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Abstract 

This study aims to develop a short-term electricity price forecasting method for Japan’s electricity spot market using deep learning 

models, particularly the Transformer-based architecture. As renewable energy generation strongly depends on weather conditions, its 

large-scale integration has caused frequent price fluctuations and spikes in the electricity market. Accurate forecasting of such price 

dynamics is crucial for retail electricity providers, especially small-scale regional utilities since sudden price surges can significantly 

increase procurement costs and threaten business continuity. Therefore, precise prediction of high-price events and quantitative 

assessment of uncertainty are essential for effective risk management. In this paper, a forecasting model for the Kyushu area was 

designed by integrating seven days of historical data, including weather forecasts, renewable energy generation, and spot market prices, 

to predict the next day’s electricity prices. The Transformer-based PatchTST model was employed for its strong capability to capture 

long-term dependencies, and feature importance analysis was conducted to identify the main factors influencing market price 

fluctuations. The results demonstrated that the PatchTST model was able to capture short-term price trends to a certain extent and 

showed potential for improving the accuracy of high-price forecasts. These findings suggest that the proposed approach can contribute 

to market stabilization and enhance risk management for retail electricity providers under the increasing penetration of renewable 

energy. 
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１．序論 

1.1 日本の電力市場 

日本の電力市場は，再生可能エネルギー（再エネ）の導

入拡大を進める上で重要な役割を担っている．再エネは発

電量が気象条件に左右されやすく，供給の変動が大きいと

いう特徴を持つが，その不安定性を市場メカニズムを通じ

て吸収することが可能である．具体的には，スポット市場

をはじめとする多様な市場取引を活用することで，需給バ

ランスを柔軟に調整し，電力価格のシグナルを通じて需要

側の行動変容や蓄電池の導入を促すことができる．このよ

うに，市場の仕組みを適切に設計・運営することで，安定

供給・経済性・環境適合性の三要素を両立させることが可

能となる．自由化によって消費者の選択肢が拡大した現

在，市場を通じた需給調整は，燃料価格の高騰や再エネの

変動性といった課題を克服しつつ，脱炭素化の推進力とな

り得る． 

さらに，日本では近年，再生可能エネルギーの導入が急

速に進んでいる．2010 年には日本の総エネルギー消費量

の 10%未満であったが，2022 年には約 21.9%に達した 1)．

さらに，政府のエネルギー基本計画では，2040 年度まで

に再生可能エネルギーを総発電電力量の 4〜5 割程度に引

き上げることを目指している． 

一方で，この急速な再エネ導入は電力システムと市場運

営に新たな課題をもたらしている．その最も顕著なもの

が，発電量の変動性と予測困難性とそれに伴う市場価格メ

カニズムへの影響である．太陽光や風力といった再生可能

エネルギーは気象条件に大きく依存するため，需要変動と

必ずしも一致しない．その結果，需要が比較的低い時間帯

に大量の電力供給が集中し，スポット市場価格が急落する

事例が増加している．その結果，需要家や小売事業者への

価格シグナルが十分に機能せず，デマンドレスポンスやエ

ネルギー貯蔵導入を後押しする市場的インセンティブが欠

如している．一方，小売電気事業者にとって，逆に供給不

足による市場価格が急騰するケースは，さらに大きな事業

リスクとなる．特に，規模の小さい地域新電力にとって，

急激な価格上昇は調達コストの高騰につながり，経営危機

に陥る恐れがある． 

したがって，再エネ導入の進展に伴う市場不確実性をど

のように予測し，活用していくかが，持続可能なエネルギ

ーシステムの鍵となる． 
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1.2 電力市場価格予測の必要性 

21 世紀初頭以降，世界のエネルギー産業は風力や太陽光

といった再エネの大規模導入を特徴とする大きな変革期を

迎えていると伴い，発電量の変動性や予測困難性といった

課題ももたらしている 2)．再エネに内在する間欠性は前日

電力市場の動向に大きな影響を与え，時間的制約のある取

引における価格決定メカニズムをより複雑化させている． 

こうしたエネルギー情勢の変化を背景に，前日電力価格

の予測精度向上は重要な課題である．価格は卸売市場で決

定されるため，その変動は発電・小売事業者の収益構造や

入札戦略に直接影響を及ぼす．正確な価格予測は，調達コ

ストの最適化や利益率の向上を可能にし，市場参加者全体

の意思決定を支える基盤となる．特に再エネ統合が進み価

格変動が複雑化する中，前日価格予測は電力システム全体

の安定性と効率性を高め，持続可能なエネルギー社会の実

現に不可欠である． 

そして，日本の電力取引の中心を担うのは，日本卸電力

取引所（JEPX）である．図１は JEPX の仕組みを示す図で

ある． 

スポット市場では 1 日 48 コマ（30 分単位）の電力が取

引され，北海道・東北・東京・中部・北陸・関西・中国・

四国・九州の 9 エリア別に価格が形成される．地域間の送

電が可能な場合には地域間統一価格が，送電制約がある場

合には各地域価格が適用される．また，すべての電力が全

国で均一に取引されると仮定したシステム価格も算出・公

表されている 3) 4)． 

入札は受渡前日の午前 9 時 30 分に締め切られ，板寄せ方

式で約定価格が決定される．ただし，翌日が休日の場合は

複数日の約定が休前日に時間をずらして処理される．発表

されるデータはエリア価格や約定数量などに限られ，オー

ダーブック情報が非公開であるため，公開情報をもとに市

場価格を予測することが研究上の課題となっている． 

 JEPX のスポット市場は 30 分ごとに取引されており，燃

料価格，需要動向，再生可能エネルギーの生産量など，さ

まざまな要因の影響を受ける 4)．その結果，スポット価格

は短期的に大きく変動し，市場参加者は常に不確実性に直

面している．小売業者にとって，価格上昇を予測できない

ことは調達コストの大幅な増加につながり，利益を圧迫す

る可能性がある．一方，価格下落を正確に予測できれば，

競争力を高めることができる．需要家にとっても，価格予

測は生産ラインや運転計画の調整によるコスト削減につな

がる． 

 

1.3 価格予測の既往研究 

電力価格予測研究は，従来の統計モデルから機械学習，

そして深層学習へと進化してきた．当初は，自己回帰移動

平均（ARMA）や自己回帰和分移動平均（ARIMA）などの

統計モデルが広く用いられ，電力価格変動の基本傾向の把

握において一定の成果を上げてきた 5) 6)7)．その後，ランダ

ムフォレスト（RF）やサポートベクターマシン（SVM）な

どの機械学習モデルが導入され，非線形性を表現すること

で予測精度が向上した．2010 年代以降は，LSTM や CNN な

どの深層学習モデルが導入され，時系列依存性や特徴量抽

出において優位性が示されている．特に，CNN と LSTM の

ハイブリッドモデル（CNN-LSTM）は，高い予測精度と学

習効率を両立でき，九州地域での研究でその有効性が確認

されている 8)9)． 

しかし，これらの既存モデルには依然としていくつかの

課題がある．第一に，長期的な依存関係を完全に捉えるこ

とが困難である．LSTM はシーケンスデータの処理に優れ

ているが，シーケンス長が長くなるにつれて学習効率と精

度に限界がある．また，不確実性の定量化や特定の市場現

象（日本の「ゼロ円価格」など）への対応において欠点が

あることが指摘されている 8)． 

これらの課題を克服する手法として注目されているのが 

Transformer モデルである 10)．Transformer は自己注意メカ

ニズムを用いて長期依存関係を効果的に捉えることができ，

RNN や LSTM と異なり並列処理による高い学習効率を持

つ．さらに，時系列データに特化した派生モデル PatchTST 

などが開発されており，長いシーケンスを「ブロック」に

分割して処理することで，複雑な電力市場データに対して

も高い予測性能を示すことが報告されている 11)．PatchTST

は長い入力シーケンスを効率的に処理できるため，再生可

能エネルギーの生産量変動や気象要因など，複数の特徴を

含む電力市場データに非常に適している． 

したがって，電力価格予測研究は線形モデルから非線形・

深層学習モデルへ，そして現在では Transformer 系モデルへ

と発展しており，日本特有の市場現象を捉えるための新た

なアプローチが求められている． 

 

1.4 本論文の目的 

本論文の目的は，日本の電力スポット市場において，再

生可能エネルギー大量導入に伴う価格変動の特徴を踏まえ

つつ，深層学習モデル，特に Transformer 系モデルを活用

した高精度な価格予測手法を検討することである．既存モ

 

図 1 JEPX の仕組み 



 

 

デルの限界を克服し，短期的な価格変動をより正確に捉え

ることで，再生可能エネルギーの普及に向けて電力市場を

用いて需要と供給のバランスを実現することに貢献するこ

とを目指す． 

本論文の主な貢献は以下の 3 点である. 

(1) 価格特徴量変換を用いた Transformer モデルによる

JEPX 価格予測 

(2) 15 円以上の高価格帯を重視した損失関数の設計と不

確かさの推定 

(3) 特徴量重要度分析による Transformer を用いた予測モ

デルの評価 

具体的には，九州地域を対象として，過去 7 日間の気象

予報データ，再生可能エネルギー発電量データ，スポット

市場価格データを用いて，翌日の電力スポット市場価格を

予測する人工知能モデルを設計する．さらに高価格帯を重

視した損失関数と特徴量の重要度分析から，急激な市場価

格変動の要因を特定することで，小売事業者の調達戦略や

リスクマネジメントに資する知見を提供することを目的と

する． 

 

２．予測手法 

予測手法は，データ収集と処理，予測モデルの構築，特

徴量分析の 3 つの段階に分けられる． 

2.1 データの収集と処理 

本論文で使用するデータは，九州地域における 2020 年 7

月 8 日～2025 年 3 月 31 日のスポット市場価格，再生可能

エネルギー発電量（太陽光および風力），気象データ，およ

びカレンダー特徴量である．各データの収集元，内容，処

理方法について以下に示す． 

(1) スポット市場価格データ 

スポット市場価格は，日本卸電力取引所（JEPX）が公表

するデータを用いる 3)．本論文では九州エリアの 30 分ごと

のスポット価格を対象とし，翌日予測の目的変数として使

用する．欠損値は確認されなかったが，極端なスパイク値

については後述の正規化処理で対応するものとする． 

(2) 再生可能エネルギー発電量データ 

再生可能エネルギー発電量として，九州電力が公表する

太陽光発電実績および風力発電実績を用いた 12)．これらは

1 時間ごとに集計し，需要に対する供給過多や不足を反映

する主要な説明変数として利用する． 

(3) 気象予報データ 

気象庁 (Japan Meteorological Agency， JMA) が提供する

数値予報データを利用した 13)．九州地方の代表地点（宮崎

県宮崎市，熊本県熊本市，佐賀県佐賀市，鹿児島県鹿児島

市，大分県大分市，長崎県長崎市，福岡県福岡市）の予報

値を採用し，表1のように6項目を特徴量として使用した． 

これらは再生可能エネルギー発電量の変動要因であると

同時に，需要側の変動にも影響を与えるため，説明変数と

して組み込む． 

(4) カレンダー特徴量 

電力需要の季節性や曜日効果を反映するため，カレンダ

ー特徴量を導入した．具体的には，年周期と日周期をそれ

ぞれ正弦波・余弦波に変換した sin・cos 特徴量を作成し，

周期性をモデルに学習させやすい形で入力した． 

 

図 3 説明変数のデータ構造の図解 

 

図 2 データセット分割の図解 

 

表 1 気象予報データの特徴量 

気象変数 単位 

風速 m/s 

気温 ℃ 

相対湿度 % 

降水量 mm 

全雲量 % 

日射量 W/m2 

 



 

 

(5) データ処理方法 

使用データの期間は 2020 年 7 月 8 日から 2025 年 3 

月 31 日までであり，全データは図 2 に示すように，学習

用・検証用・テスト用に 7:2:1 の比率で分割した． 

収集した各データは，もともと異なる時間分解能で提供

されている．具体的には，JEPX のスポット市場価格は 30 

分単位，九州電力の再生可能エネルギー発電量データも 30 

分単位，気象予報データは 3 時間単位である．本論文では

これらをすべて 30 分単位に統一するため，気象データに

ついては区間平均を算出して時間解像度を揃えた．  

欠損値が存在する場合は線形補間により補完した．その

後，データ分布を安定化させ外れ値の影響を低減するため

に，各特徴量に対して対数変換（log 変換）を施した．さら

に，モデル学習の安定性を確保するため，すべての特徴量

に対して標準化処理（平均 0・標準偏差 1 のスケーリング）

を実施した．   

本論文では，図 3 に示すように，各日の午前 6 時の時点

で入手可能な情報を用いて，翌日の 48 コマ（30 分単位）

のスポット市場価格を予測する条件を設定した．JEPX の

前日電力市場では，入札期限である日本標準時午前 10 時

までにすべての取引を完了する必要があるため，計算処理

および予測生成のための 4 時間のバッファを確保してい

る．したがって，説明変数には，予測日の前日午前 6 時ま

でに取得可能なデータを使用した． 

 

2.2 予測モデルの構築 

目的変数は九州エリアの翌日スポット市場価格とし，説

明変数として前日スポット市場価格，再生可能エネルギー

発電量，気象データ，カレンダー特徴量を組み合わせて使

用し，人工知能モデルによる学習および予測を実施する．

使用したモデルは PatchTST モデルである． 

(1) PatchTST モデル 

本論文では，近年時系列予測分野で注目を集めている 

Transformer 系モデルの一つである PatchTST (Patching Time 

Series Transformer)を用いた 11) ．PatchTST は，従来の 

Transformer が抱えていた長系列データ処理時の計算負荷

や過学習の問題を軽減するため，入力時系列を複数のパッ

チ（時間区間のまとまり）に分割して処理する構造を持つ．

これにより，局所的な時間パターンを効率的に捉えるとと

もに，自己注意機構により長期的な依存関係を学習するこ

とが可能となる．さらに，系列全体を直接処理するのでは

なくパッチ単位での表現を学習するため，従来の LSTM 

や CNN モデルに比べて予測精度と学習効率の両立が期

待される．図 4 の内容は「入力時系列 → パッチ分割 → 

エンコーダ（Transformer Block） → 出力予測」の流れを示

す． 

(2) ローリングウィンドウ予測 

本論文では，ローリングウィンドウ方式を用いてモデル

学習と予測を行った．具体的には，各日の 6:00 の時点で

入手可能な過去 7 日間（168 時間 336 コマ）のデータと，

翌日の天気予報を入力として学習し，翌日の 48 コマ（30分

単位）のスポット市場価格を予測する設定とした．翌日が

終了すると，実績データを加えて学習窓を 1日分シフトし，

再び次の日の予測を行う．この手法により，常に最新の市

場状況や気象条件を反映した予測が可能となり，時系列の

非定常性に対応できる． 

(3) 学習環境 

モデルの学習には，単一 GPU 環境を用いた．具体的に

は，NVIDIA Quadro RTX 8000 (48GB) を搭載した計算機上

で PyTorch を利用してモデルを実装し，学習および予測を

実行した．計算資源は限定的であるが，PatchTST は効率的

なアーキテクチャを持つため，本論文のデータ規模におい

て十分な学習性能を発揮することが確認された． 

 

2.3 特徴量分析 

予測モデルの性能評価に加え，各特徴量や損失関数への

重み付けが電力スポット市場価格の変動予測にどのように

寄与するかを明らかにすることは重要である．特に小売電

気事業者にとっては，価格高騰の要因を把握することで，

調達リスクの低減や入札戦略の最適化につなげることがで

きる．本論文では，Transformer モデルにおける高価格帯重

み付けの導入と，特徴除去法による寄与度分析を行うこと

で，価格変動の主要因を定量的に評価することを目的とし

た． 

(1) 高価格帯重み付けの設計 

本論文では，高価格帯（スパイク的価格上昇）の予測精

度を向上させるため，損失関数に価格依存の重み付けを導

入した．具体的には，各日の価格曲線のうち 15 円を超え

る極大値を持つ時点を「高価格点」と定義し，それらのデ

ータに対して 5 倍の重みを付与した．また，高価格点の前

後 1.5 時間（合計 3 時間）にわたり，ガウス関数による平

滑化した重みを適用することで，価格上昇の前後関係を考

慮した連続的な重み付けを実現した．    

 

図 4 PatchTST の概要図：入力系列をパッチ化し，自

己注意機構で学習する流れ 



 

 

この重み付けによって，モデルの学習時に高価格帯の誤

差をより強く最小化するよう誘導し，通常価格帯の誤差よ

りもスパイク的事象の再現性を重視する構造とした．損失

関数𝐿は以下のように表される： 

𝐿 =  
1

𝑁
∑ 𝑤𝑖(𝑦𝑖 − 𝑦̂𝑖)2

𝑁

𝑖=1

                                                                  (1) 

ここで𝑦𝑖は実際の価格，𝑦̂𝑖はモデルの予測値，𝑤𝑖は各時点

における重み係数を示す．𝑤𝑖は価格が 15 円を超える極大

値の場合に 3，その他の場合には 1 とし，さらにガウス関

数により連続的に平滑化した．このような重み設計により，

モデルが高価格帯データに対してより敏感に学習し，極端

値を伴う価格変動の予測性能向上を期待でき 

(2) 特徴除去法による寄与度評価  

各特徴量が予測にどの程度寄与しているかを定量的に評

価するため，特徴除去法（アブレーション解析）を実施し

た．本手法では，入力特徴量 𝑥 𝑗 を 1 つずつ除去した状態

でモデルを再学習・再予測し，性能変化を比較することで，

各特徴量の重要度を算出する． 

全特徴量を使用した場合の誤差を 𝐸𝑎𝑙𝑙，特徴量 𝑥 𝑗  を除

去した場合の誤差を 𝐸−𝑗 とすると，特徴量の重要度𝐼𝑗は以

下のように定義される: 

𝐼𝑗 = 𝐸−𝑗 − 𝐸𝑎𝑙𝑙                                                                                    (2) 

𝐼𝑗 の値が大きいほど，当該特徴量を除去することで予測

性能が劣化する，すなわちその特徴量がモデルにとって重

要であることを意味する． 

本手法により，気象・再生可能エネルギー関連データの

うち，どの要素が電力価格の変動を最も説明しているかを

明確化し，後続の分析において各特徴の役割を定量的に検

証できるようにした．  

 

3 性能評価 

3.1 電力市場価格の前日予測 

本論文では，PatchTST モデルを用いて九州エリアの電力

スポット市場価格の前日予測を行った．表 2 の 1 行目およ

び図 5 は，予測期間である 2024 年 10 月 1 日から 2025 

年 3 月 31 日までの結果を示しており，黒線が実際のスポ

ット市場価格，橙線がモデルによる予測価格である． 

予測時点ごとにモデルの学習と予測を実施し，予測期間

内における予測価格と実際の市場価格を比較した．モデル

全体の予測性能を評価するために，決定係数（𝑅2 ， 

Coefficient of Determination），平均絶対誤差（MAE， Mean 

Absolute Error），および二乗平均平方根誤差（RMSE， Root 

Mean Square Error）の 3 つの指標を用いた. 

𝑅2は，モデルが実際のデータの変動をどの程度説明でき

ているかを示す指標であり，1 に近いほど予測性能が高い

ことを意味する．MAE は，予測値と実測値との差の絶対値

を平均したものであり，値が小さいほど平均的な誤差が小

さい．RMSE は，予測値と実測値の差を二乗して平均し，

その平方根を取ったものであり，外れ値の影響を考慮した

誤差評価指標である．   

その結果，MAE=2.12，RMSE=3.08，𝑅2=0.587 となり，𝑅2

は比較的高い値を示したことから，モデルが価格の変動傾

向をおおむね良好に捉えていることが確認された．   

さらに，高価格点の一致率は約 66%，高価格帯（±30 分

容許）の一致率は約 85% であることがわかった．急激な

価格上昇（スパイク的変動）においては予測値の絶対誤差

が大きい傾向にあるものの，高価格帯の発生タイミング自

体は良好に再現できている．図 6 は，特に極端な価格変動

が発生した 1 週間を抽出した結果を示している．青線は高

価格帯重み付け係数の時間変化を示している．赤色で示し

た領域は高価格発生の予兆を表しており，実際の価格スパ

イクとおおむね一致していることが確認できる．したがっ

て，数値精度には課題が残るものの，モデルによる高価格

帯の発生警告は実用上有効であると考えられる． 

 

3.2 高価格帯予測の改善 

小売電気事業者にとって経営上の大きなリスク要因であ

る高価格帯の再現性を高めるため，損失関数に高価格デー

タへの重み付けを導入したモデルを構築した． 

また，予測結果のうち価格が 15 円を超える時点を予測高

価格点とし，その前後 30 分（合計 1 時間）の区間を予測高

価格帯と定義する．同様に，実測値に対しても 15 円を超え

る時点を実測高価格点，その前後 30 分を実測高価格帯と定

義する．このとき，高価格点（帯）一致率（F）は，「予測

された高価格点（帯）のうち実際にも高価格であった割合

（Precision）」と，「実際の高価格点（帯）のうち予測でも高

価格と判断された割合（Recall）」の調和平均として算出す

る．数式で表すと次の通りである: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑃𝑟𝑒𝑑𝑠𝑝𝑖𝑘𝑒 ∩ 𝑇𝑟𝑢𝑒𝑠𝑝𝑖𝑘𝑒|

|𝑃𝑟𝑒𝑑𝑠𝑝𝑖𝑘𝑒|
                        (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑃𝑟𝑒𝑑𝑠𝑝𝑖𝑘𝑒 ∩ 𝑇𝑟𝑢𝑒𝑠𝑝𝑖𝑘𝑒|

|𝑇𝑟𝑢𝑒𝑠𝑝𝑖𝑘𝑒|
                                (4) 

𝐹 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
                                             (5) 

表 2 の第 1～2 行目に示すように，重み付けなしのモデ

ルでは予測高価格点と実際高価格点の一致率が 0.637 で

あったのに対し，重み付けありのモデルでは 0.666 に向上

し，予測高価格帯と実際高価格帯の一致率も 0.794 から 

0.850 に改善した． 



 

 

 

表 2 全実験結果の比較 

モデル設定 R² MAE RMSE 学習時間 (s) 前処理 高価格帯

重み付け 

高価格点一

致率 

高価格帯

一致率 

全データ 0.587 2.118 3.090 750 asinh ✓ 0.666 0.850 

全データ 0.554 2.210 3.210 775 asinh -- 0.637 0.794 

全データ 0.541 2.235 3.278 770 無変換 ✓ 0.665 0.818 

全データ 0.510 2.313 3.386 775 log ✓ 0.632 0.791 

価格のみ 0.558 2.250 3.200 122 無変換 -- 0.641 0.799 

風速なし 0.576 2.190 3.130 1190 無変換 ✓ 0.679 0.817 

気温なし 0.574 2.200 3.130 1170 無変換 ✓ 0.680 0.828 

降水量なし 0.570 2.220 3.160 1165 無変換 ✓ 0.671 0.814 

全雲量なし 0.577 2.210 3.130 1170 無変換 ✓ 0.670 0.816 

日射量なし 0.573 2.200 3.140 1175 無変換 ✓ 0.676 0.820 

エリア需要なし 0.580 2.170 3.120 1160 無変換 ✓ 0.673 0.822 

太陽光発電量なし 0.575 2.200 3.130 1100 無変換 ✓ 0.663 0.810 

風力発電量なし 0.556 2.251 3.200 1190 無変換 ✓ 0.672 0.815 

 

 

図 5 PatchTST モデルによる九州エリアの電力スポット市場価格の予測結果 

 

図 6 高価格帯予測の結果 



 

 

この結果から，損失関数に価格帯依存の重みを導入する

ことで，モデルが極端な高価格事象に対してより敏感に反

応するようになり，スパイク検知性能が向上したといえる．

ただし，平均的な価格帯ではわずかな誤差増加も見られ，

MAE および RMSE の観点から全体精度とのトレードオ

フが存在することが確認された．  

 

3.3 前処理手法の比較（asinh・log・無変換） 

一般的に，対数変換はデータ分布を正規分布に近づけ，

外れ値の影響を軽減する目的で用いられる．しかし，本論

文では特に極端な高価格（いわゆる「価格スパイク」）に着

目しており，その情報を保持するため，対数変換（log），逆

双曲線正弦変換（asinh），および無変換の 3 種類の前処理

手法を比較した．   

表 2 の第 1，3，4 行に示すように，asinh 変換を施した

場合が最も高い決定係数（𝑅2=0.587）と最小の平均絶対誤

差（MAE=2.12）を示した．また，高価格予測の一致率にお

いても asinh 変換が最も良好であり，次いで無変換，log 変

換の順であった．log 変換では外れ値の影響を過度に抑制

するため，高価格帯における誤差が大きくなる傾向が見ら

れた．   

電力市場価格は長い裾を持つ非対称分布を示し，極端な

価格スパイクが頻発する．そのため，分布全体を強く圧縮

する log 変換は実態を十分に反映できず，一方で asinh 変

換は外れ値の影響を抑えつつ高価格の分散構造を保持でき

るため，電力価格のような高変動性データに適していると

いえる．  

 

3.4 特徴重要度分析（全特徴 vs 部分除去） 

次に，モデルに入力する特徴量の構成が予測性能に与え

る影響を分析した．表 2 の第 1 行および第 5～13 行に示

すように，全特徴量を使用したモデルが最も高い精度を示

した．一方，「価格のみ」の入力では学習時間が短縮された

ものの，𝑅2=0.558 まで低下した．また，各特徴量を個別に

除去した場合にも 𝑅2 は平均で 0.01～0.02 程度低下し

た．   

これらの結果から，気象および再生可能エネルギー関連

データが電力市場価格の変動にそれぞれ寄与していること

が示唆される．特に，昼間のみ発電する太陽光発電に比べ，

風力発電量は日中・夜間を問わず需要側へ継続的に影響を

及ぼすことから，価格変動の説明力が高いと考えられる．

これらの気象変数を考慮することが，価格予測の精度向上

に有効であるといえる． 

   

3.5 予測効率 

まず，計算効率の観点から，本論文で使用した PatchTST 

モデルは，従来の CNN–LSTM モデルに比べて学習時間を

大幅に短縮できることが確認された．類似の予測精度を達

成するために，CNN–LSTM モデルでは PatchTST の数倍

の計算時間を要すし，PatchTST の優れた効率性が明確に示

された． 

次に，図 7 に示すように，7 日間のローリングウィンド

ウと 30 日間のローリングウィンドウを用いた場合のモデ

ル性能を比較した．その結果，両者の決定係数（𝑅2）およ

び誤差指標（MAE，MSE）に大きな差は見られず，PatchTST 

モデルが学習段階において主要な時間的依存関係を十分に

捉えていることが確認できる．これにより，モデルが過剰

なデータ量を必要とせず，少量の訓練データで安定した性

能を発揮できることが示唆された．この特性は，今後のリ

アルタイム市場運用やクラウド実装への応用においても有

利に働くと考えられる． 

このことは，本モデルが限られたデータ量と計算資源の

もとでも高精度な予測を実現できることを意味しており，

将来的な実用化やコストパフォーマンスの観点から極めて

 

図 7 7 日および 30 日をローリングウィンドウとした場合における予測性能の比較 



 

 

有望であるといえる． 

 

４．結論 

本論文では，日本の電力スポット市場（JEPX）における

価格変動の予測を目的として，Transformer 系モデルである 

PatchTST を用いた短期価格予測手法を構築した．特に，再

生可能エネルギーの大量導入によって顕著となる価格スパ

イク（高価格帯）を的確に捉えるため，価格データの分布

特性を考慮した asinh 変換および高価格帯重み付け損失

関数を導入した．また，気象・再生可能エネルギー・カレ

ンダー等の多変量データを組み合わせ，特徴除去法による

寄与度分析を行うことで，価格変動に影響を与える要因を

定量的に評価した． 

実験の結果，asinh 変換を適用したモデルが最も高い予

測精度を示し（𝑅2 = 0.588， MAE = 2.12， MSE = 3.08），

log 変換よりも極端値の再現性に優れていることが確認さ

れた．さらに，高価格帯重み付けを導入したモデルでは，

スパイク発生時刻の一致率が大幅に向上し（高価格点一致

率 0.666，高価格帯一致率 0.850），小売電気事業者にとっ

て重要な高価格リスクの事前把握に有効であることが示唆

された．一方で，平均的な誤差指標（MAE， MSE）はやや

増加しており，全体精度とのトレードオフが存在すること

も確認された． 

特徴除去法による分析からは，風速・気温・日射量など

の気象要素が価格変動の主要因であることが明らかになっ

た．特に風力発電量は昼夜を問わず需給バランスに影響を

及ぼし，価格スパイクの発生に寄与することが示唆された．

また，PatchTST モデルは従来の CNN–LSTM モデルに比

べて学習時間を数十分の一に短縮できる高い計算効率を有

しており，ローリングウィンドウを 7 日から 30 日に拡

大しても性能差がほとんど見られないことから，限られた

計算資源でも高精度な予測が可能であることが確認された． 

極端値の振れ幅のより正確な推定，モデルの解釈性の改

善，ハイパーパラメータ調整方法の簡易化，蓄電池制御と

の連携など地域の電力需給管理への応用が今後の課題であ

る． 
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