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Background Approach
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• linearly parametrized with basis functions Ψ

• intuitive in physical meaning and easy for tuning θ

• consider ZOH characteristics in differentiator
• compensate for intersample oscillation [1]

challenges

design discrete-time feedforward f [k]
to improve tracking error in

• on-sample perfomance e[k]
• intersample performance e(t)

Differentiator in on-sample performance

Differentiator in intersample performance

Results in 2nd order motion system

• perfect on-sample tracking with ZOH differentiator
• improvement of intersample performance with

state tracking using multirate ZOH differentiator

• multirate ZOH differentiator for state compatibility [2]
• inversion of lifted system with integrator and ZOH

Conclusion

f(θ)[k] = Kv ṙ[k] + Kar̈[k]
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→ not compatible with integrator and ZOH
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• on-sample compatibility with integrator and ZOH
• no consideration for intersample performance
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