2022 American Control Conference

TU/e

Feedforward of Sampled-Data System for High-Precision Motion Control using Basis Functions with ZOH Differentiator

Masahiro Mae Max van Haren Wataru Ohnishi Tom Oomen Hiroshi Fujimoto mmae@ieee.org

Background

goal

design discrete-time feedforward f[k] to improve tracking error in

- on-sample perfomance e[k]
- intersample performance e(t)

challenges

- consider ZOH characteristics in differentiator
- compensate for intersample oscillation [1]

Linearly parameterized feedforward

$$=\underbrace{\left[\xi r(t) \quad \xi^2 r(t)\right]}_{\Psi}\underbrace{\left[\frac{K_v}{K_a}\right]}_{\theta}$$

ξ : differentiator

- linearly parametrized with basis functions arPsi
- intuitive in physical meaning and easy for tuning θ

Conventional backward differentiator

ightarrow not compatible with integrator and ZOH

[1] T. Chen, & B. A. Francis, "Optimal Sampled-Data Control Systems." Springer London (1995) [2] H. Fujimoto, Y. Hori, & A. Kawamura, "Perfect tracking control based on multirate feedforward control with generalized sampling periods." IEEE Transactions on Industrial Electronics (2001)

Differentiator in on-sample performance

Approach

- on-sample compatibility with integrator and ZOH
- no consideration for intersample performance

Differentiator in intersample performance

- multirate ZOH differentiator for state compatibility [2]
- inversion of lifted system with integrator and ZOH

Results in 2nd order motion system

- perfect on-sample tracking with ZOH differentiator
- improvement of intersample performance with state tracking using multirate ZOH differentiator

Conclusion

	on-sample performance	continuous-time consideration	internal stability
backward differentiator (BD)	::	:	٢
single-rate ZOH differentiator (SR)	\bigcirc	٢	:
multirate ZOH differentiator (MR)	(every nT_s)	٢	\odot

The University of Tokyo / Eindhoven University of Technology

