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As renewable energy adoption increases and electricity market liberalization progresses in Japan, self-wheeling has emerged as

a promising scheme that allows producers to supply electricity generated at one location to their own loads at another location via

the grid, without selling to the wholesale market. While this scheme facilitates decarbonization and energy cost reduction, it also

introduces operational challenges, particularly the risk of imbalance between scheduled and actual power flows due to the variabil-

ity of PV generation. To address this problem, this paper proposes a Model Predictive Control (MPC) approach that forecasts PV

output and imbalance prices, and optimally schedules a battery storage system installed on the PV side to minimize both imbalance

penalties and total operational costs during real-time operation. Additionally, a PV forecast adjustment strategy for day-ahead

scheduling is introduced to further enhance economic performance. Simulation studies using actual solar radiation and imbalance

price data demonstrate improved accuracy in imbalance price prediction and greater effectiveness of the proposed method compared

to conventional rule-based strategies.
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1. Introduction

The global push toward decarbonization has accelerated the in-

tegration of renewable energy sources, with photovoltaic (PV) sys-

tems standing out due to their ease of deployment, scalability, and

steadily decreasing costs. In Japan, PV has become a cornerstone

of national energy strategy, supported by policies such as the Feed-

in Tariff (FIT) and Feed-in Premium (FIP) programs [1].

During this transformation, self-wheeling has emerged as a flex-

ible mechanism that allows electricity consumers and corporate

generators to utilize electricity generated at remote sites for their

own consumption. Distinct from conventional retail supply or

power purchase agreements, self-wheeling allows electricity to be

transmitted across the grid without entering the wholesale mar-

ket. Participants in this scheme are required only to pay grid usage

fees to the transmission system operator (TSO), proportional to the

electricity wheeled [2]. While self-wheeling contributes to sustain-

ability and enhances user control over energy sourcing, it poses no-

table operational challenges when intermittent sources like PV are

involved.

In Japan’s existing market structure, the term "imbalance" de-

notes the difference between the planned electricity supply/demand

in the day-ahead schedule and the actual values observed in real

time. To maintain system reliability, the TSO imposes financial

penalties or rewards based on the degree to which each participant

contributes to these imbalances [3]. This mechanism is designed

to encourage accurate day-ahead scheduling and promote respon-

sibility in grid participation. For operators of variable renewable

energy sources like PV, this creates a strong incentive to improve

forecasting accuracy and develop control strategies that minimize

the imbalance costs while supporting stable system operation.

With advances in forecasting technologies, a range of meth-

ods has emerged to predict PV output. These methods generally

fall into three categories: physical models that simulate irradiance

based on weather data, statistical models that exploit time series

patterns, and hybrid approaches that combine both. Physical mod-

els offer interpretability but often struggle with real-time adaptabil-

ity, while statistical and machine learning techniques, including au-

toregressive time series models and machine learning algorithms,

have demonstrated strong performance in capturing the stochas-

tic nature of PV output [4, 5]. More recently, hybrid forecasting

methods that integrate physical models with data-driven models

have gained attention for balancing accuracy and robustness [6].

While much of the existing research has primarily aimed to mini-

mize forecasting errors, recent studies have begun to highlight the

economic impact of forecast accuracy, focusing on profit-oriented

decision-making in renewable energy operations [7–9].

Although considerable research has been devoted to forecast-



ing energy spot prices and regulated tariffs, studies on imbalance

price forecasting remain limited, largely because Japan is the only

country with such a pricing mechanism. Horii et al. proposed the

use of generalized additive models along with system spot prices

to independently forecast imbalance prices for each time slot in

a day [10], and further analyzed potential factors influencing im-

balance price behavior [11]. Nakamura et al. evaluated the effec-

tiveness of Battery Energy Storage Systems (BESS) in reducing

imbalance costs using simple control rules based on the predicted

direction of PV forecast error [12]. However, these studies were

conducted under the previous imbalance pricing regime, prior to

the 2022 revision of the imbalance penalty system [3]. More re-

cently, Imai et al. employed a basic "Yesterday" model (predicting

imbalance prices based on values from the previous day) and a lin-

ear regression model, but their results show limited accuracy, with

a root mean squared error (RMSE) reaching nearly half the average

price [13].

This paper presents preliminary research on a self-wheeling

project that transmits PV electricity from a distant generation site

to a university campus in the Kanto region as part of the univer-

sity’s decarbonization strategy. The primary contributions of this

study are as follows:
• Proposing a Model Predictive Control (MPC) scheme to man-

age the real-time operation of a BESS for minimizing imbal-

ance costs in a PV self-wheeling context.
• Forecasting imbalance prices using Seasonal AutoRegressive

Integrated Moving Average (SARIMA) time-series models.
• Introducing a PV forecast adjustment strategy in day-ahead

scheduling to further enhance economic performance.

The remainder of this paper is organized as follows. Section II

provides an overview of the self-wheeling scheme and the current

imbalance penalty system. Section III describes the proposed MPC

framework and the forecasting methodologies. Section IV presents

simulation results based on actual historical data, and Section V

concludes the paper.

2. PV Self-wheeling

〈2・1〉 Self-wheeling Scheme Self-wheeling refers to

the practice in which electricity generated at a privately owned fa-

cility is transmitted through the transmission network operated by

the TSO to a geographically separate load under the same institu-

tional ownership, without any transaction on the wholesale elec-

tricity market. This configuration is increasingly adopted by large

energy consumers aiming to achieve decarbonization goals and en-

hance energy autonomy.

The main economic advantage stems from reduced dependence

on retail electricity procurement, thereby shielding the consumer

from wholesale market price volatility. In addition, electricity de-

livered via self-wheeling is currently exempt from Japan’s renew-

able energy surcharge, which is applied to electricity purchased

from the grid. As of October 2023, this exemption significantly

improves the cost-effectiveness of self-wheeling, particularly for

entities deploying large-scale renewable energy systems [14].

To use the transmission network, self-wheeling entities are re-

quired to pay wheeling charges to the TSO based on the volume

of electricity transmitted. Unlike conventional retail contracts or

third-party Power Purchase Agreements (PPAs), self-wheeling re-

quires that both the generation and the load be owned or controlled

by the same entity. Moreover, self-wheeling entities are responsi-

ble for imbalance risk: they must submit a day-ahead power trans-

mission schedule, and any deviation between the scheduled and

actual power flow results in an imbalance. This imbalance is fi-

nancially settled under the TSO’s imbalance pricing regime. For

variable renewable energy sources such as PV generation, the asso-

ciated imbalance charges can represent a significant component of

operating cost, highlighting the need for accurate forecasting and

real-time control strategies.

〈2・2〉 Imbalance Penalty Since the deregulation of the

electricity sector in Japan in 2016, all market participants, includ-

ing generators and retail suppliers, have been required to submit

their day-ahead operation schedules to the TSO at 30-minute in-

tervals for system operation scheduling. These schedules are ex-

pected to be strictly followed during actual operation to maintain

system stability in real-time.

Imbalances are classified into two categories. A shortage im-

balance occurs when actual generation is less than the scheduled

amount or when consumption exceeds the scheduled value. In

contrast, a surplus imbalance arises when generation exceeds the

scheduled quantity or when consumption falls below it. The struc-

ture of the imbalance penalty system is illustrated in Fig. 1. Within

this framework, the TSO imposes financial penalties on shortage

imbalances and uses the collected payments to compensate surplus

imbalances. Settlements are conducted ex-post, and any remaining

imbalance that cannot be resolved internally is addressed through

the deployment of system regulation resources.

Under the previous system, imbalance prices were computed as

a weighted average of the clearing prices in the day-ahead and in-

traday markets. However, this pricing method did not adequately

reflect regional and temporal supply-demand conditions, resulting

in weak correlation with actual imbalances [3]. To overcome these

limitations, a revised imbalance pricing mechanism was introduced

in 2022. The updated system accounts for the risk associated with

supply shortages, which has become more pronounced due to the

growing share of variable renewable energy. While the imbalance
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Fig. 2 The imbalance mechanism of a self-wheeling scheme.

prices remain relatively stable under normal grid conditions, they

may increase significantly during periods of tight supply. Con-

versely, during instances of renewable curtailment, the imbalance

price may drop to zero to discourage further generation. More-

over, the new system enhances transparency by publishing imbal-

ance prices in real time, enabling more responsive and informed

operational decisions.

The precise imbalance mechanism of a self-wheeling scheme

is depicted in Fig. 2. A portion of the load is supplied by self-

wheeled electricity, while the remaining demand is met through

procurement from a retail electricity provider [14]. To isolate the

operational challenges on the generation side, this study assumes

that the load is both predictable and non-adjustable in real time,

meaning it does not participate in demand-side management.

3. Model Predictive Control Scheme

〈3・1〉 Overall MPC Scheme MPC is an optimization-

based control strategy that updates control decisions at each time

step based on the latest syfstem state and forecasts of future con-

ditions [15]. Due to its ability to dynamically respond to real-time

deviations, MPC is widely applied in load control and electricity-

market-related operations, where decisions often rely on predic-

tions of future demand or price signals [16, 17].

Let GenA and Gen0 denote the actual and day-ahead scheduled

PV generation submitted to the TSO, respectively. Let I represent

the PV generation imbalance and L the load. The operation cost C

of the self-wheeling scheme, which is to be minimized, is defined

in Eq.(1).

C =
tend∑
t=1

[
(L(t) −Gen0(t))PR(t) + I(t)PI(t) +GenA(t)PT

]
(1)

The first term in Eq.(1) corresponds to the cost of electricity

purchased from the retailer, while the second term represents the

imbalance cost associated with PV generation. Here, PR and PI

denote the retail electricity price and the imbalance price, respec-

tively. The third term accounts for the wheeling cost of PV gener-

ation.

When a BESS is deployed on the PV side, it can be controlled

to charge or discharge in order to adjust the real-time imbalance I:

I(t) = GenA(t) −Gen0(t) + B(t) (2)

where B denotes the battery charge/discharge power output. Under

the above setting, L, PR, and PT are all known variables, while PI

and Gen0 are predicted values. However, it is not possible to obtain

GenA in advance, as Gen0 already serves as its forecast.

It should be noted that in a PV self-wheeling arrangement, all

generated PV energy is eventually transmitted, and the wheeling

price PT remains constant [18]. Therefore, the wheeling cost be-

comes a constant and can be excluded from the objective function

without impacting the optimization outcome. Nevertheless, GenA

still appears in Eq.(2). Ref. 12 proposed forecasting the sign of

GenA(t) − Gen0(t) (i.e., whether it is positive or negative) based

on the previous day’s result, claiming that approximately 70% ac-

curacy can be achieved. However, this assumption is primitive and

lacks rigorous validation. In principle, for any well-calibrated fore-

casting model that minimizes prediction error, the residuals should

approximate a Gaussian distribution with zero mean, implying no

consistent bias toward positive or negative deviations. Further-

more, knowledge of only the sign of GenA(t) − Gen0(t) is insuf-

ficient for solving a numerical optimization problem.

Given these considerations, the treatment of GenA(t) − Gen0(t)

becomes a critical factor in achieving optimal BESS control. This

challenge, however, highlights the strength of adopting an MPC

framework. During real-time operation at time t, the most recent

PV generation data up to t−1 can be used to perform an open-loop

forecast of PV generation Gen, which then serves as an approxi-

mation of GenA(t).

The overall MPC scheme is illustrated in Fig. 3.

In the day-ahead stage, a closed-loop forecast of PV generation

Gen0 is performed for the following day and submitted to the TSO

as the schedule. At the current real-time operation step t, the BESS

actions up to the previous time step t − 1 have already been exe-

cuted, while the control decision for time step t is to be determined

through optimization. The predictive horizon of the proposed MPC

scheme spans from the current time step t to the end of the day, de-
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Fig. 3 Proposed MPC scheme.

noted as tend. Gen and PI over this horizon are updated with an

open-loop forecast. Meanwhile, in real-time operation, Gen0 has

already been determined, and therefore the first term representing

the retail purchase cost in Eq.(1) becomes a constant and can also

be excluded from the objective function.

Ultimately, the final MPC optimization problem at t is formu-

lated as:

min
BC (t),BD(t)

tend∑
τ=t

I(τ)PI(τ) (3)

subject to

0 ≤ BC(τ) ≤ 1 (4)

0 ≤ BD(τ) ≤ 1 (5)

I(τ) = Gen(τ) −Gen0(τ) + ∆t · Pmax
[
BD(τ) − BC(τ)] (6)

S OC(τ) = ∆t · Pmax

E

τ∑
τ′=t

[
BC(τ′) − BD(τ′)

]
+ S OC(t − 1) (7)

0 ≤ S OC(τ) ≤ 1 (8)

∆t · Pmax

E

48∑
t=1

(BC(t) + BD(t))
2

≤ n (9)

∆t · PmaxBC(τ) ≤ max(Gen(τ) −Gen0(τ), 0) (10)

∆t · PmaxBD(τ) ≤ L(τ) (11)

In this formulation, BC and BD represent the normalized charge

and discharge power of the BESS at time t, which are the BESS

control variables to be optimized. Pmax and E are the maximum

power output and the storage capacity of the BESS, respectively.

Eq.(6) defines the PV generation imbalance I after accounting for

the BESS’s effect. Eq.(7) computes the battery’s state of charge

(SOC), and the constraint in Eq.(8) ensures it remains within the

physically feasible range. The number of charging cycles is lim-

ited by Eq.(9) to prevent significant battery deterioration, where n

represents the number of charging cycles permitted per day. The

inequality in Eq.(10) guarantees that charging occurs only when

there is a PV generation surplus, while Eq.(11) limits the discharge

power so that it does not exceed the load L.

〈3・2〉 Imbalance Price and PV Forecast Obviously,

the performance of the MPC depends on the accuracy of the fore-

cast results. Compared to the electricity spot price, the imbalance

price is more difficult to forecast since the real-time system im-

balance is highly irregular. One primitive approach is to assume

that today’s imbalance price will be exactly the same as yester-

day’s [13].

The SARIMA model is commonly used for time series analy-

sis and prediction of future values based on historical values with-

out extra input, and it is widely used in energy spot price fore-

casting [19, 20]. Therefore, it is very suitable to apply SARIMA

prediction in the MPC scheme. Especially when related external

variables are available, the SARIMA model can be extended to

the SARIMAX model to include the impact of external variables

through an exogenous regressor term. As the imbalance price is

supposed to reflect the value of energy in the power system by

definition, it is reasonable to consider the energy spot price as the

external variable for SARIMAX forecast of the imbalance price. In

this paper, the authors propose to use the SARIMA model for PV

generation forecast and use both SARIMA and SARIMAX models

for imbalance price forecast, respectively, for performance com-

parison.

The detailed implementation of the SARIMA/SARIMAX pre-

diction is as follows:

（ 1） At the beginning of a day, estimate new SARIMA/SARI-

MAX models for Gen and PI using historical data up to today.

（ 2） At time-step t, use historical data up to t − 1 to predict

Gen and PI from t to the end of the day tend.

（ 3） If any of the predicted values is lower than 0 (for either

Gen or PI), it is replaced by 0.

（ 4） Optimize the BESS control Eq.(3) from t to the end of

the day tend and execute the BESS control at t.

（ 5） Repeat from Step 2 until tend.

（ 6） Repeat from Step 1 on the next day.

〈3・3〉 Day-ahead PV Forecast Adjustment Since the

real-time imbalance is directly influenced by the day-ahead sched-

ule Gen0, one could theoretically submit Gen0 = 0 to intentionally

create a surplus imbalance in real-time operation, thereby gain-

ing additional profit, as surplus imbalances are guaranteed to be

purchased by the TSO. However, this practice may be regarded

as a form of strategic manipulation that undermines system reli-

ability. Moreover, deliberately underreporting Gen0 increases the

reliance on electricity purchased from the retailer, as the updated

self-wheeling regulations strictly require that generation and load

must be under common ownership [14]. In fact, this constraint is a

key feature of the revised self-wheeling rules, designed specifically

to discourage such manipulative all-zero day-ahead scheduling.

Nevertheless, it is acceptable for a self-wheeling entity to antic-

ipate periods of high imbalance prices and opt to support the load

exclusively via retail purchase during those times. Mathematically,

when the retailer purchase price PR(t) is lower than the imbalance

price PI(t), it becomes economically advantageous to meet the load



Fig. 4 Load and PV generation profile.

through retail purchases while allowing PV generation to become

surplus imbalance. From a system operation perspective, this be-

havior does not compromise system stability, as it results in addi-

tional PV generation during periods of supply scarcity.

Based on this rationale, the following adjustment to Gen0(t) is

proposed to further reduce the operational cost of the self-wheeling

scheme:

Gen0(t) = 0, if PR(t) < PI(t) (12)

4. Simulation Results

In the simulation, the target self-wheeling project aims to trans-

mit electricity from a PV generation site in Utsunomiya, Tochigi,

to a university campus in Tokyo, both located within the same TSO

service area in the Kanto region. The PV system has a maximum

output capacity of 30 MW, which corresponds to approximately

30% of the campus’s peak load. A portion of the load and PV gen-

eration profile is shown in Fig. 4. The campus load profile exhibits

a pronounced peak around midday and a dip at midnight, aligning

well with the generation pattern of PV systems and making it an

ideal candidate for PV self-wheeling. The simulation is conducted

over a two-month period, from September 1 to October 31, 2023.

〈4・1〉 Forecast Result Representative forecast results

produced by the SARIMA/SARIMAX models for PV generation

and imbalance price are shown in Fig. 5 and Fig. 6, respectively.

Table 1 summarizes the forecasting performance for PV gener-

ation and imbalance price using different models, evaluated by the

coefficient of determination (R2).

Subtable 1(a) shows the R2 values for PV generation forecasts

using the SARIMA model. The model achieves a relatively mod-

erate performance in the day-ahead setting, but performs signif-

icantly better when used in the MPC framework, indicating that

open-loop forecast accuracy is substantially higher.

Subtable 1(b) presents the forecast performance for the im-

balance price using three methods: a naïve Yesterday approach,

Table 1 The performance of the forecast results.

(a) The PV generation forecast.

R2

SARIMA
Day-ahead 0.7408

MPC 0.9869

(b) The imbalance price forecast.

R2

Yesterday
Day-ahead -0.4871

MPC 0.6571

SARIMA
Day-ahead 0.1201

MPC 0.6938

SARIMAX
Day-ahead 0.2336

MPC 0.7003

SARIMA, and SARIMAX. All models show improved accuracy

in the MPC setting compared to the day-ahead forecast. Specif-

ically, the Yesterday method yields a poor day-ahead forecast but

improves in the MPC setting. SARIMA and SARIMAX both show

better performance than the Yesterday method, with SARIMAX

slightly outperforming SARIMA in both day-ahead and MPC con-

texts. Notably, SARIMAX achieves the highest R2 among all

methods for MPC .

These results demonstrate that time-series-model-based ap-

proaches, particularly SARIMAX, provide more accurate forecasts

of the imbalance price, especially in open-loop forecast. Similarly,

PV generation forecasts benefit significantly from the open-loop

forecast of the MPC framework.

〈4・2〉 Operation Cost The operational cost of the tar-

get self-wheeling project under varying battery energy and power

capacities, as well as different retailer purchase price settings, is

presented in Fig.7. The allowable number of charge-discharge cy-

cles per day is set to n = 2. The self-wheeling fee is omitted for

the reasons discussed in Section3.1.

In the figure, SARIMA and SARIMAX represent the cases

where the SARIMA and SARIMAX models are used for imbal-

ance price forecasting within the proposed MPC framework, re-

spectively. SARIMAX-Adjusted refers to the case where SARI-

MAX is used for imbalance price forecasting, and the day-ahead

generation schedule Gen0(t) is further adjusted using the method

proposed in Section3̃.3. The Oracle case assumes perfect knowl-

edge of future imbalance prices and serves as a theoretically opti-

mal performance benchmark. The Rule-based case denotes a strat-

egy without explicit scheduling, in which the BESS simply absorbs

imbalances whenever they occur. Lastly, the No Battery case rep-

resents the baseline scenario where no BESS is installed to manage

PV generation imbalance.

The extent of cost reduction increases with larger battery energy



Fig. 5 PV generation forecast result.

Fig. 6 Imbalance price forecast result.

(a) PR = 10. (b) PR = 20. (c) PR = 30.

Fig. 7 The operation cost.

and charging power capacities. In all cases, the proposed MPC

scheme consistently outperforms the simple rule-based operation.

The SARIMAX case achieves greater cost savings than SARIMA,

owing to the higher forecasting accuracy of the SARIMAX model.

Notably, the SARIMAX-Adjusted case further enhances cost

reduction. However, the degree of improvement diminishes as the

retailer purchase price PR increases. This is because a higher PR

reduces the number of time slots that satisfy Eq.(12), thereby lim-

iting the effectiveness of the proposed adjustment strategy. Since

the typical value of PR is around 20, the practical benefit of the pro-

posed adjustment is still significant in real-world applications [21].

〈4・3〉 Imbalance Suppression The absolute value of

imbalance across different cases is presented in Fig.8. Among the

tested methods, the total imbalance is lowest in the SARIMAX-
Adjusted case compared to both the SARIMA and SARIMAX
cases. In the SARIMAX-Adjusted case, parts of the day-ahead



(a) Total imbalance. (b) Surplus imbalance. (c) Shortage imbalance.

Fig. 8 The absolute amount of imbalance

generation schedule Gen0) are deliberately set to zero according

to the adjustment strategy proposed in Section3.3. This results in

larger surplus imbalances during certain periods. However, these

surplus imbalances not only generate additional imbalance revenue

but also contribute to charging the BESS. The stored energy can

later be used to mitigate shortage imbalances, thereby reducing the

overall imbalance level more effectively.

〈4・4〉 The Effect of PR on Deliberate Underreporting of
Gen0 As discussed in Section 3.3, some entities may deliber-

ately underreport Gen0 to gain additional profit. In this analysis,

it is assumed that the entity applies a scaling coefficient k to Gen0

to simulate underreporting behavior. The effect of the retailer pur-

chase price PR on the incentive to underreport Gen0 under the pro-

posed MPC scheme is illustrated in Fig. 9.

The results show that when PR = 10, underreporting Gen0 can

indeed reduce the operational cost. However, as shown in Fig. 6,

the imbalance price typically exceeds 10, making such a low-price

retail contract highly unrealistic. For more practical values of PR,

deliberate underreporting of Gen0 results in increased cost. There-

fore, the proposed MPC scheme does not incentivize manipulative

scheduling and does not undermine the integrity of the current im-

balance pricing system.

5. Conclusions

This paper proposed an MPC-based BESS operation strategy for

a PV self-wheeling scheme, considering realistic imbalance reg-

ulation rules in the Japanese power system. Forecasting models

based on SARIMA and SARIMAX were applied to predict PV

generation and imbalance prices, enabling cost minimization in

real-time operation. The simulation, conducted for a campus-scale

self-wheeling project in the Kanto region, demonstrated that the

proposed MPC scheme significantly outperforms baseline strate-

gies such as rule-based control and no-battery scenarios. The

SARIMAX-Adjusted case, which incorporates a novel day-ahead

PV generation adjustment method, achieved additional cost reduc-

tion, especially under moderate retailer purchase prices.

In addition to economic gains, the proposed day-ahead PV

generation adjustment approach not only reduces costs but also

achieves the lowest total imbalance amount among the tested cases.

This is accomplished by utilizing surplus PV energy to both earn

revenue and charge the BESS for potential shortage mitigation.

Further analysis shows that the MPC scheme remains legitimate in

the face of potential strategic underreporting of generation sched-

ules. Under realistic retailer purchase price settings, any attempt

to manipulate Gen0 results in increased operational costs, thereby

aligning individual incentives with system-level reliability objec-

tives. These findings underscore the potential of the proposed ap-

proach to enhance both economic efficiency and operational in-

tegrity in future self-wheeling implementations. The proposed

framework thus offers a practical and scalable solution for inte-

grating distributed renewable energy within deregulated electricity

markets.
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(a) PR = 10. (b) PR = 20. (c) PR = 30.

Fig. 9 The effect of PR on deliberate underreporting of Gen0
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