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1. Introduction 

 In recent years, the growing integration of renewable energy 

sources (RES), especially wind and solar, has led to a novel 

occurrence in the electricity markets of the US and EU: negative 

spot prices [1,2]. In contrast, Japan's experience tells a different 

story. The substantial addition of solar and wind power to the 

Japanese grid has resulted in wholesale spot market prices nearing 

zero, recorded lowest at 0.01 JPY/kWh. These occurrences will 

be referred to as zero prices throughout this paper. The electricity 

spot prices in Kyushu region, Japan, is depicted in Fig. 1(a). Fig. 

1(b) offers a zooming-in observation of the intermittent zero 

prices. Fig. 1(a) shows that the significant occurrence of zero 

prices started around 2020, primarily due to the swift adoption of 

RES. In this shifting energy environment, day-ahead electricity 

price forecasting (EPF) in spot markets has become critically 

important [3]. Various statistical methods, including the 

Autoregressive Moving Average (ARMA) [4,5] and the 

Autoregressive Integrated Moving Average (ARIMA) [6–8], have 

been extensively utilized in EPF research. Although these models 

offer a solid foundation, their linear nature can present limitations. 

The growing penetration of RES, coupled with demand variability, 

leads to non-linear patterns and abrupt price fluctuations that 

traditional statistical models might not accurately capture.  

 Additionally, as depicted in Fig. 1(b), the significant periods of 

zero prices in the target variable introduce a zero-inflated 

regression challenge in machine learning after data normalization. 

Nonetheless, most machine learning algorithms, such as Random 

Forest (RF), Support Vector Regression (SVR), and neural 

networks, usually fail to predict consistent zero values. 

Abstract 
Electricity price forecasting (EPF) is critical in energy markets, particularly with the rise of renewable energy sources (RES) 
in Japan, which can cause day-ahead spot prices to drop to nearly zero JPY/kWh, impacting retailer profitability. This study 
demonstrates that the Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) model outperforms the LSTM 
model in both prediction accuracy and computational efficiency in Japan's electricity spot market. A novel ensemble learning 
strategy enhances both the robustness and accuracy of the EPF model is proposed. Novel multimodal explanatory variables, 
including electricity spot price, system price, actual power generation, actual solar power generation, meteorological forecasts 
and calendar forecasts, alongside the rolling features of spot prices, are utilized and verified. Furthermore, a "policy-versus-
policy" approach addresses the zero-inflated regression issue of the zero price prediction is proposed. Our model, with a 
comprehensive feature integration, achieves an RMSE of 5.66 JPY/kWh and an R2 of 0.729 during the test range from 
2022.01.01 to 2022.12.31. The paper also implies a novel method for estimating confidence intervals using ensemble learning. 
 
Keywords : electricity price forecasting (EPF), renewable energy sources (RES), CNN-LSTM, ensemble learning, confidence 
interval 

 

Fig. 1 Kyushu electricity spot price [JPY/kWh] (a) and 

zooming-in zero inflated prices (b). 
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Conventional approaches to address zero-inflated regression 

typically require a dual-model setup: one classification model to 

detect zero values and a separate regression model for non-zero 

values. This approach effectively doubles the training time and 

associated costs.  

 To tackle the aforementioned challenges, this paper aims to 

improve EPF in the Kyushu region of Japan by employing 

multimodal data as novel features, utilizing LSTM and CNN-

LSTM prediction models. Additionally, a new ensemble learning 

approach is applied to enhance the prediction accuracy of LSTM 

and CNN-LSTM models, addressing their inherent uncertainties. 

The performance of LSTM and CNN-LSTM in EPF is evaluated 

based on prediction accuracy and computation time. To address 

the zero-inflated problem in the Japan Electric Power eXchange 

(JEPX) spot market, a novel "policy-versus-policy" strategy is 

introduced, which forecasts zero prices and halves the 

computation time compared to the traditional dual-model method. 

Furthermore, a natural logarithm transformation is used to 

improve the Skewness and Kurtosis of the spot prices, thereby 

enhancing prediction accuracy. This paper also introduces a new 

method for extracting meteorological forecast data using Google 

Maps. Finally, a novel method for estimating the confidence 

interval of EPF is demonstrated. 

2. Methodology 

2.1 LSTM and CNN-LSTM forecasting models 

 An LSTM model and a CNN-LSTM model were developed 

and utilized for EPF, with a comparative analysis conducted using 

the Python TensorFlow Keras library. The architectures of these 

models are illustrated in Fig. 2, and the hyperparameters were 

chosen empirically to achieve optimal performance. 

2.2 Ensemble learning strategy 

 Due to the inherent variability of neural network models, which 

arises from their sensitivity to initial conditions and the stochastic 

nature of their training processes, training the same neural 

network multiple times and averaging the resulting predictions 

can help mitigate individual model errors. This approach leads to 

improved prediction performance, as different models will not 

produce identical errors on the test set [9,10]. Based on this 

principle, an ensemble learning approach was adopted. The CNN-

LSTM and LSTM models were trained multiple times, and the 

individual predictions were then combined using an averaging 

method to form the final ensemble prediction. 

2.3 "Policy-versus-policy" zero prices forecasting strategy 

 This study presents an innovative approach to address the zero-

inflated regression issue in EPF within the JEPX spot market. The 

solution starts with an analysis of broader trends in global 

electricity spot markets. According to Seel et al. [1], an 

overabundance of RES can result in negative electricity spot 

prices in the US and EU. From this, we can deduce that negative 

pricing is a natural outcome of high RES penetration. In Japan, 

however, regulations stipulate that electricity spot prices cannot 

fall below 0.01 JPY/kWh, preventing negative prices. Assuming 

similar factors that lead to negative prices in the US and EU are 

present in Japan, it is logical to assume that the explanatory 

variables in these contexts would show similar patterns. When 

these Japanese variables are input into a machine learning 

regression model, the model would predict negative prices since 

it is not limited by Japan's minimum pricing regulation. Therefore, 

by using this logic, zero prices can be forecasted by converting 

any model negative outputs to zeros. This method operates as a 

"policy-versus-policy" forecasting strategy, mirroring actual 

market conditions. 

3. Data Preparation 

 This study leverages multimodal data to improve EPF, 

incorporating actual total power generation, actual solar power 

generation, rolling features of spot prices (minimum, maximum, 

mean, and standard deviation), system spot price, meteorological 

forecast data, and calendar forecast data. The comprehensive data 

architecture and associated time frame are depicted in Fig. 3. The 

Kyushu area meteorological data were downloaded from the 

Japan Meteorological Business Support Center (JMBSC) and 

were obtained by using OpenCV to identify the land area on the 

map, as is shown in Fig. 4. The input data are divided into three 

green blocks based on their temporal delay. To ensure consistency 

with the JEPX spot price data, all inputs were linearly interpolated 

to a 30-min time resolution. A 7-day-long moving window was 

applied to the input data before being input into the CNN-LSTM 

and LSTM models. In the JEPX spot market, all transactions must 

be finalized by the 10:00 JST bidding deadline. To ensure a 

thorough and precise prediction process, sufficient time is 

 
Fig. 2 Schematic of the architectures of the (a) LSTM and 

(b) CNN-LSTM models. 
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allocated for the execution and refinement of neural network 

calculations. Considering the computational demands and the 

complexities involved, a 5-hour buffer before the deadline is 

established. The forecasting time is set to 05:00 JST, covering the 

entire following day from 00:00 JST to 23:30 JST, encompassing 

a total of 48 time frames.  

 In this study, photovoltaic (PV) power is the primary RES in 

the Kyushu region due to its significantly higher installed 

capacity compared to wind power. Consequently, features related 

to wind power are not included in this investigation. 

 

 

4. Results and Discussion 

4.1 Ensemble learning results 

 An ensemble learning technique was applied to each feature set 

to generate ensemble predictions. Table 1 presents the prediction 

accuracy and the computation time of the proposed LSTM and 

CNN-LSTM models. According to Table 1, the CNN-LSTM only 

has half the computation time of the LSTM for same training 

times of ensemble learning, while still boasts higher prediction 

accuracy over the LSTM using less computation time. 

Table 1 Prediction accuracy and computation time comparison. 

Model Computation 

time 

Ensemble 

times 

R2 RMSE 

LSTM 59 min 15 0.5782 7.062 

JPY/kWh 

LSTM 120 min 30 0.5821 7.028 

JPY/kWh 

CNN-

LSTM 

60 min 30 0.5825 7.027 

JPY/kWh 

CNN-

LSTM 

40 min 20 0.5824 7.031 

JPY/kWh 

 

 The results of the predictions using all features in the day-by-

day prediction method are illustrated in Fig. 5. It is evident from 

Fig. 5 that each training iteration generates a distinct prediction 

on the test set, highlighting the inherent uncertainty in the neural 

network training process. The ensemble learning method we 

proposed effectively minimizes the variability present in 

individual model predictions. While some predictions may 

 

Fig. 4 Kyushu area map (a) and the identified land areas 

(b). Map data: ©2024 Google, TMap Mobility. 

 
Fig. 3 Illustration of the data architecture with a 30-min 

time interval, highlighting the time delays among different 

data. 
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Fig. 5 Individual and ensemble predictions for the test range of May and September in 2022, using all the proposed features and 

day-by-day prediction approach. 
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significantly deviate from the actual electricity spot prices, the 

ensemble approach, averages these forecasts to yield a more 

accurate final prediction. The model's capability to predict zero 

prices validates the "policy-versus-policy" zero prices forecasting 

strategy. The performance metrics of the ensemble learning for 

the day-by-day prediction method using all features are presented 

in Table 2. This day-by-day prediction approach significantly 

enhances prediction accuracy compared to the one-time 

prediction method. 

Table 2 Ensemble learning metrics for the day-by-day prediction 

approach using all proposed features. 

Metrics 

RMSE R2 

5.66 JPY/kWh 0.729 

 

4.2 Implications for EPF's confidence interval 

 In Fig. 5, it is noteworthy that when the ensemble learning 

prediction accuracy is high, the 30 individual predictions tend to 

highly overlap each other and also demonstrate high prediction 

accuracy, as shown for the period 2022.05.09-2022.05.14 in Fig. 

5(b). Conversely, when the ensemble learning fails to predict the 

actual value accurately, the 30 individual predictions tend to 

diverge from each other without overlapping. The standard 

deviation of the 30 individual predictions at the same time point 

is calculated and used to compute the Person correlation efficient 

with the ensemble learning prediction error at the same time point. 

The correlation efficient value is 0.462, indicating a moderate 

correlation. By utilizing the above-mentioned phenomenon, a 

novel confidence interval estimation method for EPF can be 

developed in our future work. 

5. Conclusions and Future Work 

 This study has proposed an innovative EPF framework that 

utilizes multimodal data augmented by an ensemble learning 

technique. The CNN-LSTM model is superior over the LSTM 

model in both prediction accuracy and computation time. The 

logarithm transform of the pre-processing for the electricity spot 

price data has been shown crucial for EPF in the Japan electricity 

spot market. A "policy-versus-policy" strategy has been proposed 

to solve the zero-inflated regression problem, which halfs the 

computation time compared with traditional two-stage method. 

By using the day-by-day prediction approach, the ensemble 

learning method achieved a RMSE and R2 of 5.66 JPY/kWh and 

0.728 over the test range of the full year 2022. An implication for 

a novel estimation method of the EPF's confidence interval using 

the ensemble learning approach has been proposed. 
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