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Abstract- The electrochemical modelling of proton exchange membrane electrolyzers (PEMEZs) 

relies on the precise determination of several unknown parameters. Achieving this accuracy requires 

addressing a challenging optimization problem characterized by nonlinearity, multimodality, and 

multiple interdependent variables. Thus, a novel approach for determining the unknown parameters of 

a detailed PEMEZ electrochemical model is proposed using the weighted mean of vectors algorithm 

(WMVA). An objective function based on mean square deviation (MSD) is proposed to quantify the 

difference between experimental and estimated voltages. Practical validation was carried out on three 

commercial PEMEZ stacks from different manufacturers (Giner Electrochemical Systems and 

HGenerators™). The first two stacks were tested under two distinct pressure‑temperature settings, 

yielding five V–J data sets in total for assessing the WMVA‑based model. The results demonstrate that 

WMVA outperforms all optimizers, achieving MSDs of 1.73366e-06, 1.91934e-06, 1.09306e-05, 

6.18248e-05, and 4.41586e-06, corresponding to improvements of approximately 88%, 82.9%, 82.4%, 

54.5%, and 59.5% over the poorest-performing algorithm in each case, respectively. Moreover, 

comparative analyses, statistical studies, and convergence curves confirm the robustness and reliability 

of the proposed optimizer. Additionally, the effects of temperature and hydrogen pressure variations 

on the electrical and physical steady-state performance of the PEMEZ are carefully investigated. The 

findings are further reinforced by a dynamic simulation that illustrates the impact of temperature and 
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supplied current on hydrogen production. Accordingly, the article facilitates better PEMEZ modelling 

and optimizing hydrogen production performance across various operating conditions. 

Keywords: Green hydrogen; Proton exchange membrane electrolyzer; Electrochemical model; 

Polarization losses; Voltage efficiency. 

1. Introduction 

1.1. Motivation 

Due to the increasing need for power and the decreasing supply of fossil fuels, the search for green 

energy alternatives has become critical [1]. The persistent consumption of fossil fuels has been 

releasing huge amount of greenhouse gasses leading to a range of ecological issues [2]. Accordingly, 

renewable energy sources (RESs) are at the forefront of current energy investments due to their reliance 

on clean and sustainable resources such as solar, wind, geothermal, and hydropower [3]. In this regard, 

some countries have adopted a zero-carbon strategy to be achieved by 2050, which refer to assigning 

RESs as the primary and sole energy sources for all residential, commercial, industrial sectors [4]. 

Hydrogen plays a vital role in this RESs transformation. It possesses unique technical characteristics 

that make it an effective and adaptable energy carrier. For example, hydrogen has an energy density 

per kilogram nearly three times that of gasoline. Moreover, hydrogen can be stored as a compressed 

gas, cryogenically as a liquid, or bound within chemical compounds [5]. Such storage flexibility offers 

an adequacy to various applications and configurations [6]. However, its low volumetric energy density 

requires high-pressure storage. Particularly, green hydrogen is the most sustainable hydrogen-

generation form, typically via water electrolysis. Such process occurs using an electrolyzer (EZ) 

powered by solar, wind, or other RESs, resulting in zero carbon emissions throughout the production 

process [7]. 

Practically, an EZ incorporates a process that splits water into hydrogen and oxygen using electrical 

energy. It consists of two main electrodes, an anode and a cathode, separated by an electrolyte [8]. 

When an electric current flows through the electrodes, water molecules at the anode are oxidized, 

releasing oxygen gas and positively charged hydrogen ions (protons) or oxide ions, depending on the 

EZ type. These ions then move through the electrolyte to the cathode, where they are reduced to form 

hydrogen gas. For instance, proton exchange membrane EZs (PEMEZs) use a proton-conducting 

membrane that allows only protons to pass through, while alkaline EZs (AEZs) use an alkaline solution 

as the electrolyte to facilitate ion transport [9]. 



Specifically, PEMEZs were initially developed to tackle the operation issues of AEZs in terms of 

restricted operation range and low current density [10]. Their rapid dynamics, low‑temperature 

operation, compactness, and modularity make them ideal for stabilizing fluctuating renewable inputs 

[11]. Such popularity highlights how important precise modelling of PEMEZ is. It enables operators 

to analyse, evaluate, control, and optimize PEMEZ performance over several simulated operating 

scenarios before deploying physical setups. This would save the high costs associated with trial-and-

error adjustments in hardware [12]. 

1.2. Literature review 

Recently, numerous efforts have been devoted to capturing the electrical behaviour (V–J curve) of 

PEMEZs through mathematical models [13].  

1.2.1. Equivalent-circuit and empirical models 

For example, an equivalent circuit model is presented in [14] which correlates the current density to 

the applied voltage at certain pressure and temperature. The authors in [15] introduced an electrical 

model to simulate the dynamic response of PEMEZ due to a step change in the drawn current. Their 

model comprises a voltage source, resistance, and capacitance. However, both models fail to address 

how physical and chemical factors, such as water content and electrolysis rate, could influence the 

electrical performance.  

Another attempt to imitate PEMEZ dynamic performance over variable temperatures and pressures is 

presented in [16]. Moreover, the behaviour of each individual polarization losses is also described 

highlighting that the ohmic losses share the largest effect on the EZ performance. A parametric model 

was developed in [17] that can simulate EZ performance under different flow rates, pressures, 

temperatures, and gas production. On the other hand, the researchers in [18] derived a mathematical 

formation to assess PEMEZ behaviour with respect to varying current density, membrane thickness, 

cathode pressure, and temperature. Furthermore, a hardware-in-the-loop simulation was implemented 

[19] to experimentally validate the outcomes of the proposed mathematical model. 

1.2.2. Electrochemical modelling 

Principally, electrochemical models account for both chemical factors, such as electrolysis rate, water 

content, and physical factors, such as membrane thickness, cell area, to predict the V–J behaviour more 

faithfully [20]. In this context, an empirical and a semi‑empirical temperature‑dependent model were 

first proposed for an AEZ cell in [21], and subsequently adapted to PEMEZs in [22]. That detailed 

formulation was further enhanced in [23] to capture temperature and pressure effects, but it relies on 

eight empirical coefficients that are not provided by manufacturers. Moreover, the identification of 

such empirical coefficients doesn’t guarantee a full characterization of the PEMEZ chemical features. 



A basic thermodynamic circuit models the PEMEZ as a single voltage source, representing the 

minimum energy for electrolysis, but it neglects ohmic resistance as well as activation and 

concentration overpotentials [24]. Thus, the authors in [25] developed a detailed electrochemical 

model that covers all the aforementioned losses for practical simulation of the EZ nonlinearity 

throughout the full-range operation. However, this model depends on several empirical parameters not 

provided by manufacturers. So, their accurate estimation is essential for dependable PEMEZ 

simulation, control, and performance forecasting. 

1.2.3. Role of optimization approaches 

In this context, several estimation techniques have been employed in the literature to identify model 

parameters. Such techniques are generally categorized into numerical and metaheuristic approaches. 

Example of numerical-based approaches exist in [15, 25-27]. Particularly, a Taguchi design was 

applied in [25] to tune operating pressures and temperatures as well as membrane thickness, water 

content, and anode/cathode exchange current densities. The least squares regression technique, 

employed in [15], identified a mix of static and dynamic parameters, whereas Gauss–Newton 

optimization, implemented in [26], minimized a nonlinear least quadratic error to extract five key 

coefficients (maximum current density, exchange current density, series resistance, charge‑transfer 

coefficient, and diffusion coefficient). Additionally, Levenberg-Marquardt optimizer, applied in [27], 

further refined membrane conductivity together with anode and cathode exchange currents. Although 

these deterministic optimizers can produce accurate results, their performance often hinges on good 

initial guesses and may degrade on large, highly nonlinear cost surfaces [28]. 

On the other hand, metaheuristic algorithms have shown excellent performance in tackling high 

nonlinear, complex, and operation-dependent optimization problems [29]. By adjusting their control 

parameters, they can offer optimal solutions with low computational burden [30]. Thus, they are widely 

utilized in various electrical engineering problems, such as optimal frequency regulation of microgrids 

[31], photovoltaic (PV) [32], battery [33], optimal distributed generators placement [34], and fuel cells 

parameter estimation  [35, 36].  

This encourages the authors in [37] to apply the particle swarm optimizer (PSO) to estimate three 

parameters of the PEMEZ model. Furthermore, bald eagle search optimizer (BESO) is employed in 

[38] to optimally identify six parameters adopting the least quadratic deviation as the objective 

function (𝐹𝑜𝑏𝑗). Moreover, the same authors in [39] have utilized honey badger algorithm (HBA) to 

determine the optimal values of seven parameters under two different operating conditions. For the 

same purpose, a modified version of HBA (MHBA), along with grey wolf optimizer (GWO), and PSO 

are introduced in [40] to optimally allocate eight parameters. The authors also investigated the impact 



of varying the temperature and pressure on the simulated V-J, hydrogen flow rate, and voltage 

efficiency curves. However, further commercial testcases are required to validate the proposed 

methodology results. 

According to the above-mentioned short survey, metaheuristic algorithms have become dominant in 

PEMEZ parameter estimation research due to their robustness and effectiveness in handling complex 

nonlinear problems. Indeed, the no-free lunch theory explains the inspiration of applying several 

algorithms for the same optimization problem. It states that no single algorithm can handle all 

optimization problems with the same effectiveness and robustness [41]. This highlights that there is 

always room for further improvement in metaheuristic optimizers concerning structural complexity, 

ability to explore broader search spaces, convergence trend, and computational efficiency. 

1.3. Article contributions and structure 

Based on the aforementioned illustrations, the literature still lacks a single integrated work that can (i) 

utilize such optimizers to fully define the electrochemical model, considering all empirical parameters, 

(ii) address practical physical variables of PEMEZs, such as partial pressures of hydrogen and oxygen, 

(iii) verify the efficacy of the optimization methodology under varying the PEMEZ operating 

conditions, and (iv) validate the practicability of the optimizer-based electrochemical model over 

different commercial testcases. This motivates the authors to propose a novel optimization 

methodology based on weighted mean of vectors algorithm (WMVA) [42] to address all the previously 

mentioned gaps. In fact, it’s not the first time to apply WMVA in parameter estimation optimization 

problems. Specifically, WMVA has been implemented to optimally extract the seven ungiven 

parameters of PEM fuel cells [43]. Moreover, the authors in [44] applied WMVA to estimate the 

equivalent circuit model parameters of Li-Ion batteries. WMVA also was adopted for maximum power 

point tracking of PV systems as in [45]. 

To summarize, the main contributions of this work are as follows: (i) Proposing a quantitatively 

validated modelling strategy for PEMEZs utilizing the WMVA to address the nonlinear, multimodal, 

and interdependent nature of parameter estimation, (ii) Optimizing key electrochemical parameters 

that significantly enhance voltage prediction accuracy, potentially improving system reliability, (iii) 

Validating the robustness and accuracy of the proposed methodology across three commercial PEMEZ 

testcases from different manufacturers under varying operating conditions, (iv) Analysing the effects 

of temperature and hydrogen pressure on the electrical and physical steady-state performance of 

PEMEZs to highlight their impact on efficiency and longevity, (v) Demonstrating the WMVA’s 

superior performance through a comprehensive statistical comparison with seven benchmark 

optimizers, and (vi) Conducting dynamic simulations to illustrate the dependence of hydrogen 



production on temperature and supplied current, providing valuable insights for optimizing PEMEZ 

operation under diverse scenarios. 

The reminder of this article is organized as follows: Section 2 offers a detailed mathematical 

formulation of PEMEZ electrochemical model. Section 3 introduces the inspiration and 

implementation procedure of the proposed WMVA. The assigned objective function along with its 

inequality constraints are mathematically expressed in Section 4. The numerical simulations for three 

commercial testcases are revealed in Section 5. Section 6 portraits a set of statistical analyses to 

evaluate the WMVA computational performance compared to other competitors. The impact of 

variable operating conditions on steady-state and dynamic response of PEMEZ is addressed in Section 

7. Section 8 provides the conclusion and discusses future perspectives. 

2. Electrochemical mathematical modelling 

As concluded from the above survey, the electrochemical model is the most competent mathematical 

tool to simulate the polarization characteristics (V-J) of PEMEZs [37]. Particularly, it assumes that the 

PEMEZ electrical response is represented by a voltage source alongside three adjacent overpotential 

losses, as shown in Fig. 1(a) [38]. Physically, the voltage source represents the minimum electrical 

potential required to initiate the water‐electrolysis reaction. In Fig. 1(b), the resulting polarization 

curve is annotated with shaded bands and callouts delineating the three dominant loss regimes [40]. 

Specifically, activation polarization is observed as a steep voltage rise at low current densities, while 

ohmic polarization appears as a nearly linear voltage increase at intermediate current densities. Finally, 

concentration polarization manifests as a sharp voltage rise at high current densities. 
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(a) Electrical equivalent circuit 



 

(b) Practical polarization curve 

Fig. 1. Electrochemical model characteristics 

Technically, a group of PEMEZ cells are gathered serially to augment hydrogen production rate, 

forming a PEMEZ stack. Hence, the stack output voltage 𝑉𝑠𝑡/𝑧 in (V) is represented by (1).  

𝑉𝑠𝑡/𝑧 = 𝑁𝑧 × 𝑉𝑐𝑙/𝑧 (1) 

where, 𝑉𝑐𝑙/𝑧 denotes the output voltage of a single PEMEZ cell which is expressed by (2) [38-40]. The 

number of series cells is symbolized by 𝑁𝑧. 

𝑉𝑐𝑙/𝑧 = 𝐸𝑜𝑐 + 𝑉𝑎𝑡 + 𝑉𝑜𝑚 + 𝑉𝑐𝑡 (2) 

where, 𝐸𝑜𝑐 refers to the ideal lowest applied voltage needed to start the electrolysis in (V), calculated 

using Nernst formula, as shown in (3). The activation, ohmic, and concentration overpotentials are 

represented by 𝑉𝑎𝑡, 𝑉𝑜𝑚, and 𝑉𝑐𝑡 in (V), respectively. 

𝐸𝑜𝑐 =
∆𝐺

2𝐹
+ [
𝑅 × 𝑇𝑧
2𝐹

× 𝑙𝑛 (
𝑃𝐻𝑦√𝑃𝑂𝑥

𝑃𝑊𝑡
)] (3) 

where, 𝑅 = 8.314 × 10−3 kJ/mol. K is the universal gas constant and 𝐹 = 96.485 kC/mol is the 

Faraday constant. The change in Gibbs-free-energy is denoted by ∆𝐺 in  (kJ/mol). 𝑇𝑧 is the PEMEZ 

operating temperature in (K). 𝑃𝑊𝑡 represents the water pressure in (atm) and is calculated by (4). 𝑃𝐻𝑦 

and 𝑃𝑂𝑥, determined by (5) and (6), are the hydrogen and oxygen partial pressures in (atm), 

respectively. 

𝑃𝑊𝑡 = 6.1078 × 10
−3𝑒𝑥𝑝 [17.2694 (

𝑇𝑧 − 273.15

𝑇𝑧 − 34.85
)] (4) 

𝑃𝐻𝑦 = 𝑃𝑐𝑎 − 𝑃𝑊𝑡 (5) 

𝑃𝑜𝑥 = 𝑃𝑎𝑛 − 𝑃𝑊𝑡 (6) 

where, 𝑃𝑎𝑛 and 𝑃𝑐𝑎 are the anode and cathode pressures in (atm), respectively. 



In fact, the inclusion of 𝑃𝐻𝑦 and 𝑃𝑜𝑥 in the electrochemical model is critical due to their direct influence 

on the thermodynamics and kinetics of the electrolysis reactions. Chemically, the equilibrium 

potentials explicitly depend on the partial pressures. Hence, accurately modelling these pressures 

ensures realistic simulation of cell voltage and efficiency, closely representing practical PEMEZ 

operation. Ignoring these partial pressures, as commonly done in previous literature, can significantly 

deviate the predicted performance from actual experimental observations, thus undermining the 

model's validity and reliability. 

Specifically, 𝑉𝑎𝑡 denotes the startup slowness of the chemical reaction, which dominates the initial 

loading phase of PEMEZ. Thus, 𝑉𝑎𝑡 is mathematically given by (7). 

𝑉𝑎𝑐𝑡 =
𝑅 × 𝑇𝑧
2𝐹 × 𝜁𝑎𝑛

sinh−1 (
𝐽𝑧
2𝐽𝑎𝑛
𝑒𝑥) +

𝑅 × 𝑇𝑧
2𝐹 × 𝜁𝑐𝑎

sinh−1 (
𝐽𝑧
2𝐽𝑐𝑎
𝑒𝑥) (7) 

where, 𝐽𝑧 is the PEMEZ operating current density in (A. cm−2). The exchange current densities of the 

anode and cathode are represented by 𝐽𝑎𝑛
𝑒𝑥 and 𝐽𝑎𝑛

𝑒𝑥 in (A. cm−2), respectively. 𝜁𝑎𝑛 and 𝜁𝑐𝑎 are the charge 

transfer coefficients for anode and cathode, respectively. 

On the other side, the ohmic losses 𝑉𝑜𝑚 due to the overall resistance experienced by PEMEZ is given 

by (8). 

𝑉𝑜𝑚 = 𝐽𝑧 ∙ (𝑅𝑚 + 𝑅𝑒𝑙) (8) 

where, 𝑅𝑚 refers to the PEM resistance in (Ω. cm−2) which is described by (9). The resistance from 

all other electrical paths, including current collectors, electrode materials, and connections is denoted 

by 𝑅𝑒𝑙 in (Ω. cm−2). 

𝑅𝑚 =
𝑡𝑚𝑏

𝜎𝑚𝑏 × 𝐴𝑚𝑏
 (9) 

where, the thickness and the active membrane area of the PEM are symbolized by 𝑡𝑚𝑏 in (cm) and 

𝐴𝑚𝑏 in (cm2), respectively. The PEM conductivity, given by (10), is denoted by 𝜎𝑚𝑏 in (Ω cm2⁄
−1
). 

𝜎𝑚𝑏 = (0.005139𝛽 − 0.00326) ∙ exp [1268 (
1

303
−
1

𝑇𝑧
)] (10) 

Finally, at higher load conditions, increased water content in the membrane 𝛽 leads to the emergence 

of concentration losses 𝑉𝑐𝑡. Such losses can be determined by (11). 

𝑉𝑐𝑡 =
𝑅 × 𝑇𝑧
2𝐹

× 𝑙𝑛 (
𝐽𝑙𝑖𝑚

𝐽𝑙𝑖𝑚 − 𝐽𝑧
) (11) 

where, 𝐽𝑙𝑖𝑚 is the limited current density of PEMEZ in (A. cm−2). 

The total efficiency of a PEMEZ is composed of three key terms: Faraday efficiency, thermodynamic 

efficiency, and voltage efficiency. However, since this paper focuses specifically on the electrical 

behaviour of the PEMEZ, only the voltage efficiency 𝜂𝑣 is considered, as expressed in (12). 



𝜂𝑣 =
𝐸𝑜𝑐
𝑉𝑐𝑙/𝑧

 (12) 

In addition, the theoretical hydrogen flow rate 𝑀𝐻𝑦 in (mol h⁄ ) is described in (13) [20]. 

𝑀𝐻𝑦,𝑡ℎ =
𝑁𝑧 × 𝑇𝑧 × 𝑅 × 𝐽𝑧 × 𝐴𝑚𝑏

2𝐹 × 𝑃𝐻𝑦
 (13) 

However, the actual hydrogen flow rate 𝑀𝐻𝑦,𝑠𝑠 in (mol h⁄ ) is determined by (14) [46]. 

𝑀𝐻𝑦,𝑠𝑠 = 𝑀𝐻𝑦,𝑡ℎ × 𝜂𝐻𝑦 (14) 

where, 𝜂𝐻𝑦 is the hydrogen production efficiency which is empirically formulated in (15) [46]. 

𝜂𝐻𝑦 = 𝑐1 × 𝑒𝑥𝑝 (
𝑐2 + 𝑐3 × 𝑇𝑧

𝐽𝑧
) (15) 

where, 𝑐1, 𝑐2, and 𝑐3 are fitting parameters in (%), (A cm2⁄ ), and (A (cm2℃)⁄ ), respectively. 

Now, it’s evident that ∆𝐺, 𝜁𝑎𝑛, 𝜁𝑐𝑎, 𝐽𝑎𝑛
𝑒𝑥, 𝐽𝑐𝑎

𝑒𝑥, 𝐽𝑙𝑖𝑚, 𝛽, and 𝑅𝑒𝑙 are the unknown parameters in the 

electrochemical model that must be accurately estimated to ensure the model's outcomes align with 

experimental records. 

3. Weighted mean of vectors algorithm (WMVA) 

Principally, the WMVA is population-based optimizer inspired by the concept of combining vectors in 

a weighted manner to achieve an optimal solution in multi-dimensional search spaces [42]. Such 

vectors represent the possible solutions available within the search space. Accordingly, WMVA seeks 

the best vector position (solution) during a specified number of iterations 𝐼𝑇𝑚𝑥 [43]. Specifically, since 

it’s a population-based algorithm, WMVA operates with a population consisting of 𝑁𝑝𝑝 vectors within 

a search space defined by 𝑁𝑑 dimensions (𝑥𝑙,𝑗
𝑖𝑡 = {𝑥𝑙,1

𝑖𝑡 , 𝑥𝑙,2
𝑖𝑡 , … , 𝑥𝑙,𝑁𝑑

𝑖𝑡  }, 𝑙 = 1,2, …𝑁𝑝𝑝). The 

initialization phase is governed by two control coefficients, namely weighted mean coefficient 𝛿 and 

scaling coefficient 𝛼, which are iteratively adjusted as shown in (16)-(17), respectively [44]. 

𝛿 = [2𝑒𝑥𝑝 (
−4𝑖𝑡

𝐼𝑇𝑚𝑥
)] × (2 × 𝑟𝑛𝑑 − 1) (16) 

𝛼 = [2𝑒𝑥𝑝 (
−4𝑖𝑡

𝐼𝑇𝑚𝑥
)] × (2 × 𝑟𝑛𝑑 − 1) (17) 

where, 𝑖𝑡 is the current iteration and 𝑟𝑛𝑑 is a random generated number between 0 and 1. 

Practically, WMVA comprises three key subprocesses for updating the positions of vectors in each 

iteration: updating rule, vector combining, and local search [45]. 

3.1. Updating rule phase 



At the outset of WMVA, population diversity is improved using the mean operator 𝑀𝑜, as defined in 

(18)-(20). This operator is based on calculating the weighted average of a group of vectors chosen 

through differential selection [42]. 

𝑀𝑜 = 𝑟1 ×𝑊𝑀1𝑙
𝑖𝑡 + (1 − 𝑟) ×𝑊𝑀2𝑙

𝑖𝑡 (18) 

𝑊𝑀1𝑙
𝑖𝑡 = 𝛿 ×

𝜔1(𝑥𝑎1 − 𝑥𝑎2) + 𝜔2(𝑥𝑎1 − 𝑥𝑎3) + 𝜔3(𝑥𝑎2 − 𝑥𝑎3)

𝜔1 + 𝜔2 + 𝜔3 + 𝜀
+ 𝜀 × 𝑟𝑛𝑑 (19) 

𝑊𝑀2𝑙
𝑖𝑡 = 𝛼 ×

𝜔1(𝑥𝑏𝑡 − 𝑥𝑏𝑟) + 𝜔2(𝑥𝑏𝑡 − 𝑥𝑤𝑡) + 𝜔3(𝑥𝑏𝑟 − 𝑥𝑤𝑡)

𝜔1 + 𝜔2 + 𝜔3 + 𝜀
+ 𝜀 × 𝑟𝑛𝑑 (20) 

where, 𝜔1, 𝜔2, and 𝜔3 denote wavelet functions as outlined in [42, 44]. 𝑟1 and 𝜀 represent a random 

value drawn from the interval [0, 0.5] and a small constant to prevent computational errors like division 

by zero, respectively. The integers 𝑎1, 𝑎2, and 𝑎3 are distinct and randomly selected within the range 

[1, 𝑁𝑣]. Furthermore, 𝑥𝑤𝑡, 𝑥𝑏𝑟, and 𝑥𝑏𝑡 refer to the worst, better, and best solutions among the 

population, respectively.  

At this phase, the WMVA integrates a convergence operator 𝐶𝑜 , as defined in (21), to further 

strengthen its search efficiency and improve solution refinement. 

𝐶𝑜 = 𝑟𝑛𝑑𝑛 ×
𝑥𝑏𝑡 − 𝑥𝑎1

𝑓(𝑥𝑏𝑡) − 𝑓(𝑥𝑎1) + 𝜀
 (21) 

where, 𝑟𝑛𝑑𝑛 denotes normal distribution-based value. The fitness value of the vector 𝑥 is symbolized 

by 𝑓(𝑥). 

Once the preceding operators have been computed, the updated vector 𝑦𝑙
𝑖𝑡 can be determined by (22). 

𝑦𝑙
𝑖𝑡 = 𝑥𝑙

𝑖𝑡 + [2𝑒𝑥𝑝 (
−4𝑖𝑡

𝐼𝑇𝑚𝑥
)] × 𝑀𝑜 + 𝐶𝑜 (22) 

Lastly, the WMVA implements the exploration phase which comprises two updating scenarios based 

on the value of 𝑟. Both scenarios are function of 𝑥𝑙
𝑖𝑡, 𝑥𝑎1

𝑖𝑡 , 𝑥𝑏𝑡, and  𝑥𝑏𝑟, as described in (23)-(24). 

𝑟1 < 0.5
𝑦𝑖𝑒𝑙𝑑𝑠
→   

{
 
 

 
 𝑦1𝑙

𝑖𝑡 = 𝑥𝑙
𝑖𝑡 + [2𝑒𝑥𝑝 (

−4𝑖𝑡

𝐼𝑇𝑚𝑥
)] × 𝑀𝑜 + 𝑟𝑛𝑑𝑛 ×

𝑥𝑏𝑡 − 𝑥𝑎1
𝑖𝑡

𝑓(𝑥𝑏𝑡) − 𝑓(𝑥𝑎1
𝑖𝑡 ) + 1

𝑦2𝑙
𝑖𝑡 = 𝑥𝑏𝑡 + [2𝑒𝑥𝑝 (

−4𝑖𝑡

𝐼𝑇𝑚𝑥
)] × 𝑀𝑜 + 𝑟𝑛𝑑𝑛 ×

𝑥𝑎1
𝑖𝑡 − 𝑥𝑎2

𝑖𝑡

𝑓(𝑥𝑎1
𝑖𝑡 ) − 𝑓(𝑥𝑎2

𝑖𝑡 ) + 1

 (23) 

𝑟1 ≥ 0.5
𝑦𝑖𝑒𝑙𝑑𝑠
→   

{
 
 

 
 𝑦1𝑙

𝑖𝑡 = 𝑥𝑙
𝑖𝑡 + [2𝑒𝑥𝑝 (

−4𝑖𝑡

𝐼𝑇𝑚𝑥
)] × 𝑀𝑜 + 𝑟𝑛𝑑𝑛 ×

𝑥𝑎2
𝑖𝑡 − 𝑥𝑎3

𝑖𝑡

𝑓(𝑥𝑎2
𝑖𝑡 ) − 𝑓(𝑥𝑎3

𝑖𝑡 ) + 1

𝑦2𝑙
𝑖𝑡 = 𝑥𝑏𝑡 + [2𝑒𝑥𝑝 (

−4𝑖𝑡

𝐼𝑇𝑚𝑥
)] × 𝑀𝑜 + 𝑟𝑛𝑑𝑛 ×

𝑥𝑎1
𝑖𝑡 − 𝑥𝑎2

𝑖𝑡

𝑓(𝑥𝑎1
𝑖𝑡 ) − 𝑓(𝑥𝑎2

𝑖𝑡 ) + 1

 (24) 

where, the new generated vectors at 𝑖𝑡𝑡ℎ iteration are denoted by 𝑦1𝑙
𝑖𝑡 and 𝑦2𝑙

𝑖𝑡. 



3.2. Vector combining phase 

Mainly, this phase is included in the algorithm to refine the local search process and expand the 

diversity within the population. Mathematically, 𝑦1𝑙
𝑖𝑡 and 𝑦2𝑙

𝑖𝑡 are combined with 𝑥𝑙
𝑖𝑡 to from a new 

vector 𝑧𝑙
𝑖𝑡 according to two random generated values 𝑟𝑎𝑛𝑑1 and  𝑟𝑎𝑛𝑑2, as outlined in (25)-(27) [43]. 

𝑧𝑙
𝑖𝑡 = 𝑦1𝑙

𝑖𝑡 + (0.05 × 𝑟𝑛𝑑𝑛) × |𝑦1𝑙
𝑖𝑡 − 𝑦2𝑙

𝑖𝑡|, 𝑟𝑛𝑑1 < 0.5 & 𝑟𝑛𝑑2 < 0.5 (25) 

𝑧𝑙
𝑖𝑡 = 𝑦2𝑙

𝑖𝑡 + (0.05 × 𝑟𝑛𝑑𝑛) × |𝑦1𝑙
𝑖𝑡 − 𝑦2𝑙

𝑖𝑡|, 𝑟𝑛𝑑1 < 0.5 & 𝑟𝑛𝑑2 ≥ 0.5 (26) 

𝑧𝑙
𝑖𝑡 = 𝑥𝑙

𝑖𝑡 , 𝑟𝑛𝑑1 ≥ 0.5 (27) 

3.3. Local search phase 

Finally, the WMVA enhances its exploitation phase by including a local search step designed to 

accelerate convergence toward the optimal solution while avoiding local optima. This is done by 

applying the mean operator along with the global position, and then generating a new vector using a 

revised updating rule, as shown in (28)-(31) [44]. 

𝑧𝑙
𝑖𝑡 = {

𝑥𝑏𝑡 + 𝑟𝑛𝑑𝑛 × [𝑀𝑜 + 𝑟𝑛𝑑𝑛 × (𝑥𝑏𝑡
𝑖𝑡 − 𝑥𝑎1

𝑖𝑡 )],                                 𝑟𝑛𝑑 < 0.5

𝑥𝑟𝑛𝑑 + 𝑟𝑛𝑑𝑛 × [𝑀𝑜 + 𝑟𝑛𝑑𝑛 × (𝜌1 × 𝑥𝑏𝑡 − 𝜌2 × 𝑥𝑟𝑛𝑑)], 𝑟𝑛𝑑 ≥ 0.5
 (28) 

𝑥𝑟𝑛𝑑 =
𝑟2 × (𝑥1 + 𝑥2 + 𝑥3)

3
+ (1 − 𝑟2) × [𝑟2 × 𝑥𝑏𝑟 + (1 − 𝑟2) × 𝑥𝑏𝑡] (29) 

𝜌1 = {
2 × 𝑟𝑛𝑑, 𝑟𝑛𝑑 > 0.5
1,                     𝑟𝑛𝑑 ≤ 0.5

 (30) 

𝜌2 = {
𝑟𝑛𝑑,                𝑟𝑛𝑑 < 0.5
1,                     𝑟𝑛𝑑 ≥ 0.5

 (31) 

where, 𝑟2 is a stochastic generated number from 0 to 1.  

Lastly, Fig. 2 demonstrate the systematic procedure of implementing the WMVA. 



Start
Tune WMVA 

parameters: Itmx, Npp, ND
Initialize population

Determine the fitness of 

each solution

Select three stochastic 

solutions

Compute wavelet 

functions
Update δ and α 

Determine the 

solutions y1 and y2

rnd1 < 0.5?

rnd2 < 0.5?

rnd1 < 0.5?

rnd2 > 0.5?

Determine z1
it

 by (25)

Determine z1
it

 by (26)

rnd < 0.5? Update  z1
it

 by (28)

f(zl) < f(xl) ? xl+1=xl

xl+1=zl

l < Npp ?

it < ITmx ?End

Determine z1
it

 by (27)

Yes

No

Yes

No

Yes

No

Yes

Yes

Yes
No

No

No
 

Fig. 2. Flowchart of WMVA 

Furthermore, The Big-O notation is employed to evaluate the computational complexity of the WMVA 

by analysing its runtime as a function of the input parameters, as described by (32) [42]. 

𝑂(𝑊𝑀𝑉𝐴)  = 𝑂 (𝐼𝑇𝑚𝑥 × (𝑁𝑝𝑝 × 𝑁𝐷)) = 𝑂(𝐼𝑇𝑚𝑥𝑁𝑝𝑝𝑁𝐷)  (32) 

Thus, 𝑂(𝐼𝑇𝑚𝑥𝑁𝑝𝑝𝑁𝐷) implies that the computational effort scales linearly with the number of 

iterations, the population size, and the dimensionality of the problem, respectively. It highlights how 

increasing any of these factors will proportionally affect the algorithm's runtime. 

4. Optimization problem specification 

In the parameter estimation process for the PEMEZ, the objective function (𝐹𝑜𝑏𝑗) plays a crucial role 

in guiding the optimization algorithm. Thus, minimizing the mean squared deviation (MSD) between 

the experimentally measured voltages 𝑉𝑠𝑡/𝑧,𝑒𝑥
𝑘  and the model-predicted voltages 𝑉𝑠𝑡/𝑧,𝑐𝑝

𝑘  is defined here 

as the 𝐹𝑜𝑏𝑗 for the WMVA, as shown in (33) [40]. Specifically, the MSD quantifies the discrepancy by 

averaging the squared differences across all data points, as described in (34). Hence, it provides a 

robust metric to evaluate the accuracy of the electrochemical model. By minimizing the MSD, the 

WMVA ensures that the estimated parameters align the model's predictions closely with experimental 

observations. Such methodology enhances the model reliability and precision under various operating 

conditions. 

𝐹𝑜𝑏𝑗(𝑊𝑀𝑉𝐴)  = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑀𝑆𝐷)  (33) 



𝑀𝑆𝐷 =
1

𝑁𝑒𝑥
∑ (𝑉𝑠𝑡/𝑧,𝑒𝑥

𝑘 − 𝑉𝑠𝑡/𝑧,𝑐𝑝
𝑘 )

2𝑁𝑒𝑥

𝑘=1
 (34) 

where, 𝑁𝑒𝑥 denotes the number of the measured voltage values of PEMEZ.  

To ensure realistic and physically meaningful solutions, lower and upper limits are imposed on the 

eight unknown parameters of the electrochemical model, as publicized in Table 1 [38-40]. These 

bounds constrain the search space, preventing the WMVA from exploring non-viable parameter values 

and enhancing the efficiency of the optimization process. 

Table 1. Feasible limits of the electrochemical model unknown parameters 

Parameter ∆𝐺, (kJ.mol−1) 𝜁𝑎𝑛 𝜁𝑐𝑎 𝐽𝑎𝑛
𝑒𝑥 , (A. cm−2) 𝐽𝑐𝑎

𝑒𝑥, (A. cm−2) 𝐽𝑙𝑚, (A. cm
−2) 𝛽 𝑅𝑒𝑙 , (Ω) 

Lower limit 0 0.1 0.25 10e-08 0.18 max (∑ 𝐼𝑧,𝑒𝑥(𝑘)
𝑁𝑒𝑥

𝑘=1
) 10 0.1 

Higher limit 245 0.9 0.64 10e-06 0.39 3 24 0.8 

5. Optimization numerical and graphical results  

Herein, the WMVA along with seven well-known optimizers, namely artificial ecosystem optimizer 

(AEO) [47], educational competition optimizer (ECO) [48], equilibrium optimization algorithm 

(EOA) [47], gradient-based optimizer (GBO) [49], puma optimization algorithm (POA) [50], red-

billed blue magpie optimizer (RBMO) [51] and secretary bird optimizer (SBO) [52] are executed for 

optimal identification of the PEMEZ electrochemical model. Furthermore, the results of these 

optimizers are compared to benchmark algorithms reported in the literature, like GWO, PSO, HBA, 

MHBA, and BESO. Three commercial testcases from different PEMEZ manufacturers (i.e. Giner 

Electrochemical Systems and HGeneratorsTM) are carefully addressed for practical evaluation of the 

optimizers’ efficacy in refining the electrochemical model outputs. Table 2 elucidates the technical 

characteristics of these testcases [13, 20, 38-40, 46, 53, 54]. It is worth noting that all algorithms share 

the same final selected values for 𝐼𝑇𝑚𝑥 and 𝑁𝑝𝑝, set to 300 and 30, respectively. Moreover, due to the 

significant randomness associated with such metaheuristic optimizers, the best results are determined 

by performing 20 independent runs for each testcase. In addition, for ensuring unbiased comparison, 

all simulations are conducted via MATLAB R2023b on a Dell laptop with an Intel® Core i7-13650HX 

processor running at 2.6 GHz and 16 GB of RAM. 

Table 2. Technical specs of the studied testcases 

                Technical specs 

Testcases 
𝑁𝑐𝑙 𝐴𝑚𝑏(cm

2) 𝑡𝑚𝑏 , (cm) 𝑇𝑧, (K) 𝑃𝑎𝑛, (bar) 𝑃𝑐𝑎 , (bar) 

Testcase (1) 
Scenario 1 

1 160 0.05 
353.15 0.9 1 

Scenario 2 323.15 0.5 30 

Testcase (2) 
Scenario 1 

12 160 0.0178 
313.15 1 10 

Scenario 2 328.15 7 70 

Testcase (3) 12 50 0.0178 323.15 1 1 



Specifically, the next subsections discuss the numerical and graphical results of the proposed 

optimization methodology for each testcase individually. 

5.1. Testcase (1) 

This testcase is widely utilized in the context of PEMEZ parameter estimation due to its extensive 

availability of V-J datasets for two distinct operating scenarios [20]. The first scenario consists of 57 

J-V data points measured at 80°C and a hydrogen pressure of 1 bar, while the second scenario provides 

37 J-V data points recorded at 50°C and a hydrogen pressure of 30 bar (refer to Table 2) [13, 39]. In 

fact, it represents a commercial PEMEZ cell capable of operating at a maximum hydrogen pressure of 

35 bar, with a temperature range of 50 °C to 80 °C, and producing hydrogen at a rate of 0.15 m³/h [40]. 

Table 3 presents the numerical results of the proposed WMVA alongside those obtained from other 

executed and previously reported optimizers for both operating scenarios. As shown in Table 3, the 

WMVA achieves the lowest MSD values, recording 1.73366e-06 and 1.91934e-06 for the first and 

second scenarios, respectively.  

  



Table 3. Estimated parameters for both scenarios of testcase (1) 

           Parameters 

Algorithms 

∆𝐺, 

 (kJ.mol−1) 
𝜁𝑎𝑛 𝜁𝑐𝑎 

𝐽𝑎𝑛
𝑒𝑥 , 

(A. cm−2) 

𝐽𝑐𝑎
𝑒𝑥, 

(A. cm−2) 

𝐽𝑙𝑚, 

 (A. cm−2) 
𝛽 𝑅𝑒𝑙 , (Ω) 𝑀𝑆𝐷, (V2) 

Scenario (1) 

WMVA 241.14570 0.36683 0.63999 9.9925e-06 0.33409 2.29899 23.8419 0.11553 1.73366e-06 

AEO 233.73854 0.36577 0.63870 4.0672e-06 0.34102 2.29863 21.7758 0.10134 1.73473e-06 

ECO 235.57578 0.34234 0.63392 9.9075e-06 0.38596 2.32817 23.7630 0.11285 3.50363e-06 

EOA 205.79741 0.36971 0.63845 1.0731e-07 0.38999 2.41111 21.1225 0.10001 2.08467e-06 

GBO 236.47881 0.36623 0.63999 5.6584e-07 0.33880 2.29982 23.4294 0.11295 1.73381e-06 

POA 238.93336 0.36228 0.63189 8.3868e-07 0.38999 2.31790 23.9933 0.11722 1.75616e-06 

RBMO 228.91394 0.36995 0.62013 1.9973e-06 0.31615 2.29135 22.3990 0.10514 1.74743e-06 

SBOA 240.90691 0.37000 0.63903 9.02634e-07 0.31383 2.29777 23.9977 0.11640 1.73964e-06 

GWO[40] 222.23000 0.37300 0.57400 8.9300e-07 0.35600 2.30800 21.4300 0.19300 1.44000e-05 

HBA[39] 229.96000 0.40700 0.50700 1.0000e-06 0.25600 2.22000 - 0.25400 6.84211e-06 

MHBA[40] 222.72000 0.38500 0.64000 7.1500e-07 0.29700 2.14000 21.2200 0.14500 8.73000e-06 

PSO[40] 222.34000 0.37500 0.63900 1.0500e-06 0.38700 2.30100 21.5900 0.14500 1.33000e-05 

Scenario (2) 

WMVA 244.99982 0.31576 0.63999 9.5196e-07 0.39000 1.84747 23.9999 0.17155 1.91934e-06 

AEO 244.74906 0.31608 0.59462 9.1484e-07 0.38998 1.82343 19.7169 0.12472 1.92037e-06 

ECO 240.60139 0.32298 0.61559 4.4850e-07 0.33938 2.68603 17.5136 0.10000 2.34256e-06 

EOA 244.81706 0.31805 0.57908 8.6367e-07 0.38283 1.84920 23.5830 0.16630 1.93925e-06 

GBO 244.99998 0.31577 0.63855 9.5177e-07 0.38999 1.84631 23.9999 0.17149 1.91936e-06 

POA 243.10570 0.31643 0.57180 7.4650e-07 0.36461 1.75717 18.6041 0.10672 1.93034e-06 

RBMO 233.77982 0.31589 0.63999 2.5333e-07 0.38999 1.85190 23.6826 0.16890 1.91942e-06 

SBOA 244.85521 0.31674 0.60630 9.0750e-07 0.37395 1.83207 23.6189 0.16658 1.92552e-06 

GWO[40] 233.13000 0.32310 0.63990 1.9700e-07 0.30360 2.29000 20.6600 0.46900 1.12000e-05 

HBA[39] 235.00000 0.31100 0.64000 3.6700e-07 0.39000 1.70000 - 0.36800 7.42105e-06 

MHBA[40] 233.32000 0.31610 0.64000 2.5800e-07 0.38900 1.40000 20.6200 0.74000 8.75000e-06 

PSO[40] 235.31000 0.31650 0.49000 3.0700e-07 0.39100 1.73000 21.2600 0.71900 9.78000e-06 

To evaluate how the WMVA-optimized parameter values align the electrochemical model’s calculated 

voltages with the experimental measurements, Figs. 3(a)-(b) and Figs. 4(a)-(b) illustrate the V-J and 

P-J curves for both scenarios, respectively. Figs. 3(a)-(b) and Figs. 4(a)-(b) clearly demonstrate that 

the calculated voltages closely match the experimentally measured values which underscores the 

effectiveness of the proposed WMVA-based electrochemical model. 

On the other hand, Figs. 3(c)-(d) and Figs. 4(c)-(d) depict the variation in individual polarization losses 

and the voltage efficiency of the PEMEZ with changes in the supplied current under both operating 

conditions, respectively. As the current increases, activation and ohmic losses typically rise due to 

higher reaction rates and resistive effects. On the other side, concentration losses become more 

prominent at higher current densities. These losses collectively impact the overall voltage efficiency, 

which tends to decrease as the current grows since it reflects the increasing energy demand to sustain 

electrolysis under such conditions. 



  

(a) V-J curve (b) P-J curve 

  

(c) Losses curve  (d) Voltage efficiency curve 

Fig. 3. Polarization characteristics for Testcase (1), Scenario (1) 

 

  



  

(a) V-J curve (b) P-J curve 

  

(c) Losses curve  (d) Voltage efficiency curve 

Fig. 4. Polarization characteristics for Testcase (1), Scenario (2) 

5.2. Testcase (2) 

A high-pressure PEMEZ stack is presented in this study which is manufactured by Giner Inc. 

(Massachusetts, USA) [53, 54]. Specifically, the stack can produce 1.1 Nm³ of hydrogen per hour when 

operating at its maximum power (5.6 kW) [38]. Once again, two V-J datasets are reported in the 

literature, corresponding to different operating scenarios [40]. Scenario (1) includes 36 V-J points 

measured at an operating temperature of 40°C and a hydrogen pressure of 10 bar. Meanwhile, Scenario 

(2) presents 29 V-J points recorded at an operating temperature of 55°C and a hydrogen pressure of 70 

bar. Herein, the WMVA continues its superiority to extract the optimal values of the eight unknowns 

by attaining the minimum MSD among all employed and reported competitors for both scenarios, as 

announced in Table 4. Numerically, the proposed WMVA achieves MSD values of 1.09306e-05 and 

6.18248e-05 for Scenario (1) and Scenario (2), respectively. Figs. 5(a)-(b) provide a visual 

representation of how the WMVA-based results improved the alignment of the computed voltages with 



the measured values for both scenarios. Similarly, the corresponding power curves are depicted in Figs. 

5(c)-(d), respectively. 

Table 4. Estimated parameters for both scenarios of testcase (2) 

          Parameters 

Algorithms 

∆𝐺, 

 (kJ.mol−1) 
𝜁𝑎𝑛 𝜁𝑐𝑎 

𝐽𝑎𝑛
𝑒𝑥 , 

(A. cm−2) 

𝐽𝑐𝑎
𝑒𝑥, 

(A. cm−2) 

𝐽𝑙𝑚, 

 (A. cm−2) 
𝛽 𝑅𝑒𝑙 , (Ω) 𝑀𝑆𝐷, (V2) 

Scenario (1) 

WMVA 239.77276 0.75604 0.63999 1.2869e-06 0.38999 1.50703 14.9129 0.39451 1.09306e-05 

AEO 243.15060 0.75677 0.63951 3.4006e-06 0.38999 1.50874 20.4304 0.43148 1.09312e-05 

ECO 244.99962 0.75595 0.47075 6.3955e-06 0.33745 1.50030 10.0000 0.31513 1.17416e-05 

EOA 245.00000 0.75586 0.63910 5.8864e-06 0.38999 1.50716 17.0643 0.41181 1.09312e-05 

GBO 242.25166 0.75601 0.63999 2.6445e-06 0.39000 1.50700 23.1789 0.44304 1.09306e-05 

POA 245.00000 0.75678 0.64000 5.8297e-06 0.39000 1.50803 24.0000 0.44611 1.09310e-05 

RBMO 243.28448 0.75438 0.62795 3.6512e-06 0.38678 1.50305 19.7200 0.42709 1.09483e-05 

SBOA 245.00000 0.75436 0.63999 5.9915e-06 0.39000 1.50568 10.0002 0.32491 1.09313e-05 

GWO[40] 227.28000 0.57600 0.48900 3.3900e-07 0.37900 1.75000 14.3100 0.23300 6.09000e-05 

MHBA[40] 226.87000 0.57100 0.63900 3.3100e-07 0.38900 2.31000 13.9900 0.64900 5.96000e-05 

PSO[40] 226.26000 0.70400 0.25600 1.9400e-08 0.34100 1.81000 14.7700 0.10000 6.20000e-05 

Scenario (2) 

WMVA 196.72648 0.36021 0.25000 2.7497e-06 0.26870 2.99999 14.0500 0.50143 6.18248e-05 

AEO 204.95331 0.36097 0.25000 7.1116e-06 0.26455 2.99997 17.8104 0.52667 6.18300e-05 

ECO 180.36944 0.35607 0.25000 3.1909e-07 0.30984 2.54391 24.0000 0.55591 6.27554e-05 

EOA 206.46811 0.35748 0.25086 9.2797e-07 0.28423 2.98590 23.9946 0.55289 6.18859e-05 

GBO 196.72623 0.36022 0.25000 2.4344e-07 0.26864 2.99823 22.0222 0.54506 6.18249e-05 

POA 201.59002 0.35968 0.25079 4.6770e-06 0.26912 2.99090 20.1915 0.53811 6.18338e-05 

RBMO 198.78966 0.36012 0.25003 3.2046e-06 0.26865 2.99401 19.8784 0.53684 6.18253e-05 

SBOA 207.01548 0.35994 0.25336 9.5313e-06 0.26128 2.30530 15.3714 0.50911 6.19053e-05 

BESO[38] 233.10000a 0.45810 0.35310 9.3700e-07 0.38910 9.99000* - - 3.48620e-05 

GWO[40] 222.30000 0.45560 0.28540 9.9900e-07 0.18000 2.31400 11.7600 0.79900 1.36000e-04 

MHBA[40] 222.77000 0.46310 0.25020 9.7900e-06 0.22820 2.49000 11.6300 0.69800 6.44000e-05 

PSO[40] 222.30000 0.45000 0.64000 1.0000e-06 0.18000 2.01000 11.0600 0.80000 1.27000e-04 

*The value violates the practical boundaries, so it’s unfeasible solution. 

  



  

(a) V-J curve for Scenario (1) (b) V-J curve for Scenario (2) 

  

(c) P-J curve for Scenario (1) (d) P-J curve for Scenario (2) 

Fig. 5. Polarization curves for Testcase (2) 

5.3. Testcase (3) 

Herein, a 1 kW well-known commercial PEMEZ stack, called LM-2000 HGeneratorTM, is introduced 

to further validate the efficacy of the proposed WMVA. Particularly, a 50 V-J points, measured at an 

operating temperature of 50°C and a hydrogen pressure of 1 bar, are extracted from [46]. As expected, 

the WMVA continues to deliver the best MSD performance, achieving a value of 4.41586e-06, as 

captured in Table 5. Again, Figs. 6(a)-(b) describes the consistency between the experimentally 

recorded and model-based values for voltage and power, respectively. 

 

 

 

 

 

 

 



Table 5. Estimated parameters for testcase (3) 

          Parameters 

Algorithms 

∆𝐺, 

 (kJ.mol−1) 
𝜁𝑎𝑛 𝜁𝑐𝑎 

𝐽𝑎𝑛
𝑒𝑥 , 

(A. cm−2) 

𝐽𝑐𝑎
𝑒𝑥, 

(A. cm−2) 

𝐽𝑙𝑚, 

 (A. cm−2) 
𝛽 𝑅𝑒𝑙 , (Ω) 𝑀𝑆𝐷, (V2) 

WMVA 243.76977 0.25111 0.63999 4.6068e-06 0.38999 1.06934 19.9778 0.31272 4.41586e-06 

AEO 240.67898 0.25106 0.63994 3.4574e-06 0.38999 1.06931 20.9237 0.32555 4.41591e-06 

ECO 243.55997 0.26988 0.64000 2.3355e-06 0.38999 3.00000 21.4662 0.36924 1.08888e-05 

EOA 243.23045 0.24968 0.61926 4.6294e-06 0.38370 1.06488 23.1381 0.34896 4.45512e-06 

GBO 243.20515 0.25127 0.63999 4.3440e-06 0.38954 1.06957 23.7398 0.35775 4.41683e-06 

POA 244.99441 0.25165 0.64000 5.0520e-06 0.39000 1.06957 11.5505 0.10000 4.41854e-06 

RBMO 243.41991 0.25513 0.63372 3.8083e-06 0.38978 1.07422 11.5023 0.10023 4.49763e-06 

SBOA 244.10332 0.25053 0.63863 4.8614e-06 0.38904 1.06809 23.9975 0.35962 4.42023e-06 

 

  

(a) V-J curve (b) P-J curve 

Fig. 6. Polarization curves for Testcase (3) 

6. Statistical and computational evaluation 

After validating the superior performance of the WMVA over other executed optimizers in achieving 

the lowest MSD within the same number of iterations and independent runs, the focus shifts to 

evaluating the computational efficiency and randomness level of these algorithms.  

6.1. Convergence trends 

Firstly, the convergence patterns of all employed algorithms for the two scenarios of testcases (1) and 

(2) and testcase (3) are illustrated in Figs. 7(a)-(e), respectively. Through many of these curves, the 

WMVA demonstrates a faster decline in the 𝐹𝑜𝑏𝑗 value which indicates its ability to reach optimal 

solutions more efficiently. Additionally, its curve exhibits minimal oscillations which also reflects 

better stability and consistency during iterations. This highlights the robustness of the WMVA in 

maintaining a reliable convergence trend in terms of speed and precision, even in the face of complex 

optimization scenarios. 

  



  

(a) Convergence of Testcase (1), Scenario (1) (b) Convergence of Testcase (1), Scenario (2) 

  

(c) Convergence of Testcase (2), Scenario (1) (d) Convergence of Testcase (2), Scenario (2) 

 

(e) Convergence of Testcase (3) 

Fig. 7. Convergence curves for all testcases 

6.2. Descriptive statistics 

Moreover, Table 6 presents the outcomes of various statistical indices, including the standard deviation 

(StD) and variance, evaluated across 20 independent runs for all testcases. Particularly, StD measures 

the spread or dispersion of the results which highlights how much individual runs deviate from the 



average performance. Similarly, the variance quantifies the extent of variability in the outcomes. 

Achieving the lowest values for these indices, as observed for the WMVA, signifies not only consistent 

performance across independent runs but also a high level of stability in delivering optimal solutions. 

This demonstrates the robustness of the WMVA in handling the parameter estimation problem with 

minimal randomness or unpredictability. Furthermore, the mean absolute percentage deviation 

(MAPD) is computed as per (35) and is summarized in Table 6 for each algorithm across all testcases. 

These metrics provide additional insights into the accuracy and precision of the algorithms.  

MAPD =
1

𝑁𝑒𝑥
∑

|𝑉𝑠𝑡/𝑧,𝑒𝑥
𝑘 − 𝑉𝑠𝑡/𝑧,𝑐𝑝

𝑘 |

𝑉𝑠𝑡/𝑧,𝑒𝑥
𝑘

𝑁𝑒𝑥

𝑘=1
× 100 (35) 

Unsurprisingly, the WMVA outperforms all other algorithms by achieving the lowest MAPD values 

across all testcases. This superior performance highlights the WMVA's remarkable accuracy in 

minimizing the deviation between the model-predicted and experimental values, as a percentage 

relative to the measured data. 

6.3. Overall group comparison 

A one-way ANOVA was applied to the final MSDs of all eight algorithms for each testcase to test 

whether their mean performances differ significantly. According to Table 6 (last column), all p-values 

fall below the 0.05 significance threshold, so the null hypothesis of equal mean MSDs is rejected in 

every case. Moreover, the boxplots in Fig. 8 reveal that WMVA consistently has both the lowest median 

MSD and the narrowest interquartile range across all three testcases. This indicates not only superior 

central accuracy but also tighter run-to-run consistency, thereby confirming WMVA’s overall 

advantage over the other optimizers. 

6.4. Pairwise hypothesis tests against WMVA 

To rigorously evaluate whether WMVA’s lower MSD truly outperforms each competing optimizer, two 

complementary paired tests across the 20 independent runs per testcase are employed. The Wilcoxon 

signed-rank test, a non-parametric method that makes no assumption of normality, examines whether 

the median of the paired MSD differences (WMVA minus other algorithm) differs from zero. The 

paired t-test, a parametric alternative, assesses whether the mean of those differences is significantly 

nonzero under the assumption of normality. In both cases we use a significance threshold of α=0.05. 

Table 6 (eighth and ninth columns) compiles the resulting p-values for each pairing and each of the 

three testcases. 



Across all testcases, the Wilcoxon test consistently yields p<0.05 for every pairing, confirming that 

WMVA’s median MSD is significantly lower than each competitor’s. The paired t-test agrees in most 

cases, with significant p-values particularly against ECO, EOA, GBO, POA, and SBOA in nearly every 

scenario. 

Only a handful of pairings, such as WMVA vs. AEO in Testcase (2), Scenario (1) and Testcase (3), or 

vs. RBMO in Testcase (3), fail the t-test despite a significant Wilcoxon result, suggesting some non-

normality in those paired differences. Nonetheless, the uniform significance of the non-parametric tests 

underscores WMVA’s robust and reproducible advantage in voltage‐prediction accuracy. 

6.5. Composite efficiency index (CEI) 

To capture both accuracy and computational cost in a single metric, the composite efficiency index 

(CEI) for each algorithm 𝑖 in each testcase is proposed. It combines the median MSD 𝑀𝑆�̃�𝑖 and the 

median runtime �̃�𝑖 of across the 20 independent runs, as describe by (36). 

𝐶𝐸𝐼𝑖  =
1

2
(𝐴𝑖 + 𝑆𝑖) (36) 

where, 𝐴𝑖 and 𝑆𝑖 are the normalized 𝑀𝑆�̃�𝑖 and �̃�𝑖 to a [0,1] scale, which are computed by (37) and 

(38), respectively. 

𝐴𝑖  =
𝑀𝑆�̃�𝑚𝑥 −𝑀𝑆�̃�𝑖

𝑀𝑆�̃�𝑚𝑥 −𝑀𝑆�̃�𝑚𝑛
 (37) 

𝑆𝑖  =
 �̃�𝑚𝑥 − �̃�𝑖

�̃�𝑚𝑥 − �̃�𝑚𝑛
 (38) 

where, 𝑀𝑆�̃�𝑚𝑥, �̃�𝑚𝑥, 𝑀𝑆�̃�𝑚𝑛, �̃�𝑚𝑛 are the maximum and minimum median values of MSD and 

runtime for all algorithms per a certain testcase, respectively. 

Here 𝐴𝑖 = 1 denotes the best (lowest) median MSD and 𝑆𝑖 = 1 denotes the best (fastest) median 

runtime. Accordingly, 𝐶𝐸𝐼𝑖 is bounded by a [0,1] scale, with higher values indicating a better trade-off 

between accuracy and speed. 

A closer look to Table 6 (seventh column), WMVA consistently achieves the highest CEI in every 

testcase, indicating that it provides the optimal trade-off between predictive accuracy and 

computational efficiency among all eight algorithms. 

 

 

 

 



Table 6. Statistical analyses of WMVA and other competitors 

Testcase Scenario Optimizer 

Statistical indices 

St.D Variance MAPD CEI 
Wilcoxon p-

value vs WMVA 

T-test p-value 

vs WMVA 

ANOVA p-

value 

Testcase 
(1) 

(1) 

WMVA 3.5887e-07 1.2879e-13 0.05433 0.995872 - - 

1.89e-15 

AEO 9.1938e-07 8.4527e-13 0.05443 0.642948 0.005110 0.018100 

ECO 1.0233e-05 1.0471e-10 0.06823 0.473440 0.000089 0.000327 

EOA 1.6644e-06 2.7702e-12 0.06023 0.942648 0.000892 0.000429 

GBO 1.2530e-06 1.5701e-12 0.05439 0.970896 0.003190 0.001360 

POA 2.6001e-06 6.7607e-12 0.05476 0.941279 0.000338 0.009030 

RBMO 1.2662e-06 1.6032e-12 0.05463 0.533316 0.001320 0.016100 

SBOA 5.3747e-07 2.8888e-13 0.05476 0.489457 0.000120 0.000694 

(2) 

WMVA 9.1266e-08 8.3295e-15 0.04905 1.000000 - - 

0.03350 

AEO 9.3499e-08 8.7422e-15 0.04907 0.730663 0.002200 0.012200 

ECO 4.0112e-05 1.6089e-09 0.05209 0.481902 0.000089 0.146000 

EOA 1.9130e-06 3.6597e-12 0.04925 0.509222 0.000089 0.003600 

GBO 9.6806e-07 9.3715e-13 0.04906 0.510211 0.000338 0.003390 

POA 2.2823e-06 5.2087e-12 0.04906 0.488811 0.000517 0.048400 

RBMO 9.3550e-06 8.7515e-11 0.04907 0.585442 0.000390 0.011700 

SBOA 6.9887e-07 4.8841e-13 0.04909 0.531805 0.000103 0.000005 

Testcase 
(2) 

(1) 

WMVA 4.1280e-08 1.7040e-15 0.14297 0.997549 - - 

1.46e-05 

AEO 1.2517e-07 1.5668e-14 0.14303 0.903573 0.007190 0.410000 

ECO 8.4396e-06 7.1227e-11 0.15058 0.493652 0.000103 0.029000 

EOA 1.0071e-06 1.0142e-12 0.14304 0.982550 0.008970 0.459000 

GBO 1.1230e-07 1.2611e-14 0.14301 0.828768 0.012400 0.846000 

POA 1.2351e-06 1.5254e-12 0.14301 0.820035 0.000390 0.002030 

RBMO 8.1023e-07 6.5648e-13 0.14317 0.521577 0.000780 0.000311 

SBOA 5.7248e-07 3.2774e-13 0.14310 0.485319 0.005730 0.073400 

(2) 

WMVA 2.7233e-07 7.4162e-14 0.28559 0.998404 - - 

2.73e-35 

AEO 2.8679e-07 8.2252e-14 0.28589 0.650159 0.008970 0.006320 

ECO 1.7362e-04 3.0145e-08 0.29274 0.497891 0.000089 0.000001 

EOA 1.1593e-06 1.3439e-12 0.28794 0.990310 0.000140 0.000018 

GBO 2.9780e-07 8.8688e-14 0.28559 0.991990 0.000390 0.000305 

POA 9.8437e-07 9.6898e-13 0.28637 0.983514 0.001020 0.000419 

RBMO 2.8127e-06 7.9113e-12 0.28585 0.528672 0.001160 0.002220 

SBOA 5.2723e-07 2.7797e-13 0.28616 0.494901 0.000089 0.000017 

Testcase 
(3) 

 

WMVA 8.9664e-07 8.0396e-13 0.07835 0.991469 - - 

0.00017 

AEO 1.3323e-06 1.7752e-12 0.07956 0.889168 0.047900 0.140000 

ECO 1.6557e-04 2.7414e-08 0.11651 0.485750 0.000120 0.026000 

EOA 5.8381e-06 3.4084e-11 0.08065 0.893297 0.005110 0.032300 

GBO 2.5981e-06 6.7499e-12 0.07948 0.977850 0.000390 0.000274 

POA 1.4169e-06 2.0077e-12 0.07953 0.962592 0.000120 0.282000 

RBMO 1.3110e-05 1.7188e-10 0.07954 0.642661 0.000103 0.181000 

SBOA 2.4801e-06 6.1507e-12 0.07979 0.469652 0.002820 0.002020 

 



  

(a) Boxplots of Testcase (1), Scenario (1) (b) Boxplots of Testcase (1), Scenario (2) 

  

(c) Boxplots of Testcase (2), Scenario (1) (d) Boxplots of Testcase (2), Scenario (2) 

 

(e) Boxplots of Testcase (3) 

Fig. 8. Boxplots of final MSD per run 

7. Detailed assessment of PEMEZ performance 

Based on the previously discussed validations, the WMVA-based electrochemical model has 

demonstrated remarkable adaptability and precision across various testcases and operating conditions. 

This signifies its effectiveness in accurately capturing the PEMEZ behaviour under diverse scenarios. 



Thus, the aforementioned outcomes are utilized in this section for critical evaluation of PEMEZ to 

understand how changes in operating conditions influence its electrochemical performance. 

Additionally, the analysis focuses also on how variations in the supplied current and operating 

temperature dynamically affect hydrogen production. 

7.1. Varying operating conditions 

Herein, the effect of changing the operating temperature and hydrogen pressure on the PEMEZ steady-

state performance is carefully studied for Testcase (1). Hence, Fig. 9 provides a detailed visualization 

of the PEMEZ's performance under varying operating temperatures of 50°C, 60°C, 70°C, and 80°C, 

with hydrogen and oxygen pressures fixed at 20 bar and 1 bar, respectively [40]. Specifically, Figs. 

9(a)-(d) illustrate how the voltage profile, polarization losses, voltage efficiency, and hydrogen flow 

rate adjust in response to the temperature changes, respectively. This offers a comprehensive 

assessment of the electrochemical behaviour and operational efficiency under different thermal 

conditions. 

According to Fig. 9(a), at low to moderate current densities, an increase in temperature causes the 

voltage to increase. This behaviour arises primarily due to the temperature's effect on activation losses, 

which are a significant component of the overall polarization losses in this range, as shown Fig. 9(b). 

Higher temperatures accelerate the electrochemical reaction rates at the electrodes, which increases 

the activation energy requirements. This results in a rise in the activation losses, which in turn leads to 

an increase in the overall cell voltage. However, at higher current densities, the effect of temperature 

often becomes inverse, as the reduction in ohmic resistance and other factors start to dominate the 

performance characteristics. On the other hand, concentration losses remain relatively unaffected 

unless mass transport limitations occur, as depicted in Fig. 9(b). Moreover, at low to moderate current 

densities, increasing temperature reduces the voltage efficiency due to higher activation losses, which 

raise the overall cell voltage, as described in Fig. 9(c). However, at higher current densities, the 

improved ionic conductivity at elevated temperatures reduces ohmic losses, which slightly lower cell 

voltage and enhance voltage efficiency. This highlights the complex relationship between temperature 

and current density in PEMEZ. Finally, the hydrogen flow rate increases with temperature, as higher 

thermal energy accelerates the electrolysis reaction, as illustrated in Fig. 9(d). 

The same approach is employed for varying the hydrogen pressure (1 bar, 10 bar, 20 bar, and 35 bar), 

while maintaining the operating temperature at 80°C and oxygen pressure at 1 bar, as shown in Fig. 

10. For the voltage profile, increasing hydrogen pressure typically raises the overall cell voltage due 

to increased internal resistance and pressure-induced changes in the electrochemical dynamics, as 

depicted in Fig. 10(a). However, polarization losses remain relatively stable across different pressures, 



as revealed in Fig. 10(b). Additionally, Fig. 10(c) demonstrates that the voltage efficiency decreases 

because elevated pressure introduces additional resistance factors. Lastly, the hydrogen flow rate 

decreases with higher hydrogen pressure due to the interplay of the ideal gas law and Faraday's law. 

  

(a) V-J curves (b) Polarization losses curves 

  

(c) Voltage efficiency curves (d) Hydrogen flow rate curves 

Fig. 9. Effects of varying temperature on PEMEZ 

 

 

 

 

 

 



  

(a) V-J curves (b) Polarization losses curves 

  

(c) Voltage efficiency curves (d) Hydrogen flow rate curves 

Fig. 10. Effects of varying hydrogen pressure on PEMEZ 

7.2. Dynamic simulation of hydrogen production 

This subsection examines the dynamic behaviour of the PEMEZ in terms of hydrogen flow rate 

production in response to sudden changes in supplied current, while also considering operating 

temperature as an input. Notably, the measured hydrogen flow rate demonstrates a delayed response 

in reaching its steady-state value due to purification processes integrated with the PEMEZ stack. These 

processes, which include separators for removing water from hydrogen and hydrogen dryers, introduce 

a transient delay. Based on experimental observations of this behaviour, a dynamic model for hydrogen 

production can be established. A straightforward representation of this model assumes the hydrogen 

flow rate behaves as a first-order system, with parameters determined by measuring the time required 

for the flow rate to stabilize following a current step change. Fig. 11 describes the block diagram 

representation of the dynamic model, which is constructed in SIMULINK. The process begins by 

calculating the maximum theoretical hydrogen flow rate 𝑀𝐻𝑦,𝑡ℎ at a given current density and 

temperature using (13). Next, the steady-state hydrogen flow rate 𝑀𝐻𝑦,𝑠𝑠 is determined through (14) 



and (15). Finally, the actual delayed hydrogen flow rate is derived by applying the first-order dynamic 

model, which captures the transient behaviour of the system. 

Theoretical hydrogen flow 

rate, Eq (13) 

Hydrogen production 

efficiency, Eq (14) & (15)

1

𝜏𝑠 + 1
 

Tz

PHy

Nz

Amb

Jz

MHy,th MHy,ss Dynamic 

response

 

Fig. 11. Schematic block diagram of the dynamic model 

It's worth highlighting that testcase (3) is employed here for the sake of understanding the dynamic 

nature of hydrogen production (refer to Section 2). Notably, the constants 𝑐1, 𝑐2, and 𝑐3, which are 

crucial for determining hydrogen production efficiency, are empirically derived from experimental 

data as detailed in [46] (see Section 5.3). The numerical values of these constants are 𝑐1=57.1081 %, 

𝑐2=-1699.6097e-04 𝐴 𝑐𝑚2⁄ , and 𝑐3=1.0304 𝐴 (𝑐𝑚2℃)⁄ , respectively. In addition, the system's time 

constant 𝜏 for this testcase is approximately 5 s, according also to the experimental verifications.  

In this context, current step changes of 10 𝐴, 25 𝐴, 50 𝐴, and 35 𝐴 are introduced at 0 s, 50 s, 100 s, 

and 150 s, respectively, as illustrated in Fig. 12(a). These step variations are repeated for three 

operating temperatures (25 ℃, 35 ℃, and 50 ℃) while keeping both hydrogen and oxygen pressures 

constant at 1 bar. The corresponding PEMEZ hydrogen flow rate responses to these current and 

temperature variations are depicted in Fig. 12(b). From Fig. 12(b), it can be observed that the effect of 

temperature on the dynamic response of the hydrogen flow rate mirrors its impact on the steady-state 

response, as shown in Fig. 9(d). In both cases, a rise in temperature results in an increase in hydrogen 

production. 

 

 

 

 

 

 

 

 



 

(a) Step variations on current density 

 

(b) Step response of hydrogen flow rate 

Fig. 12. Dynamic response of PEMEZ hydrogen flow rate 

8. Conclusion 

The findings of this study underscore the potential of the WMVA as an effective tool for parameter 

estimation in the electrochemical modelling of PEMEZs. The proposed method demonstrated clear 

advantages over seven well-established optimization algorithms by achieving superior performance in 

terms of MSD, MAPD, and CEI. For instance, the minimum MAPD values recorded by WMVA were 

0.05433% and 0.04905% for the two operation scenarios of the first testcase, 0.14297% and 0.28559% 

for the two operation scenarios of the second testcase, and 0.07835% for the third testcase, respectively. 

These results validate the WMVA’s reliability and robustness across different testcases and operational 

conditions which signifies its precision for parameter estimation and enhanced PEMEZ modelling. 

Additionally, by examining the impact of temperature and hydrogen pressure on the steady-state 

performance, this work provides critical insights into the factors influencing PEMEZ behaviour. For 



example, it has been proved that higher operating temperatures increase polarization losses at low 

current densities, while improving the polarization (J-V) curve at high current densities. The dynamic 

simulation further enriches these findings by illustrating how hydrogen production varies with 

temperature and current fluctuations. Overall, this research contributes to the development of more 

precise models for PEMEZ, which can lead to improved operational performance and more effective 

optimization strategies under diverse conditions.  

Future work will include the development of a hardware‑in‑the‑loop (HIL) testbed to validate the 

WMVA‐based parameter estimation under real‐time conditions, closing the loop between the proposed 

simulation model and an actual PEMEZ emulator. Beyond HIL integration, WMVA will be integrated 

into advanced real‑time monitoring and control frameworks to enable adaptive optimization of 

operating conditions for maximized hydrogen production. The coupling between electrochemical 

model parameters and their collective impact on system efficiency will be investigated in depth. 

Multi‑objective WMVA formulations, balancing energy efficiency against operational stability, will be 

explored, and degradation and aging effects will be incorporated to enhance the model’s long‑term 

predictive accuracy. 
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