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Abstract

Residential photovoltaic and battery energy storage systems (PV/BESS systems) are gaining
attention as a measure against natural disasters and rising electricity prices. This paper
aims to propose an operational strategy that balances electricity cost reductions, battery
lifespans, and outage mitigation for the residential PV/BESS system. The optimization
model considering battery degradation determines normal operations with balancing
cost reductions and degradation. Additionally, a rule-based approach simulates system
performance during various outages and evaluates supply continuity using a resilience
metric: the percent continuous supply hour. Outage mitigation benefits are quantified
by considering the distribution of residential values of lost load (VoLLs). Results show
that the operation considering degradation maintains a high state of charge (SoC) at all
times. For 25.7% of households with large demand, electricity cost reductions exceed
equipment costs. Outage simulations demonstrate that the mean energy supplied during
a 48-h outage ranges from 14 kWh to 26.7 kWh. Furthermore, the proposed operation
increases the resilience metric from 20% to 30% under severe and unpredictable outages.
Finally, incorporating outage mitigation benefits increases the proportion of households
adopting PV/BESS systems by 21.5% points.

Keywords: battery degradation; economic analysis; outage simulation; residential resilience;
supply continuity; value of lost load

1. Introduction
Blackouts caused by natural disasters are becoming more frequent and severe. For

example, Typhoon No. 15 (Faxai) in 2019 caused a widespread and prolonged blackout
in the Tokyo region [1], while a severe winter storm in Texas caused the loss of 30 GW
of generation capacity and a large-scale blackout in February 2021 [2]. In Japan, major
earthquakes such as the Great East Japan earthquake [3], the Hokkaido Eastern Iburi
Earthquake [4], and the Noto Peninsula Earthquake in 2024 have also triggered extensive
blackouts. Although power system operators strive to enhance grid resilience, they cannot
practically prevent all blackouts . Thus, electricity consumers need to adopt self-defensive
measures to prepare for and mitigate power outages.

In addition to the growing risk of emergencies, electricity prices have been rising due to
increasing fossil fuel costs. During the winter of 2022, energy prices rose significantly across
many regions, driven by geopolitical disruptions [5]. This highlighted the significance of
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energy security, including improving self-sufficiency rates [6]. In Japan, retail electricity
prices rose sharply after the winter of 2022, directly impacting households. Consequently,
residential systems that enhance self-sufficiency have attracted greater attention as a means
to mitigate rising costs.

A combination of photovoltaics and battery energy storage systems (PV/BESS sys-
tems) offers a promising solution to address both increasing outages and rising electricity
costs. PV/BESS systems promote self-consumptions and provide backup power during
blackouts [7]. In Japan, residential PV installations expanded rapidly after the Great East
Japan Earthquake in 2011, reaching 11 GW by October 2024. The feed-in tariff (FIT) program
initially supported PV adoption by allowing households to sell generation at a constant
price for 10 years, enabling cost recovery. However, FIT rates have declined, and many
households have completed their FIT contracts. As a result, maximizing self-consumptions
through PV generation combined with batteries become the primary source of benefit.
However, high investment costs remain a major barrier to PV/BESS system adoption.
Thus, the residential benefits of PV/BESS systems should be investigated to promote their
wider deployment.

Several papers have investigated the PV/BESS system in terms of cost reductions
and self-sufficiency. Previous research has analyzed economic benefits related to demand
smoothing [8], self-consumptions in various regions [9], integration with flexible loads [10],
and reductions in contract capacity [11]. Economic efficiency has been discussed through
the optimization of system sizes [11] and comparisons with hydrogen-based systems [12].
When combined with home energy management, user preferences and cost reductions
can be optimized simultaneously [13]. Although households can benefit economically
from PV/BESS systems, batteries are often not cost-effective under residential usage pat-
terns [8,14]. Deep charge and discharge cycles can achieve greater cost reductions but
accelerate battery’s degradation, shortening its lifespan and increasing replacement costs.
Furthermore, deep discharge increases vulnerability to sudden supply interruptions due to
insufficient stored energy. To balance cost reductions and battery lifespans, several papers
have proposed operations that minimize degradation [14–16]. However, a comprehensive
evaluation of outage mitigation and cost reduction benefits, including resilience aspects,
remains limited.

Many studies have investigated measures taken by power system operators to pre-
vent and mitigate supply interruptions. Wang et al. [17] categorizes these measures into
prevention, mitigation, and recovery. Preventive measures include expanding distribution
networks [18], reinforcing transmission lines [19], installing batteries [20,21] and electric ve-
hicles [22], and tree trimming [23]. Mitigation measures aim to limit the spread of interrup-
tions, such as disconnection of transmission lines [24,25], microgrid deployment [3,26–28],
and charge control of distributed electric vehicles [29]. Recovery time can be shortened by
optimizing repair crew dispatch and movable generator allocation [30]. From a residential
perspective, these measures reduce the frequency of outages in households.

Previous research has also explored residential PV/BESS systems primarily for out-
age mitigation. Key topics include optimal sizing, operational strategies, and economic
feasibility. Papers on sizing have investigated minimizing total costs including outage
damage [31], mitigating multi-day outages [32], case studies on hurricanes in the U.S. [33],
comparisons with natural gas generators [34], and planning methods based on reliability
indices [35]. Operational strategies for outage mitigation aim to prepare for unpredictable
outages [36] and integrate electric vehicles [37] and flexible loads [38]. Some papers have
analyzed coordination among households with distributed PV/BESS systems [39] and
shared systems [40,41]. Outage mitigation can motivate households to adopt PV/BESS sys-
tems, and several papers have quantified its benefits considering regional differences [42],
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integration with flexible load control [43], and unpredictable outages [36]. These studies
evaluate resilience using the amount of energy supplied during outages. However, supply
continuity for critical loads remains underexplored. Even short outages can cause severe
discomfort, such as rising indoor temperatures [44], and may threaten lives by interrupting
medical equipment [45]. Thus, supply continuity is crucial for resilience.

The economic value of outage mitigation can be quantified using the value of lost load
(VoLL) [46,47], which represents the cost of unserved energy during outages. Residential
VoLLs have been estimated in various countries, including the U.S. [48,49], Norway [50],
Korea [51], and Japan [52]. Several papers have converted outage mitigation into benefits
in buildings [53] and households using historical outages [42]. They have used a repre-
sentative VoLL values for conversion [36,42,43,53]. However, VoLLs vary widely among
households [50–52], influencing PV/BESS system adoption. The impact of this distribution
on benefit evaluation remains underexplored. A more detailed analysis is needed to assess
how outage mitigation benefits differ among households with varying VoLLs.

Power systems face increasing risks of large-scale supply interruptions and rising
energy costs. Residential PV/BESS systems have the potential to mitigate these risks.
To maximize their benefits, it is essential to balance cost reductions, battery degradation
management, and outage mitigation. However, there is a trade-off: aggressive battery
cycling reduces electricity costs but accelerates degradation and increases vulnerability to
sudden supply interruptions. A comprehensive analysis of economic efficiency, battery
degradation, and outage mitigation of PV/BESS systems has yet to be fully conducted.
This paper aims to propose an operation of residential PV/BESS systems that addresses
all these aspects. The operation minimizes the sum of annual electricity costs and battery
degradation costs, ensuing that batteries maintain a high state of charge (SoC) to enhance
resilience. This paper evaluates the balance between cost reductions, outage mitigation, and
equipment costs under the proposed operation. Additionally, this paper evaluates supply
continuity during outages. The duration for which the PV/BESS system can continue to
serve critical loads is assessed under different battery’s operations.

The contributions of this paper are as follows:

• It evaluates electricity cost reductions and PV/BESS equipment costs through opti-
mization explicitly considering battery degradation.

• It simulates operations during outages and evaluates supply continuity for critical loads.
• It combines outage mitigation benefits with economic efficiency, considering the

distribution of residential VoLLs.

The remainder of this paper is organized as follows. The method to determine opera-
tions and analyze outage mitigation are explained in Section 2. The simulation results are
explained in Section 3. At last, the conclusion is explained in Section 4.

2. Method
This paper simulates annual operations of residential PV/BESS systems using an

optimization model and evaluates outage mitigation through a rule-based algorithm.
Figure 1 shows the overall procedure. The inputs include the household and outage data.
The optimization problem determines the SoC and electricity cost reductions by PV/BESS
systems. The outage simulations determine energy supplied and continuous supply hours
for critical loads during outages. The SoC information affects the initial state when a sudden
outage occurs. The analysis combines economic efficiency and resilience by converting
outage mitigation into economic benefits using the residential VoLL.
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Figure 1. Overall procedure in the simulation of residential photovoltaic and battery energy storage
systems (PV/BESS systems). Black arrows show the data flows.

2.1. Household Model

Figure 2 shows the household model. The household has a battery and rooftop solar
panels. The battery has a 5 kW charge and discharge output and a 13.5 kWh capacity. Its
one-way efficiency is 90% in charging and discharging. Its SoC operates between 10% and
90%. The PV system has a 3 kW capacity. Its generation profile is based on annual global
horizontal irradiance data in Osaka, Japan [54], as shown in Figure 3.

Load

Grid

PV

Battery
AC DC

Figure 2. Household electricity model.
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Figure 3. Annual generation profile of the 3 kW PV system.

Electricity prices follow the wholesale market prices in the Kansai region [55]. Figure 4
shows the electricity prices. The prices are updated one day before the actual supply and
vary in every 30 min. Fluctuated prices can promote electricity cost reductions by the
PV/BESS system.

This paper uses demand data from 70 households in the Kansai region in Japan. The
identical PV and battery sizes are applied to all households for comparison. PV generation
is the same in all households.
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Figure 4. Annual electricity variable prices [55].

2.2. Battery Degradation Model

Battery degradation occurs due to charge/discharge cycles, which is called the cycle
effect. The degradation includes the capacity fade and power fade. This paper focuses
on the capacity fade because the capacity reduction significantly impacts operation. This
paper uses a model based on [56]. The model in [56] shows the cycle effect as (1).

ξdeg(SOCave, SOCdev) = k1SOCdev exp[k2SOCave] + k3 exp[k4SOCdev]. (1)

This model shows that degradation in a cycle depends on an average SoC (SOCave)
and an SoC deviation (SOCdev). ξdeg denotes the capacity fade. k1, k2, k3, and k4 denote the
parameters, as shown in Table 1. This paper converts the average SoC and SoC deviation
to a bottom SoC (SOCbottom) in a complete cycle using Equations (2) and (3). Thus, the
degradation model can be described as (4).

SOCave =
1 + SOCbottom

2
. (2)

SOCdev =
1 − SOCbottom

2
. (3)

ξdeg(SOCbottom) = k1
1 − SOCbottom

2
exp

[
k2

1 + SOCbottom
2

]
+ k3 exp

[
k4

1 − SOCbottom
2

]
.

(4)

Figure 5 shows the relationship between the bottom SoC in a complete cycle and the
degradation amount. A battery capacity degrades fast with deep discharge.

Table 1. Parameters in the battery degradation model [56].

k1 k2 k3 k4

−4.092×10−4 −2.167 1.408×10−5 6.130

The degradation amount is non-linear against the SoC change. It is discretized into
eight segments for piecewise linearization. Each segment has the width of a 10% SoC.
The endpoints are set between 10% and 90% following the battery operation range. A red
dashed line in Figure 5 shows the linearized degradation amount in a complete cycle.

Battery degradation also occurs regardless of charge/discharge cycles, which is called
the calendar effect. The calendar effect depends on the years of use, temperature, and
SoC [16]. For simplicity, it reduces the battery capacity by 1.2%/year regardless of tempera-
ture and SoC based on experimental results [57].

The cumulative degradation determines the battery lifespan. This paper assumes that
the battery lifespan ends when capacity decreases by 30%. The degradation and lifespan of
solar panels are not considered.
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Figure 5. Degradation amount per complete cycle and its piecewise linear approximation.

2.3. Optimization for Normal Operation

The optimization problem decides the battery’s normal operation. Table 2 shows the
nomenclature of symbols used in the following equations. The optimization minimizes
the total annual cost shown in (5). It includes electricity and degradation costs to bal-
ance electricity cost reductions and battery lifespans. Electricity costs (Celec,t) depend on
time-varying prices, as shown in (6). Excess energy of PV generation (Csell,t) can sell at
15 JPY/kWh in the first 10 years based on the FIT scheme and 8 JPY/kWh in the rest based
on the retail contract. Its sale (Csell,t) is calculated as (7).

Ctotal = ∑
t

(
Celec,t + Cdeg,t − Csell,t

)
. (5)

Celec,t = ∑
t

UCelec,t × Egrid,t. (6)

Csell,t = ∑
t

UCsell,t × Esell,t. (7)

The degradation cost is calculated from degradation amounts, the battery’s lifespan,
and the battery’s equipment costs. Its definition is shown in (8).

Cdeg,t = Cinv,BT
Dt

1 − SOHmin . (8)

Degradation amounts are calculated using the method in [58]. It concentrates degrada-
tion in discharging processes. In other words, degradation costs happen only in discharging
in the optimization. Constraints (9) and (10) demonstrate the degradation. ξ̄deg denotes
the linearized degradation amount in a complete cycle, as shown in a red dashed line in
Figure 5. The right-hand side of (9) becomes negative when charging, and vice versa.
Constraint (10) limits the degradation amount to be non-negative. Hence, the degradation
amount becomes positive only when the battery discharges.

Dt ≥ ξ̄deg(SOCt)− ξ̄deg(SOCt−1). (9)

Dt ≥ 0. (10)
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Table 2. Nomenclature of symbols in the optimization definition.

Symbol Definition Unit

t Time Slot [-]

Variables

Ctotal Total cost [JPY]
Egrid,t Supply from grid [kWh]
Esell,t Sold excess electricity to grid [kWh]
EBTc,t Consumption at battery charge [kWh]
EBTd,t Supply from battery discharge [kWh]
uBTc,t Battery charging state 0 or 1
SOCt Battery state of charge (SoC) [-]
Dt Battery degradation amount [-]

Constants

UCelec,t Electricity variable price [JPY/kWh]
UCsell,t Excess electricity price [JPY/kWh]
Edem,t Demand [kWh]
EPV,t PV generation [kWh]
Emax

grid Maximum supply from grid [kWh]
Emax

BT Maximum output at battery [kWh]
SOCmin Minimum SoC [-]
SOCmax Maximum SoC [-]
SOCmargin SoC margin [-]
CAPBT Battery capacity [kWh]
ηBT Battery charge/discharge efficiency [-]
Cinv,BT Battery equipment cost [JPY]
SOHmin Battery capacity rate at the end of lifespan [-]
ξ̄deg Linearized degradation curve [-]

The constraints in the optimization problem are described as follows:

Egrid,t + EPV,t − Esell,t + EBTd,t = Edem,t + EBTc,t. (11)

0 ≤ Egrid,t ≤ Emax
grid . (12)

0 ≤ Esell,t ≤ EPV,t. (13)

0 ≤ EBTc,t ≤ Emax
BT × uBTc,t. (14)

0 ≤ EBTd,t ≤ Emax
BT × (1 − uBTc,t). (15)

SOCt × CAPBT = SOCt−1 × CAPBT + EBTc,t × ηBT − EBTd,t/ηBT. (16)

SOCmin ≤ SOCt ≤ SOCmax. (17)

Constraint (11) sets the supply and demand balance of electricity. Constraint (12) sets
the upper limit of the grid supply. Constraint (13) limits sold energy so that it does not
exceed the PV generation. Constraints (14) and (15) set the maximum charge and discharge.
Charge and discharge cannot happen simultaneously, as the binary variable uBTc describes.
Constraint (16) sets the SoC change. Constraint (17) sets the maximum and minimum SoC
to protect the battery.

The optimization problem is defined as follows:

min . (5)

s.t. (6)–(17).
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It is a mixed-integer linear programming problem. It decides battery operations,
power from the grid, and sold energy.

This paper also models operations without explicitly considering degradation for
comparison. In this case, the problem minimizes electricity costs, as shown in (18). Addi-
tionally, the constraint (17) is changed to (19). The battery has the operational minimum
SoC (SOCmin). In (19), SOCmargin increases the minimum SoC to restrict deep discharge.
This paper calls SOCmargin a “SoC margin” or just a “margin.” An expression “margin X%”
demonstrates that SOCmargin equals X%.

Ctotal = ∑
t
(Celec,t − Csell,t). (18)

SOCmin + SOCmargin ≤ SOCt ≤ SOCmax. (19)

Thus, the optimization problem without explicitly considering degradation is defined
as follows:

min . (18)

s.t. (6), (11)–(16), (19).

In all optimization problems, the time resolution is 30 min.
Electricity prices affects the optimal operation, but households does not know future

prices. This paper adopts a sliding window approach to handle this limitation. Figure 6
shows the optimization and operation procedure. In the afternoon of day d − 1, households
receive the prices in the following day (day d) and then determine the operation for that
day. Each optimization problem covers two days, day d and d + 1 (optimization window),
to avoid the terminal effect, while only the operation for day d (operation window) is
implemented. It is assumed that households can accurately forecast prices for day d + 1.
In the next optimization, the SoC at the end of day d is taken over to the initial SoC for
day d + 1, following constraint (16). Thus, annual operations are decided by sequential
optimization, with the final SoC on the last day linked to the initial SoC on the first day.

TimeDay 1 Day 2 Day 3 · · ·

. . .

Taking over SoC

Day 0

Planning

Operation Window

Optimization Window

Figure 6. Optimization and operation procedure. The procedure is repeated day by day, as abbrevi-
ated by dots.

2.4. Outage Mitigation
2.4.1. Supply Interruptions in Japan

Outage mitigation benefits depend on the outage frequency and duration. The Cab-
inet Office, Government of Japan, collects information on disasters [59]. In addition, the
cross-regional coordination summarizes reliability indices, such as loss of load probability
(LOLP) [60]. This paper assumes an outage frequency and duration based on these data.
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Figure 7 shows the average duration and frequency of outages per household in
the Kansai region. In most years, the duration is less than 10 min per household, and
the frequency is approximately 0.1 times per household. The average frequency from
2001 to 2022 is 0.13 times per household. Peaks in Figure 7 correspond to large-scale
supply interruptions by disasters. From 2001 to 2023, 10 supply interruptions affecting
more than 100,000 households happened after large typhoons [59], as shown in Table 3.
100,000 households account for 1.1% of all households (9 million [61]) in the Kansai region.
Thus, large-scale typhoons have caused supply interruptions roughly once every 2 to 3
years. This paper make assumptions of two outage frequencies: 0.13 times/year based on
the historical average, and 0.33 times/year, reflecting the frequency of large-scale supply
interruptions. In the latter case, it is assumed that typhoons become more severe and
damage the entire grid in an area with the same probability of approach and landfall.

Table 3. Large supply interruptions in the Kansai region from 2000 to 2023 affected more than 100,000
households [59]. Durations represent the time required to restore 99% of affected households.

Name (Year) Outage Households Duration

Typhoon No. 16 (2004) 559,000 (total) 1 day
Typhoon No. 18 (2004) 340,300 (total) 2 days
Typhoon No. 23 (2004) 369,000 (total) 5 days
Heavy snowfall (2006) 697,200 (total) 4.5 h
Typhoon No. 18 (2009) 153,000 (total) 36 h
Typhoon No. 12 (2011) 194,000 (total) 9 days
Typhoon No. 11 & 12 (2014) 105,280 (total) <1 day
Typhoon No. 21 (2017) 108,320 (maximum) 3 days
Earthquake in North Osaka (2018) 170,300 (maximum) 50 min
Typhoon No. 20 (2018) 149,000 (maximum) 14.5 h
Typhoon No. 21 (2018) 1,700,000 (maximum) 5 days

In Japan, earthquakes, torrential rains, and heavy snowfalls also caused supply inter-
ruptions. There were large earthquakes that caused widespread and prolonged supply
interruptions, such as the Great Hanshin Earthquake in 1995. However, such an earthquake
rarely happens. A large earthquake in the Nankai trough may cause enormous damage to
the power system, but it is predicted to happen with around 80% probability in the next
30 years [62]. This probability is one-tenth smaller than that of large typhoons. Torren-
tial rains and heavy snowfalls sometimes cause supply interruptions in the summer and
winter. However, these interruptions affected no more than 100,000 households, except
the heavy snowfall in 2006 [59]. Although those disasters rarely cause large-scale supply
interruptions, they can cause sudden supply interruptions.
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Figure 7. Historical power outages in the Kansai region [60]. (Left): average duration per household,
(right): outage frequency or loss of load probability.
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2.4.2. Supply Simulation During Outages

This paper simulates electricity supply by PV/BESS systems during outages. Elec-
tricity supply during prolonged outages depends on the start timings, durations, and
predictability. The timing and duration affect the amount of PV generation. The predictabil-
ity affects the energy stored in the battery before the outage.

This paper considers two types of outages: predictable outages and unpredictable
outages. Table 4 shows the assumptions on outages. Outages caused by typhoons can be
predicted by households. Thus, the battery has its maximum SoC (90%) before outages. Re-
sults in predictable outages decide outage mitigation benefits because almost all prolonged
outages were caused by typhoons. Outages caused by earthquakes cannot be predicted.
Thus, the initial SoC follows the SoC at an outage start timing, decided by optimization
problems (Section 2.3). Thus, it does not necessarily equal the maximum SoC. Power supply
is recovered 48 h after an outage happens. It is based on the median of durations in Table 3.

This paper focuses on outages in the summer (from July to September) because intense
heat threatens lives. Outage mitigation in the winter is calculated for reference only, since
hypothermia risks can be reduced by wearing warmer clothing and using fuels. The
mitigation benefit is evaluated based on the energy supplied during predictable outages,
given their relatively high frequency.

Various scenarios are generated by shifting the outage start timing by one-hour incre-
ments. Thus, 2208 scenarios (=92 [day] × 24 [h]) are generated for the summer. For the
winter, 2160 scenarios (=90 [day] × 24 [h]) are generated. This paper simulates operations
in each of 70 households.

Households may use critical loads during outages but suppress the other loads. Thus,
PV/BESS systems serve electricity only to critical loads. The critical loads include re-
frigerators, air conditioners [52], plug loads, and lights [32]. This paper assumes power
consumptions are 80 W for refrigerators, 500 W for air conditioners, 70 W for plug loads [32],
and 50 W for lights. Lights are required in the evening and at night. Thus, the maximum
critical loads are assumed to be 700 W in the evening (18:00–23:00) and 650 W at other
times. If the normal demand is smaller than these values, the critical loads equal the
normal demand.

A rule-based algorithm decides operations during outages. Figure 8 shows the proce-
dure in a 30-min time step. Ec

dem in Figure 8 denotes the critical loads. Esupply and Eshort

denote energy supplied and supply shortages. PV generation and battery discharge serve
critical loads. If PV generation exceeds critical loads, the battery absorbs excess energy
until its SoC reaches the maximum. The procedure is repeated until an outage ends. Finally,
the simulation accumulates energy supplied and supply shortages.

Ec
dem < EPV ?

EBTc = min (EPV − Ec
dem, E

max
BTc)

Emax
BTc = (SOCmax − SOCt−1) /ηBT

EBTd = min (Ec
dem − EPV, E

max
BTd)

Emax
BTd =

(
SOCt−1 − SOCmin

)
× ηBT

SOCt = SOCt−1 + EBTc × ηBT
Esupply = Ec

dem

Eshort = 0

SOCt = SOCt−1 − EBTd/ηBT
Esupply = EPV + EBTd

Eshort = Ec
dem − EPV − EBTd

Yes No

Battery operation

Evaluation

Figure 8. Rule-based procedure for outage simulation in each time step.
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Solar power plants can be damaged by typhoons due to strong winds and heavy
rain [63,64], as well as by earthquakes. For example, 3.5% of PV infrastructure on Hainan
Island was damaged by Typhoon Yagi in 2024 [64]. However, the extent of damage to
rooftop solar panels remains unclear in previous research. Thus, this paper assumes that
rooftop solar panels can continue generating electricity after disasters.

Table 4. Outage assumptions in the simulation. “Summer” means June 1 to September 30, and “Win-
ter” means December 1 to February 28. Winter outage results are excluded from benefit calculations
due to their low occurrence.

Cause Duration Season Initial SoC

Typhoons 48 h Summer SOCmax (90%)
Earthquakes 48 h Summer SOCt in normal operations
Snowfalls 48 h Winter SOCmax (90%)

2.5. Evaluation of Simulations
2.5.1. Outage Mitigation Effects

The amounts of energy supplied and supply shortages are one of the resilience
metrics [42]. However, resilience has transient aspects [65]. Hence, previous research
has proposed resilience metrics. Resilience curves [66,67] are popular resilience descrip-
tions. The area of curves [30,66] shows the total performance degradation. For transmis-
sion systems, performance degradation and recovery time have been quantified [24,25].
For microgrid resilience, outage frequencies, durations, and outage shortages have been
proposed [68].

Continuing supply even in severe situations is one of the requirements for resilient
systems. For example, continuous cooling is vital to avoid heatstrokes in the summer. To
describe supply continuity during outages, this paper uses a metric: percent continuous
supply hour. Figure 9 explains the concept of continuous supply hour. It is the maxi-
mum continuous length when critical loads are supplied. It ranges between zero to one,
normalized by the outage duration.

The metric is calculated for each outage scenario in each household. This paper uses
the median and worst 5% values of 2208 scenarios in each household. The worst 5% value
shows mitigation effects in a severe case, such as outages at night.

Supplied

Shortage

Continuous supply hour

Demand

Outage

Figure 9. Concept of the continuous supply hour.

2.5.2. Economic Efficiency

The benefits of PV/BESS systems include electricity cost reductions and outage miti-
gation. Households adopt PV/BESS systems when these benefits exceed their costs. In the
following equations, i denotes the household number, and k denotes the project year.
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The costs and benefits are evaluated as net present values. The evaluation period is
20 years, based on the solar panel lifespan. Net present costs (NPCi) include the investment
costs, replacement costs, and electricity costs, as shown in (20). A discount rate (d) is 2% per
year based on the nominal inflation rate in Japan. Cinv,PV and Cinv,BT denote the investment
costs for the PV and battery. Crep,BT,k denote the battery replacement costs in year k. The
battery is replaced at the end of its lifespan defined by (21). The calendar effect (Dcal) equals
1.2% per year [57].

NPCi = Cinv,PV + Cinv,BT +
20

∑
k=1

Crep,BT,k

(1 + d)k . (20)

LBT,i =
1 − SOHmin

Dcal + ∑t Di,t
. (21)

Net present benefits of cost reductions (NPBc,i) are defined in (22). Bc,i denotes the
annual cost reduction calculated by the optimization results.

NPBc,i =
20

∑
k=1

Bc,i

(1 + d)k . (22)

If the net present benefit of cost reductions exceeds the net present cost, a household
adopts the PV/BESS system without outage mitigation. Otherwise, outage mitigation
benefits can fill the gap between the equipment costs and electricity cost reductions.

Outage mitigation benefits depend on household’s demand and VoLL. Annual mitiga-
tion benefits are calculated by (23).

Bmiti,i = ∑
t

Esupply,i,t × VOLLi × foutage. (23)

Esupply,i,t denotes the mean energy supplied to critical loads [kWh] based on the sum-
mer outage simulations. foutage denotes the outage frequency per year. VoLLs (VOLLi)
[JPY/kWh] vary in households. Previous work [52] demonstrates the distribution of resi-
dential VoLLs, as shown in Figure 10. It shows that 50% of households have 500 JPY/kWh
or higher VoLLs, and a 10% of households have 4700 JPY/kWh or higher VoLLs. The ex-
pected proportion of households adopting the PV/BESS system is calculated by a breakeven
VoLL. A breakeven VoLL is the minimum VoLL that achieves the total net present benefits
exceeding the net present costs. It can be calculated as (24).

VOLLb
i = min

(
NPCi − NPBc,i

∑20
k=1(1 + d)k × ∑t Esupply,i,t × foutage

, 0

)
. (24)

VOLLb
i denotes the breakeven VoLL of household i. If cost reductions exceed equip-

ment costs, it becomes zero. Then, an adoption probability in one household i is calculated
by Prob[T > VOLLb

i ] = P(VOLLb
i ). P(VOLLb

i ) denotes the probability that VoLLs are
larger than VOLLb

i (see Figure 10). If VOLLb
i = 0, it becomes one. Hence, the expected

proportion (R) is calculated as (25).

R =
∑Nhouse

i=1 P(VOLLb
i )

Nhouse
. (25)

Nhouse denotes the number of households.
The distribution of residential VoLLs depends on household attributes [50–52]. Pre-

vious work [52] suggests that monthly electricity bills influence VoLLs. Although this
indicates a potential relationship between household demand and residential VoLLs, the
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impact of demand has not been quantified. To the best of our knowledge, this quantitative
effect remains unclear. Thus, this paper assumes that residential VoLLs are independent
of demand.

0 2000 4000 6000 8000 10,000
Value of Loat Load [JPY/kWh]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ob

ab
ili

ty

P (V OLL) = 1! 1
1!exp(!0:982 log(V OLL)+6:105)

Figure 10. Probability distribution of residential value of lost load (VoLL) [52]. The vertical
axis indicates the proportion of households with VoLL exceeding the corresponding value on the
horizontal axis.

3. Result and Discussion
3.1. Operation in Normal States

Normal operations in 70 households are determined by mixed-integer linear program-
ming problems. The problems are solved by the optimizer of Gurobi 12.0.1. The program
was written by MATLAB R2024b. It was executed using a laptop computer with AMD
Ryzen™ 7 8840U @ 3.30 GHz and 16.0 GB RAM @ 4800 MHz. It took around 5 min to
simulate an annual operation in one household using the plugged-in laptop.

First, this paper compares the operation in one household determined by different
optimization models. Annual average demand is 600 W, which is around the median of
70 households. Figure 11 shows the annual SoC profile with the operation considering
degradation. The battery charges excess energy of PV generation and discharges at high
electricity prices (see Figure 4). However, the battery avoids deep discharge because of
significant degradation costs. As a result, the SoC stays higher than 60% most of the time.
In contrast, Figure 12 shows the annual SoC profiles without considering degradation. If
the battery can freely work (margin 0%), its SoC ranges from 10% to 90%. If the battery dis-
charge is strictly limited (margin 60%), its SoC keeps higher than 70%. The battery operates
more aggressively with the operation considering degradation than with a margin 60%.

01/01 03/01 05/01 07/01 09/01 11/01 01/01
Date

0
20
40
60
80

100

So
C

 [%
]

Figure 11. Annual state of charge (SoC) profile under the optimization considering degradation in
one household.
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Cost reductions and battery degradation depend on how deep the battery discharges.
Table 5 shows annual electricity costs and degradation amounts. The degradation amount
includes calendar and cycle effects. The PV/BESS system reduces electricity costs by
50–70% because of increased self-consumptions. Lower margins save more costs but
accelerate degradation. Figure 13 compares cost reductions and equipment costs. The net
present cost with a margin 0% reaches 7.73 × 106 JPY. Equipment costs decrease as the
margin increases because of less battery replacement frequencies. However, cost reduction
benefits do not exceed equipment costs under all operations.

01/01 03/01 05/01 07/01 09/01 11/01 01/01
Date

0
20
40
60
80

100

So
C

 [%
]

01/01 03/01 05/01 07/01 09/01 11/01 01/01
Date

0
20
40
60
80

100

So
C

 [%
]

Figure 12. Annual SoC profile under the optimization without considering degradation in one
household. Upper: margin 0%, lower: margin 60%.
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Figure 13. Comparison of net present values for equipment costs and cost reduction benefits in one
household. “Deg. Model” indicates the optimization considering degradation.

Next, this paper compares the cost reduction benefits and equipment costs in
70 households. Figure 14 shows a comparison between cost reductions and equipment costs
in 70 households. The horizontal axis shows the average of annual demand in one house-
hold. Benefits do not include outage mitigation. The cost reductions increase as household
demand increases because of more self-consumptions. They exceed equipment costs in
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2 households (2.9%) with a margin 60% and in 18 households (25.7%) with optimization
considering degradation.
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Figure 14. Comparison of net present values for equipment costs and cost reduction benefits in
70 households, categorized by annual average demand. (Left): margin 0%, (Center): margin 60%,
(Right): optimization considering degradation.

Table 5. Annual electricity costs and battery degradation for one household. Cost differences
are relative to the case without a PV/BESS system (“No PV/BESS”). Hyphens in “No PV/BESS”
mean that this case shows the reference of costs and has no batteries. “Deg. Model” indicates the
optimization considering degradation.

Case Elec. Cost (Diff.) [JPY] Degradation [%/Year]

No PV/BESS 225,500 (–) –
Margin 0% 69,890 (−155,610) 9.55
Margin 40% 87,250 (−138,250) 2.88
Margin 60% 108,780 (−116,720) 1.93
Deg. Model 106,540 (−118,960) 1.67

3.2. Outage Simulation

This paper simulates operations during predictable and unpredictable outages in the
summer using the rule-based algorithm. In unpredictable outages, the normal operation
impacts the resilience because initial SoCs differ.

The program was written by MATLAB R2024b and executed by the same hardware as
Section 3.1. It took around 30 min for the whole simulation using the plugged-in laptop
using parallel computation with 4 threads.

First, mitigation of predictable outages is evaluated. Figure 15 shows the energy
supplied to critical demand and the percent continuous supply hour in 70 households.
There are 2208 scenarios in each household, and the figures show the mean energy supplied
and the median and worst 5% of the continuous supply hour. The mean energy supplied
ranges from 14 kWh to 26.7 kWh. It increases as the demand increases because of larger
critical loads. The resilience metric, the percent continuous supply hour, also depends on
the demand but is negatively related. Its median is larger than 60% (29 h) in all households.
Looking at the worst 5% value, it ranges from 30% (14 h) to 100% (48 h). The battery’s
operation explains the relation between the demand and metric. The battery charges PV’s
excess generation in the daytime and discharges at night. Smaller demand results in more
excess generation in the daytime and smaller critical loads at night. Thus, the battery can
supply electricity overnight in smaller demand, leading to better resilience.

Next, mitigation of unpredictable outages is evaluated. The initial battery SoC varies in
the normal operations. Thus, this paper compares operations among different optimizations.
Figure 16 shows the mean energy supplied in 70 households. Compared to the predictable
outage scenarios, the mean energy supplied decreases by up to 4 kWh because the battery
has less energy. Figure 17 shows the median and worst 5% of the percent continuous supply
hour in 70 households. In all operation cases, the metric decreases as the demand increases.
This is because the battery supplies to larger critical loads, and its SoC runs out faster. The
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normal operation also significantly impacts the metric. Under the operation with a margin
of 0%, the worst 5% values reach 20% (9–10 h) in most of the households. In contrast,
the worst 5% values achieve 30% (15 h) under the operations with a margin of 60% and
considering degradation. This is because the battery sustains supply overnight even when
an outage suddenly happens at night. After sunrise, PV generation allows the system to
sustain supply. Thus, operations maintaining a high SoC improve supply continuity at the
beginning of any outage.
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Figure 15. Outage mitigation during a 48 h predictable outage in the summer in each household.
(Left): mean energy supplied, (Right): median and worst 5% of percent continuous supply hours.
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Figure 16. Mean energy supplied during a 48 h unpredictable outage in the summer in each household.
(Left): margin 0%, (Center): margin 60%, (Right): optimization considering degradation.
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Figure 17. Median and worst 5% of percent continuous supply hours during a 48 h unpredictable out-
age in the summer in each household. (Left): margin 0%, (Center): margin 60%, (Right): optimization
considering degradation.

To prepare for outages, the battery needs to deviate from its cost-optimal operation.
It charges to ensure a sufficient SoC before predictable outages and to restore the cost-
optimal SoC after them. Such operations increase electricity costs by 160–390 JPY per outage
on average. Additionally, the battery deeply discharges during outages, accelerating its
degradation. However, the maximum degradation during an outage is 7.8 × 10−2%. Thus,
even if supply shortages happen once in a year, the battery lifespan is shortened by about
a year.

Winter outage mitigation is also simulated for comparison. Figure 18 shows the energy
supplied to critical loads and the percent continuous supply hour during outages occurring
from December to February. Compared with summer outages (see Figure 15), the energy
supplied decreases in most households, ranging from 14.3 kWh to 22.6 kWh. The median of
the percent continuous supply hours is also lower than in summer outages. This is because
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PVs generate less electricity in winter than in summer (see Figure 3). Thus, PV/BESS
systems supply less electricity during winter outages.
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Figure 18. Outage mitigation during a 48 h predictable outage in the winter in each household. (Left):
mean energy supplied, (Right): median and worst 5% of percent continuous supply hours.

3.3. Benefits with Outage Mitigation

This paper calculates the mean energy supplied during an outage. It is converted to
benefits using a VoLL and outage frequency. This paper focuses on operations considering
degradation. As shown in Figure 14, cost reductions do not exceed equipment costs in most
households. However, the whole benefits including outage mitigation can exceed costs.

Cost reductions and outage mitigation vary in each household. Thus, this paper
calculates the breakeven VoLL, demonstrating the minimum VoLL that the total benefit
of PV/BESS systems exceeds their equipment costs. Figure 19 shows breakeven VoLLs in
each household with different outage frequencies. Breakeven VoLLs negatively relate to
the demand because smaller demand results in less cost savings and less energy supplied
during outages. The maximum of breakeven VoLLs is around 18,100 JPY/kWh in the
present outage frequency and around 7100 JPY/kWh in a larger frequency.
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Figure 19. Breakeven VoLLs for 70 households under different outage frequencies, based on op-
erations considering degradation. The frequency “0.13 times/year” reflects the historical average
outage frequency per household, while “0.33 times/year” correspondes to the historical frequency of
large-scale typhoon-induced outages.

Next, the expected proportion of households introducing the PV/BESS system is
calculated by the VoLL distribution (see Figure 10). Table 6 shows the expected proportion
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with different outage frequencies. Without the outage mitigation benefit, the proportion is
25.7%. The outage mitigation benefit increases the expected proportion by 12.2% points
in the present outage frequency and 21.5% points in a larger frequency. Table 6 does
not include degradation during outages, but it reduces the proportion by 0.4% points.
This paper assumes that the VoLL is independent of household demand. If there is a
positive correlation, the expected proportion can be lower because mitigation benefits for
households with smaller demand will further decrease.

Table 6. Expected introduction of PV/BESS systems under operations considering degradation.

Outage Frequency Total Proportion [%]

0 25.7
0.13 times/year 37.9
0.33 times/year 47.2

Gasoline generators are an alternative to batteries for outage mitigation. Their equip-
ment cost (e.g., 250,000 JPY for 1.8 kVA and 3 h [69]) is significantly lower than that of the
battery (1,210,000 JPY for 5 kW/13.5 kWh). Thus, photovoltaics and gasoline generators are
more economical than PV/BESS systems, even when considering electricity cost reductions
and outage mitigation. However, gasoline generators cannot utilize PV generation, whereas
the battery enables synergies through increased self-consumption.

The result demonstrates that outage mitigation can stimulate introducing residential
PV/BESS systems. At the same time, it is necessary to reduce electricity costs and extend
battery lifespans for their introduction. The proposed operation considering degradation
can help their introcution by sustaining cost reductions, extending lifespans, and mitigating
severe outages.

4. Conclusions
The residential PV/BESS system is essential to tackle more frequent natural disasters

and uncertainty of electricity prices. This paper aims to an operation of residential PV/BESS
systems that balances electricity cost reduction, battery degradation, and outage mitigation.
The optimization model determines normal operations by minimizing the sum of annual
electricity costs and battery degradation costs, while maintaining a high SoC to enhance
resilience. Additionally, this paper simulates operations during 48 h outages using the
rule-based algorithm. The simulation evaluates energy supplied and supply continuity.
The mitigation benefit is quantified through the distribution of residential VoLLs.

The results indicate that the proposed operation keeps the battery SoC higher than
50%, preventing intense degradation. For households with large electricity demand, cost
reductions can exceed equipment costs, making PV/BESS adoption economically viable.
Outage simulations show that the mean energy supplied during a 48 h outage ranges from
14 kWh to 26.7 kWh, depending on the demand. The resilience metric increases from 20%
to 30% in severe situations under the proposed operation. Furthermore, incorporating
outage mitigation benefits increases the proportion of households motivated to adopt
PV/BESS systems from 25.7% to 47.2% with a frequent outage situation. Thus, the outage
mitigation benefits motivate households to introduce the PV/BESS system. In conclusion,
the proposed operation contributes to the economic efficiency of PV/BESS systems. It also
improves supply continuity in outages regardless of their predictability.

Some households do not have enough incentive to introduce a PV/BESS system,
especially when their demand is not large. They can be vulnerable to supply interruptions
in power systems. Proposals of a system to enable them to access energy during outages
are important for the resilient power system. Public facilities, such as evacuation sites, are
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one of the keys to the system. We will further consider local systems to mitigate outage
damage for more people.

This study evaluates supply continuity using the percent continuous supply hour.
However, residential resilience encompasses additional factors, such as the initial response
to outages and prolonged supply shortages. The ability to maintain supply at the onset of
interruptions increases the likelihood of enduring them until external assistance becomes
available. Prolonged shortages pose direct threats to life, such as rising indoor temper-
atures [44] and interruptions to medical equipment [45]. Integrating these aspects with
the continuity metric will provide a more comprehensive assessment of household risk.
Developing an integrated framework for resilience will be the focus of future work.
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