM NM Korea 9.55 

BESS 22 Graphed 11.67 

[214] Off WT  AL 4800 NM 80  Germany 4.84* 

[215] Off WT BESS NM NM NM 75 3375 China 3.073-

3.155 
[216] On PV  NM 30 10 <75 30 Turkey 1.78-

3.40 

[217] Off WT BESS AL 250 NM 85 2022 NM 33.70 

[218] Off WT BESS NM 750 NM 59 900 Australia 28.10 

[220] Off PV  PEM 1000 NM NM  Poland 14.13-

15.06* 
[221] Off WT  PEM 185 NM 8.72 

(Overall) 

 Badakhshan 3.887-

10.827 

[222] Off PV/WT  AL 7.5 NM 62.8 NM Egypt 4.54-
7.48 

[223] On WT  PEM 3700-4400 60 85 11.45-12.75 

(103) 

Croatia 17.1-

27.2 
[224] Off PV/WT BESS PEM 250 NM NM 700 Canada 21.9-

37.7 

[225] Off PV/WT BESS NM 1500 NM 76.9 2000 India 3.00-
3.22 

[226] Off PV BESS AL 70000 28 85  Australia 3.1 

[227] Off WT  PEM NM NM 50.7  Algeria 6.1-6.8 

[228] On PV  PEM/AL 62/49 NM NM  Germany 6.83-

8.10 

[229] On PV  PEM 800 NM NM 1200 Oman 6.8 

[230] Off Solar thermal 

/Geothermal 

 PEM NM NM NM NM Iran NM 

[231] Off WT  AL 
PEM 

SO 

NM 97 
97 

97 

NM 
NM 

NM 

 

NM Chile  1.78-
2.45 

2.61-

3.47 
3.52-

4.11 

[232] Off PV/WT  AL 7.5 NM 77 NM Egypt 3.73-
4.656 

*Converted to $ (browse the article for the original currency). 

"Overall" denotes that the value corresponds to the total efficiency of the GHP system, accounting for all contributing 

sources. 

Beyond LCOH, other financial indicators, such as net present value (NPV), internal rate of return 

(IRR), and payback period, offer a broader investment perspective [233]. Specifically, NPV determines 

whether the discounted sum of future cash flows is positive or negative, IRR identifies the discount 

rate at which NPV is zero, thus reflecting project profitability, and the payback period estimates the 

time required to recoup initial expenditures. When used in conjunction with LCOH, these metrics 

capture project-specific risk tolerance, making the analysis more robust for stakeholders and potential 

investors. 
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On the other side, given the uncertainties involved, sensitivity analyses are often performed to identify 

how changes in parameters, such as electricity price, WEL capital expenditure, efficiency, and policy 

incentives, impact GHP feasibility [213]. Scenario analyses can also explore various market conditions 

or policy frameworks, illuminating how GHP economics might evolve under different assumptions 

(e.g., high vs. moderate renewable deployment). These methodologies help pinpoint cost drivers and 

guide strategic planning, risk mitigation, or policy-making efforts [234]. 

9. Conclusion and future insights 

In this article, a thorough review is presented to emphasize the transformative potential of green 

hydrogen as an EST through the integration of WELs into modern power grids. A key aspect 

highlighted in this work is the significance of the electrochemical model of WELs in understanding 

their internal dynamics, which enables accurate performance predictions, effective control design, and 

the optimization of hydrogen production processes. Furthermore, WELs have demonstrated their 

potential to enhance grid stability and reliability as a result of their diverse applications, from frequency 

and voltage control to grid congestion management and black start capabilities. It’s worth highlighting 

that PEMWELs have the fastest dynamic response, enabling rapid adaptation to grid demand 

fluctuations, real-time supply balancing, and mitigating intermittent RES impacts. On the contrary, 

ALWELs boast lower capital costs, extended lifespans, and reduced degradation rates, making them 

an excellent choice for large-scale capacity projects. Moreover, the review underscores the importance 

of advanced control techniques, such as PI, FLC, FNN, and ANFIS, for optimizing DC converters 

connected to WELs/FCs. With ongoing research efforts focused on reducing hydrogen production 

costs, the future of green hydrogen in energy systems appears promising. This review not only sheds 

light on current technological advancements but also paves the way for future innovations in 

sustainable energy systems. 

Herein, various future perspectives are presented to accelerate the shift towards GHP systems, aimed 

at enhancing power system stability and facilitating the large-scale penetration of RESs. 

1. Enhancing the precision of WEL mathematical models can lead to more accurate real-time 

operations and control strategies. Accordingly, novel mathematical models shall be developed to 

combine the whole operation aspects of GHP system, including hydrogen fluid dynamics in 

pipelines and storage medium.  

2. Future advancements in WEL efficiency can significantly lower hydrogen production costs and 

enhance their role in power systems. For instance, developing more efficient and durable catalysts, 

such as using platinum-group metals or non-precious metal alternatives, can reduce energy losses 

and enhance reaction rates during electrolysis. GHP efficiency can also be enhanced by further 
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developments in PEM and AEM for augmenting ion conductivity. Moreover, better utilization of 

the generated heat during hydrogen production phase can improve the overall efficiency by 

directing it to preheat water or serve other thermal processes. 

3. The integration between advanced converters topologies and control approaches can optimize 

power system stability. For example, the concept of grid-forming converters can provide ancillary 

services to power systems, like frequency and voltage regulation due to their rapid response to 

power fluctuations. Thus, they can optimally synchronize the hydrogen production with the grid’s 

demands. 

4. Recent evolution of AI-based controllers can further facilitate the utilization of GHP systems in 

dynamic grid support. Particularly, different machine learning control techniques, such as 

supervised learning (SL), unsupervised learning (UL), reinforcement learning (RL), and deep 

learning (DL), can significantly enhance the rapid integration of WELs. SL algorithms can predict 

energy demand patterns according to recorded historical data, while UL models determine the 

operation characteristics and abnormalities in WEL performance. Besides, RL techniques support 

dynamic operation of WELs in response to power oscillations by offering on-time decision-making 

capabilities. Lastly, DL approaches are appropriate for complex analyses of large datasets 

regarding GHP processes. 
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