# 4.4 周波数応答データ駆動の共振フィルタ設計 4.4.1 はじめに

ビッグデータやクラウドコンピューティングの活用が進 む現代において、それらのデータを蓄積するためにデータセ ンタで用いられているハードディスクドライブ (Hard Disk Drive: HDD) の重要性はこれまで以上に高まっている。HDD の内部で用いられる磁気ヘッドの制御性能の改善は, HDD に記録されるデータ容量の増大に直結しており、そのため の制御器設計手法は大量のデータが蓄積される現代の情報 化社会を支える上で欠かすことのできない技術であると言 える。HDDの磁気ヘッドの制御系は、ディスクの回転に起 因する振動、ストレージボックス内で発生するファン起因 の振動, HDD の位置測定機構に起因するノイズなど, 多く の外乱にさらされている。HDD の磁気ヘッドにおいてより 高い位置決め制御性能を発揮するためには、複数の周波数 の外乱を抑圧するためのフィードバック制御器を設計する 必要があり、現代の日本の労働人口減少の背景からも、制 御器が持つ複数の周波数の外乱に対応した多数のパラメー タを自動調整する手法が望まれている。

HDD の外乱抑圧のための従来のモデルベースのフィード バック制御器として, 適応制御 [1-4], 共振フィルタ [5], 繰 り返し制御 [6,7], Youla-Kucera parameterization [8], 外乱オ ブザーバ [9], カップリング制御器 [10], などを用いた手法 が提案されている。それらのモデルベースの手法は基本的 には制御対象のモデルが必要となるが, HDD のような大量 生産される装置において制御対象のモデル変動は無視でき ない要素であり,多数のモデル変動に対して伝達関数モデ ルを作成するのは非常に時間と経験を要する。このような モデルベースの手法の欠点を克服するために、H<sub>∞</sub>ロバスト 制御や H<sub>2</sub> 制御に基づくデータベースの手法 [11,12] も提案 されている。それらのデータベースの手法はゲイン安定化 によりロバスト安定性を保証していることから、設計結果 が保守的になってしまうという問題がある。また、最大ス トロークといったハードウェア制約も実装の上では考慮し て設計する必要がある。

このように,HDDの外乱抑圧のためのフィードバック制 御器設計において複数の手法が提案されてきたが,位相安 定化とストローク制約に関しては設計において考慮されて いない。本節では,位相安定化とストローク制約を考慮し た構造化された複数の共振フィルタを最適化を用いて設計 する手法を紹介する。本手法の貢献は次の通りである。

(1) 2入力1出力系に対する複数の共振フィルタを反 復凸最適化により設計する。

(2) 複数の周波数応答データから HDD のモデル変動を 直接扱う。

(3) 位相安定化とストローク制約を考慮した最適化計



図 4.4.1 2 段アクチュエータのハードディスクドライブ。 Fig. 4.4.1. Hard disk drive with a dual-stage actuator.

算を行う。

#### 4.4.2 問題設定

図 4.4.1 に、本節で扱う 2 段アクチュエータ HDD ベンチ マーク問題における制御対象の概観を示す。この HDD は、 ボイスコイルモータ (Voice Coil Motor: VCM) とピエゾアク チュエータ (PieZoelecTric actuator: PZT actuator) の 2 つのア クチュエータを用いて、ディスク上における磁気ヘッドの 位置制御を行う制御系となっている。このベンチマーク問 題では、1 秒間の定常応答における連続時間の磁気ヘッド の位置  $y_c$  の標準偏差の 3 倍値の最悪ケースを最小化するこ とを目的とする [13]。トラックピッチを  $T_p$  = 52.7 nm、サン プリング時間を  $T_s$  = 1/(7200/60)/420 ≈ 1.9841 × 10<sup>-6</sup> s とす る。また、機械的な可動域の制約から連続時間のピエゾア クチュエータの変位  $y_{cn}$  は ±50 nm より小さい必要がある。

2 段アクチュエータ HDD の制御系のブロック線図を 図 4.4.2 に示す。ここで、P<sub>c</sub> は連続時間の制御対象、C<sub>d</sub> は 離散時間のシングルレートフィードバック制御器, Fm は離 散時間のマルチレートフィルタ、下付き添字の p と v はピ エゾアクチュエータとボイスコイルモータをそれぞれ表す。 連続時間の制御対象は9つの場合のモデル変動を持ち、モ デル変動に対応したデータ番号 k<sub>c</sub> = 1,...,9を用いて下付き 添字で表す。m ∈ N をマルチレート数として, Im を m 倍に アップサンプルするインターポレータ, $\mathcal{H}_m$ をm倍のマル チレート系におけるマルチレートホールド, Sをサンプラ とする。本節では、指令値 r = 0 の条件において連続時間の 磁気ヘッドの位置 yc の最悪ケースを最小化するように,各 アクチュエータにおける離散時間の既存の開ループ制御系 G<sub>p</sub>, G<sub>v</sub>に対して,出力端外乱 d の影響を抑圧する離散時間 のシングルレートフィルタ $F_{rp}$ と $F_{rv}$ を各アクチュエータ にそれぞれ設計することを目的とする。

既存の開ループ系におけるピエゾアクチュエータの周波数 応答 $G_{p,k_c}(j\omega_{k_f})$ とボイスコイルモータの周波数応答 $G_{v,k_c}(j\omega_{k_f})$ を図 4.4.3 にそれぞれ示す。ただし、 $n_f$ を周波数応答のデー タ点数とし、 $k_f = 1, \ldots, n_f$ は周波数応答のデータ番号とする。



図 4.4.2 2 段アクチュエータのハードディスクドライブのブロック線図。 Fig. 4.4.2. Block diagram of a hard disk drive with a dual-stage actuator.



図 4.4.3 既存の開ループ系の周波数応答。上:ピエゾアク チュエータ  $G_{po}$ 、下:ボイスコイルモータ  $G_{vo}$ Fig. 4.4.3. Frequency responses of given open-loop systems.

Top: PZT actuator  $G_p$ . Bottom: VCM  $G_v$ .

このベンチマーク問題において本節で扱う出力端外乱 dは、HDD本体に加わる回転加速度外乱  $d_f$ 、ストレージボックス内で発生するファン起因外乱  $d_p$ 、位置信号に含まれる 誤差成分  $d_{RRO}$ の周波数応答から等価的に次のように求められる。

$$d_{k_c}(\mathbf{j}\omega_{k_f}) = P_{cv,k_c}(\mathbf{j}\omega_{k_f})d_f(\mathbf{j}\omega_{k_f}) + d_p(\mathbf{j}\omega_{k_f}) - d_{\mathrm{RRO}}(\mathbf{j}\omega_{k_f})$$
(4.1)

出力端外乱 d の周波数スペクトルを図 4.4.4 に示す。

以上の問題設定から,指令値
$$r=0$$
,出力 $y$ ,誤差 $e=r-y$ 



Fig. 4.4.4. Amplitude spectrum of output disturbances.

の関係性において,連続時間の磁気ヘッドの位置  $y_c$  の最悪 ケースを最小化する問題は,離散時間の誤差 e の最悪ケース を最小化する問題として扱うことができる。本節では,離 散時間の誤差 e の最悪ケースを最小化するように,各アク チュエータにおける離散時間の既存の開ループ制御系  $G_p$ ,  $G_v$  に対して,出力端外乱 d の影響を抑圧する離散時間のシ ングルレートフィルタ  $F_{rp}$  と  $F_{rv}$  を各アクチュエータにそ れぞれ設計することを目的とする。

# 4.4.3 2段アクチュエータ HDD の制約を考慮した複数共振フィルタの凸最適化設計

2段アクチュエータ HDD における複数共振フィルタの最 適化手法を示す。構造的に定式化された共振フィルタの設 計問題は,周波数応答データを直接用いた最適化問題とし てロバスト安定性,ロバスト性能,ハードウェア制約を考 慮して定式化される。最適化問題は逐次線形化による反復 凸最適化により計算される。

### 設計される共振フィルタの構造

トラック追従性能を改善するために,共振フィルタ[5]を 用いた外乱抑圧制御を行う。共振フィルタは外乱周波数 と同じ周波数に共振周波数を持つことにより,内部モデ ル原理に基づき外乱を抑圧することができる。本手法で は、外乱周波数に合わせた複数の共振フィルタを設計し、 トラック追従性能を改善する。

設計する共振フィルタのブロック線図を図 4.4.5 に示 す。各アクチュエータにおける共振フィルタは次のよう に定式化される。



ただし、各アクチュエータに対応する下付き添字を $k_u \in \{p,v\}$ , 共振フィルタを設計する周波数の個数を $n_r \in \mathbb{N}$ , 共振フィルタを設計する周波数のデータ番号を $k_r = 1, ..., n_r$ , 各アクチュエータの調整パラメータを $\rho_{k_u} \in \mathbb{R}^{2n_r+1}$ , 共振 角周波数を $\omega_{r,k_r} \in \mathbb{R}_{>0}$ , ダンピング係数を $\zeta_{r,k_r} \in \mathbb{R}_{>0}$ とす る。本節において,設計する共振フィルタの共振角周波 数 $\omega_{r,k_r}$ とダンピング係数 $\zeta_{r,k_r}$ は外乱や誤差の周波数特性 から予め与えられているものとし、分子多項式の係数で ある調整パラメータ $\rho_{k_u}$ を調整することを目的とする。

設計される共振フィルタは共振モードと位相補償器の 和により次のように定義される。

$$F(s) = \frac{\kappa s^2 + \kappa \psi s}{s^2 + 2\zeta_r \omega_r s + \omega^2}$$
(4.3)

共振フィルタのベクトル軌跡は図 4.4.6 のように表され、 共振フィルタにおける分子の係数 κ とψは各共振モード のゲインと位相に対応している。

#### 最適化問題の定式化

本手法では、ロバスト安定性、ロバスト性能、ハードウェ ア制約を周波数応答データから考慮する。ロバスト性能 として、誤差の周波数スペクトルの最悪値を最小化する ように共振フィルタを最適化する。ハードウェア制約と して、ypの周波数スペクトルの最大値を制約条件として、 PZT アクチュエータのストローク制約を考慮する。ロバ スト安定性として、共振フィルタ有りのベクトル軌跡が (-1,j0)に対して共振フィルタ無しのベクトル軌跡と同じ 側に存在し、かつ円条件の外側に存在するように制約条 件を与える。これらの制約条件から、最適化問題は次の ように定式化される。



図 4.4.5 共振フィルタのブロック線図。 Fig. 4.4.5. Block diagram of resonant filters.



## 図 4.4.6 ナイキスト線図における共振フィルタを用いた場 合のベクトル軌跡の円条件と位相安定化。

Fig. 4.4.6. Vector locus using a resonant filter with modulus margin and phase stabilization in Nyquist diagram.

$$\min_{\rho} \max_{\forall k_c, \forall k_c} |e_{k_c}(j\omega_{k_f})|$$
(4.4a)

subject to 
$$|y_{p,k_c}(j\omega_{k_f})| \le y_{p,\max}$$
 (4.4b)

$$w_s(\mathbf{j}\omega_{k_f})|S_{k_c}(\mathbf{j}\omega_{k_f},\boldsymbol{\rho})| \le 1$$
(4.4c)

$$-\frac{\pi}{2} \le \angle \left(1 + L_{k_c}(j\omega_{k_f}, \boldsymbol{\rho})\right) - \angle \left(1 + G_{k_c}(j\omega_{k_f})\right) \le \frac{\pi}{2} \quad (4.4d)$$

ただし、 $w_s$ は感度関数の重み関数とし、 $G_{k_c}$ 、 $L_{k_c}$ 、 $S_{k_c}$ を次のように定義する。

$$G_{k_c}(j\omega_r) = G_{p,k_c}(j\omega_{k_f}) + G_{v,k_c}(j\omega_{k_f})$$
(4.5)

$$L_{k_c}(\mathbf{j}\omega_{k_f},\boldsymbol{\rho}) = L_{p,k_c}(\mathbf{j}\omega_{k_f},\boldsymbol{\rho}_p) + L_{v,k_c}(\mathbf{j}\omega_{k_f},\boldsymbol{\rho}_v) \quad (4.6)$$

$$L_{p,k_c}(\mathbf{j}\omega_{k_f},\boldsymbol{\rho}_p) = G_{p,k_c}(\mathbf{j}\omega_{k_f})F_{rp}(\mathbf{j}\omega_{k_f},\boldsymbol{\rho}_p)$$
(4.7)

$$L_{v,k_c}(\mathbf{j}\omega_{k_f},\boldsymbol{\rho}_v) = G_{v,k_c}(\mathbf{j}\omega_{k_f})F_{rv}(\mathbf{j}\omega_{k_f},\boldsymbol{\rho}_v)$$
(4.8)

$$S_{k_c}(\mathbf{j}\omega_{k_f},\boldsymbol{\rho}) = \frac{1}{1 + L_{k_c}(\mathbf{j}\omega_{k_f},\boldsymbol{\rho})}$$
(4.9)

逐次線形化による凸最適化

式 (4.4a) において, 評価関数は次のように表すことができる。

$$\begin{array}{l} \underset{\rho}{\operatorname{minimize}} \max_{\forall_{k_c},\forall_{k_f}} |e_{k_c}(j\omega_{k_f})| \Leftrightarrow \underset{\rho}{\operatorname{maximize}} \min_{\forall_{k_c},\forall_{k_f}} \frac{1}{|e_{k_c}(j\omega_{k_f})|} \\ \Leftrightarrow \underset{\rho}{\operatorname{minimize}} - \left( \underset{\forall_{k_c},\forall_{k_f}}{\operatorname{minimize}} \left| \frac{1}{d_{k_c}(j\omega_{k_f})} \left( 1 + L_{k_c}(j\omega_{k_f}, \rho) \right) \right| \right)$$
(4.10)

ただし, 誤差の周波数応答データは次のように求められる。

$$e_{k_c}(j\omega_{k_f}) = S_{k_c}(j\omega_{k_f}, \boldsymbol{\rho})d_{k_c}(j\omega_{k_f})$$
(4.11)

式 (4.4b) において, PZT アクチュエータの出力の周波 数スペクトルは次のように評価される。

$$|y_{p,k_c}(\mathbf{j}\omega_{k_f})| = \left|\frac{L_{p,k_c}(\mathbf{j}\omega_{k_f},\boldsymbol{\rho}_p)d_{k_c}(\mathbf{j}\omega_{k_f})}{1 + L_{k_c}(\mathbf{j}\omega_{k_f},\boldsymbol{\rho})}\right|$$
(4.12)

また、既存のフィードバック制御器における最大値は次 のように表される。

$$y_{p,\max} = \max_{\forall k_c,\forall k_f} \left| \frac{G_{p,k_c}(\mathbf{j}\omega_{k_f})d_{k_c}(\mathbf{j}\omega_{k_f})}{1 + G_{k_c}(\mathbf{j}\omega_{k_f})} \right|$$
(4.13)

式 (4.4d) において, ベクトル軌跡の位相は, ベクトル軌 跡の実部と虚部から atan2 関数により評価される。以上 の考察から, 最適化問題は式 (4.14) のように表すことが できる。式 (4.14) の非線形非凸最適化問題は, 逐次線形 化により反復凸最適化問題として式 (4.15) のように計算 することができる。

## 4.4.4 2段アクチュエータ HDD ベンチマーク問題におけ る外乱抑圧性能の検証

2段アクチュエータ HDD ベンチマーク問題において,共振フィルタによる外乱抑圧性能を検証する。共振フィルタ はロバスト安定性,ロバスト性能,ハードウェア制約を考慮して最適化により設計され,共振フィルタ無しの場合と トラック追従性能を比較する。

## 設計条件

制御対象と外乱の周波数応答のデータ点は,100 Hz から ナイキスト周波数の $F_s/2 = 1/2T_s = 25.2$  kHz まで線形に 1 Hz 刻みで取得し,データ点数を $n_f = 25101$ とする。共 振フィルタ無しの場合のナイキスト線図,感度関数,誤差 の周波数スペクトル, $y_p$ の周波数スペクトルを図 4.4.7, 図 4.4.8,図 4.4.9,図 4.4.10 にそれぞれ示す。図 4.4.9 よ り,共振フィルタは垂直黒点線のある 8 つの周波数にそ れぞれ設計され,共振フィルタのダンピング係数は全て  $\zeta_r = 0.05$ とする。初期条件として,全ての調整パラメー タを $\rho = 0$ とし, $F_{rp} = F_{rv} = 1$ とする。ロバスト安定条件 において,円条件を $1/w_s = 6$  dB とする。

#### 共振フィルタの設計結果

共振フィルタの最適化計算は YALMIP [14] と MOSEK [15] を用いて行い,反復最適化は 1 つ前の結果と比較して評 価関数の改善が 0.1% 未満になるまで行う。共振フィル タ有りの場合のナイキスト線図,感度関数,誤差の周波数 スペクトル, $y_p$ の周波数スペクトルを図 4.4.11,図 4.4.12, 図 4.4.13,図 4.4.14 にそれぞれ示す。最適化の結果より, 共振フィルタが 9 つのモデル変動に対して,ロバスト安 定性,ロバスト性能,ハードウェア制約を満たすように 設計されていることが分かる。

## 外乱抑圧性能の評価

2段アクチュエータ HDD ベンチマーク問題において,9つ のモデル変動に対する共振フィルタ無しと有りの場合の時 間領域シミュレーションでのトラック追従性能を図 4.4.15 に示す。図 4.4.15 より,9つの全ての場合において共振 フィルタを用いた場合に追従誤差が小さくなることが確認 できる。PZT アクチュエータの最大ストロークを図 4.4.16 に示す。図 4.4.16 より,共振フィルタ有りの場合の最大 ストロークは共振フィルタ無しの場合とほとんど同じか 少しの増加で収まっており,ストローク制約を満たして いることが確認できる。以上の結果より,設計された共 振フィルタによってトラック追従性能が改善されること が確認できる。

#### 4.4.5 まとめ

本節では、2段アクチュエータ HDD のトラック追従性能 を改善するための最適な共振フィルタ設計手法に関して紹 介した。共振フィルタは構造的に定式化され、反復凸最適 化計算により制御対象の周波数応答データから直接設計さ れた。最適化において、9つのモデル変動に対するロバス ト安定性、ロバスト性能、ハードウェア制約が考慮されて いる。2段アクチュエータ HDD ベンチマーク問題において 最適化された共振フィルタによる外乱抑圧性能の改善が確 認された。周波数領域と時間領域のデータをどちらも用い た設計や共振フィルタ以外の制御器の同時最適化、マルチ レートフィルタの最適化設計が今後の研究課題である。

$$\begin{array}{ccc} \underset{\rho}{\text{minimize}} & -\gamma \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

$$\sup_{\forall k_c,\forall k_f} \operatorname{tot} \gamma - \left| \frac{1}{d_{k_c}(j\omega_{k_f})} \left( 1 + L_{k_c}(j\omega_{k_f}, \rho) \right) \right| \le 0$$

$$(4.14b)$$

$$|d_k(j\omega_{k_c})|_1$$

$$\frac{|\mu_{k_c}(j\omega_{k_f},\boldsymbol{\rho}_p)|}{|y_{p,\max}|} \left| L_{p,k_c}(j\omega_{k_f},\boldsymbol{\rho}_p) \right| - \left| 1 + L_{k_c}(j\omega_{k_f},\boldsymbol{\rho}) \right| \le 0$$
(4.14c)

$$w_s(\mathbf{j}\omega_{k_f}) - \left| 1 + L_{k_c}(\mathbf{j}\omega_{k_f}, \boldsymbol{\rho}) \right| \le 0 \tag{4.14d}$$

$$\mp \operatorname{atan2}\left(\frac{\operatorname{Im}(1+L_{k_c}(j\omega_{k_f},\boldsymbol{\rho}))}{\operatorname{Re}(1+L_{k_c}(j\omega_{k_f},\boldsymbol{\rho}))}\right) \pm \operatorname{atan2}\left(\frac{\operatorname{Im}(1+G_{k_c}(j\omega_{k_f},\boldsymbol{\rho}))}{\operatorname{Re}(1+G_{k_c}(j\omega_{k_f},\boldsymbol{\rho}))}\right) - \frac{\pi}{2} \le 0 \text{ when } \pm \operatorname{Re}(1+G_{k_c}(j\omega_{k_f},\boldsymbol{\rho})) \ge 0 \tag{4.14e}$$

$$\pm \operatorname{atan2}\left(\frac{\operatorname{Im}(1+L_{k_c}(j\omega_{k_f},\boldsymbol{\rho}))}{\operatorname{Re}(1+L_{k_c}(j\omega_{k_f},\boldsymbol{\rho}))}\right) \mp \operatorname{atan2}\left(\frac{\operatorname{Im}(1+G_{k_c}(j\omega_{k_f},\boldsymbol{\rho}))}{\operatorname{Re}(1+G_{k_c}(j\omega_{k_f},\boldsymbol{\rho}))}\right) - \frac{\pi}{2} \le 0 \text{ when } \pm \operatorname{Re}(1+G_{k_c}(j\omega_{k_f},\boldsymbol{\rho})) \ge 0$$

$$(4.14f)$$

$$\begin{array}{ll} \underset{\rho_{k_i}}{\text{minimize}} & -\gamma \\ \end{array} \tag{4.15a}$$

$$\sup_{\forall k_{c},\forall k_{f}} \quad \gamma - \operatorname{Re}\left(\frac{\left(\frac{1}{d_{k_{c}}(j\omega_{k_{f}})}(1 + L_{k_{c}}(j\omega_{k_{f}},\boldsymbol{\rho}_{k_{l}-1}))\right)}{\left|\frac{1}{d_{k_{c}}(j\omega_{k_{f}})}(1 + L_{k_{c}}(j\omega_{k_{f}},\boldsymbol{\rho}_{k_{l}-1}))\right|}\left(\frac{1}{d_{k_{c}}(j\omega_{k_{f}})}(1 + L_{k_{c}}(j\omega_{k_{f}},\boldsymbol{\rho}_{k_{l}}))\right)\right) \leq 0$$

$$(4.15b)$$

$$\frac{|d_{k_{c}}(j\omega_{k_{f}})|}{y_{p,\max}} \operatorname{Re}\left(\frac{\left(L_{p,k_{c}}(j\omega_{k_{f}},\boldsymbol{\rho}_{p,k_{i}-1})\right)^{*}}{\left|L_{p,k_{c}}(j\omega_{k_{f}},\boldsymbol{\rho}_{p,k_{i}})\right|}\left(L_{p,k_{c}}(j\omega_{k_{f}},\boldsymbol{\rho}_{p,k_{i}})\right)\right) - \operatorname{Re}\left(\frac{\left(1+L_{k_{c}}(j\omega_{k_{f}},\boldsymbol{\rho}_{k_{i}-1})\right)^{*}}{\left|1+L_{k_{c}}(j\omega_{k_{f}},\boldsymbol{\rho}_{k_{i}-1})\right|}\left(1+L_{k_{c}}(j\omega_{k_{f}},\boldsymbol{\rho}_{k_{i}})\right)\right) \leq 0$$
(4.15c)

$$w_{s}(\mathbf{j}\omega_{k_{f}}) - \operatorname{Re}\left(\frac{\left(1 + L_{k_{c}}(\mathbf{j}\omega_{k_{f}}, \boldsymbol{\rho}_{k_{i}-1})\right)^{*}}{\left|1 + L_{k_{c}}(\mathbf{j}\omega_{k_{f}}, \boldsymbol{\rho}_{k_{i}})\right|}\left(1 + L_{k_{c}}(\mathbf{j}\omega_{k_{f}}, \boldsymbol{\rho}_{k_{i}})\right)\right) \leq 0$$

$$(4.15d)$$

$$\pm \left( \operatorname{atan2} \left( \frac{\operatorname{Im}(1 + L_{k_c,k_l-1}(j\omega_{k_l}, \rho))}{\operatorname{Re}(1 + L_{k_c,k_l-1}(j\omega_{k_l}, \rho))} \right) + \frac{\operatorname{Re}(1 + L_{k_c,k_l-1}(j\omega_{k_l}, \rho)) \operatorname{Im}(1 + L_{k_c,k_l-1}(j\omega_{k_l}, \rho)) - \operatorname{Im}(1 + L_{k_c,k_l-1}(j\omega_{k_l}, \rho)) \operatorname{Re}(1 + L_{k_c,k_l}(j\omega_{k_l}, \rho))}{\left| 1 + L_{k_c,k_l-1}(j\omega_{k_l}, \rho) \right|^2} \right) \\ \pm \operatorname{atan2} \left( \frac{\operatorname{Im}(1 + G_{k_c}(j\omega_{k_l}, \rho))}{\operatorname{Re}(1 + G_{k_c}(j\omega_{k_l}, \rho))} \right) - \frac{\pi}{2} \le 0$$

$$\text{when } \pm \operatorname{Re}(1 + G_{k_c}(j\omega_{k_c}, \rho)) \ge 0$$

$$(4.15e)$$

$$\pm \left( \tan^{2} \left( \frac{\operatorname{Im}(1 + L_{k_{c},k_{l-1}}(j\omega_{k_{f}}, \rho))}{\operatorname{Re}(1 + L_{k_{c},k_{l-1}}(j\omega_{k_{f}}, \rho))} \right) + \frac{\operatorname{Re}(1 + L_{k_{c},k_{l-1}}(j\omega_{k_{f}}, \rho))\operatorname{Im}(1 + L_{k_{c},k_{l-1}}(j\omega_{k_{f}}, \rho)) - \operatorname{Im}(1 + L_{k_{c},k_{l-1}}(j\omega_{k_{f}}, \rho))\operatorname{Re}(1 + L_{k_{c},k_{l}}(j\omega_{k_{f}}, \rho))}{\left| 1 + L_{k_{c},k_{l-1}}(j\omega_{k_{f}}, \rho) \right|^{2}} \right) \\ \pm \operatorname{atan2} \left( \frac{\operatorname{Im}(1 + G_{k_{c}}(j\omega_{k_{f}}, \rho))}{\operatorname{Re}(1 + L_{k_{c},k_{l-1}}(j\omega_{k_{f}}, \rho))} \right) + \frac{\operatorname{Re}(1 + G_{k_{c}}(j\omega_{k_{f}}, \rho))}{\left| 1 + L_{k_{c},k_{l-1}}(j\omega_{k_{f}}, \rho) \right|^{2}} \right) \\ = \operatorname{Re}(1 + G_{k_{c}}(j\omega_{k_{f}}, \rho)) \geq 0 \tag{4.15f}$$

## 引用・参考文献

- Ohno, K. and Hara, T.: Adaptive resonant mode compensation for hard disk drives, *IEEE Transactions on Industrial Electronics*, Vol. 53, No. 2, pp. 624–630 (2006).
- (2) Pérez-Arancibia, N. O., Tsao, T.-C. and Gibson, J. S.: A new method for synthesizing multiple-period adaptive-repetitive controllers and its application to the control of hard disk drives, *Automatica*, Vol. 46, No. 7, pp. 1186–1195 (2010).
- (3) Shahsavari, B., Keikha, E., Fu Zhang, and Horowitz, R.: Adaptive Repetitive Control Design With Online Secondary Path Modeling and Application to Bit-Patterned Media Recording, *IEEE Transactions on Magnetics*, Vol. 51, No. 4, pp. 1–8 (2015).
- (4) Sun, L., Jiang, T. and Chen, X.: Adaptive Loop Shaping for Wideband Disturbances Attenuation in Precision Information Storage Systems, *IEEE Transactions on Magnetics*, Vol. 53, No. 5, pp. 1–13 (2017).
- (5) Atsumi, T., Okuyama, A. and Kobayashi, M.: Track-Following

Control Using Resonant Filter in Hard Disk Drives, *IEEE/ASME Transactions on Mechatronics*, Vol. 12, No. 4, pp. 472–479 (2007).

- (6) Fujimoto, H.: RRO Compensation of Hard Disk Drives With Multirate Repetitive Perfect Tracking Control, *IEEE Transactions on Industrial Electronics*, Vol. 56, No. 10, pp. 3825–3831 (2009).
- (7) Chen, X. and Tomizuka, M.: New Repetitive Control With Improved Steady-State Performance and Accelerated Transient, *IEEE Transactions on Control Systems Technology*, Vol. 22, No. 2, pp. 664–675 (2014).
- (8) Chen, X. and Tomizuka, M.: Discrete-Time Reduced-Complexity Youla Parameterization for Dual-Input Single-Output Systems, *IEEE Transactions on Control Systems Technology*, Vol. 24, No. 1, pp. 302–309 (2016).
- (9) Zheng, M., Zhou, S. and Tomizuka, M.: A design methodology for disturbance observer with application to precision motion control: An H-infinity based approach, in 2017 American



図 4.4.7 共振フィルタ無しのナイキスト線図。

Fig. 4.4.7. Nyquist diagram without resonant filters.



図 4.4.8 共振フィルタ無しの感度関数。

Fig. 4.4.8. Sensitivity function without resonant filters.



図 4.4.9 共振フィルタ無しの誤差 *e* の振幅スペクトル。 Fig. 4.4.9. Amplitude spectrum of *e* without resonant filters.



図 4.4.10 共振フィルタ無しの  $y_p$  の振幅スペクトル。 Fig. 4.4.10. Amplitude spectrum of  $y_p$  without resonant filters.



図 4.4.11 共振フィルタ有りのナイキスト線図。

Fig. 4.4.11. Nyquist diagram with resonant filters.



図 4.4.12 共振フィルタ有りの感度関数。

Fig. 4.4.12. Sensitivity function with resonant filters.



図 4.4.13 共振フィルタ有りの誤差 *e* の振幅スペクトル。 Fig. 4.4.13. Amplitude spectrum of *e* with resonant filters.



図 4.4.14 共振フィルタ有りの  $y_p$  の振幅スペクトル。 Fig. 4.4.14. Amplitude spectrum of  $y_p$  with resonant filters.



図 4.4.15 トラック追従性能 3*σ*(*y<sub>c</sub>*) のシミュレーション結 果。× と ○ は最適化された共振フィルタ無しと有りの場合 をそれぞれ示す。

Fig. 4.4.15. Simulation results of track-following performance  $3\sigma(y_c)$ . × and  $\bigcirc$  denote without and with optimized resonant filters.



図 4.4.16 ピエゾアクチュエータの最大ストローク  $\max_{|y_{cp}|}$ のシミュレーション結果。× と  $\bigcirc$  は最適化された共振フィルタ無しと有りの場合をそれぞれ示す。

Fig. 4.4.16. Simulation results of maximum stroke in a PZT actuator  $\max |y_{cp}|$ . × and  $\bigcirc$  denote without and with optimized resonant filters.

Control Conference (ACC), pp. 3524–3529, IEEE (2017).

- (10) Yabui, S., Atsumi, T. and Inoue, T.: Coupling Controller Design for MISO System of Head Positioning Control Systems in HDDs, *IEEE Transactions on Magnetics*, Vol. 56, No. 5, pp. 1–9 (2020).
- (11) Bashash, S. and Shariat, S.: Performance enhancement of hard disk drives through data-driven control design and population clustering, *Precision Engineering*, Vol. 56, No. November 2018, pp. 267–279 (2019).
- (12) Potu Surya Prakash, N. and Horowitz, R.: Data-Driven Robust Feedback Control Design for Multi-Actuator Hard Disk Drives, in 2nd IFAC Modeling, Estimation and Control Conference (2022).
- (13) Atsumi, T.: Magnetic-head positioning control system in HDDs

(2022).

- (14) Lofberg, J.: YALMIP : a toolbox for modeling and optimization in MATLAB, in 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), pp. 284– 289, IEEE (2004).
- (15) Mosek, : MOSEK 9.3 (2021).