# Feedforward of Sampled-Data System for High-Precision Motion Control using Basis Functions with ZOH Differentiator 



## Background

## Problem formulation


discrete-time
goal
design discrete-time feedforward $f[k]$
to improve tracking error in

- on-sample perfomance $e[k]$
- intersample performance $e(t)$


## challenges

- consider ZOH characteristics in differentiator
- compensate for intersample oscillation [1]

Linearly parameterized feedforward


$$
\begin{aligned}
f(\theta)[k] & =K_{v} \dot{r}[k]+K_{a} \ddot{r}[k] \\
& =\underbrace{\left[\begin{array}{ll}
\xi r(t) & \xi^{2} r(t)
\end{array}\right]}_{\Psi} \underbrace{\left[\begin{array}{c}
K_{v} \\
K_{a}
\end{array}\right]}_{\theta}
\end{aligned}
$$

$\xi$ : differentiator

- linearly parametrized with basis functions $\Psi$
- intuitive in physical meaning and easy for tuning $\theta$


## Conventional backward differentiator


$\rightarrow$ not compatible with integrator and ZOH

## Approach

Differentiator in on-sample performance


- on-sample compatibility with integrator and ZOH
- no consideration for intersample performance


## Differentiator in intersample performance



- multirate ZOH differentiator for state compatibility [2]
- inversion of lifted system with integrator and ZOH

Results in 2nd order motion system


- perfect on-sample tracking with ZOH differentiator
- improvement of intersample performance with state tracking using multirate ZOH differentiator Conclusion

|  | on-sample performance | continuous-time consideration | internal stability |
| :---: | :---: | :---: | :---: |
| backward differentiator (BD) | (-) | (-) | ( |
| single-rate ZOH differentiator (SR) | ( | ( | (-) |
| multirate ZOH differentiator (MR) | $\bigoplus_{\left(\text {every } n T_{s}\right)}^{\circ}$ | ( | (-) |

