
M
asahiro

M
ae

M
ultivariable

H
igh-Precision

M
otion

Control

Masahiro Mae

Multivariable High-Precision Motion Control
with Structured Modeling and Data-Driven Convex Optimization





Doctoral Dissertation
博士論文

Multivariable High-Precision Motion Control
with Structured Modeling and Data-Driven Convex Optimization

（構造的モデル化とデータ駆動凸最適化による

多変数超精密位置決め制御）

Masahiro Mae
37-207078 前匡鴻

Dissertation Submitted to

Department of Electrical Engineering and Information Systems

for the Degree of

Doctor of Philosophy

at

The University of Tokyo

December 2022

Supervisor

Professor Hiroshi Fujimoto





Contents

I Introduction 1

1 Multivariable High-Precision Motion Control in Industrial Applications 3
1.1 Advanced motion control in industrial applications . . . . . . . . . . . . . . . . 3
1.2 Background of multivariable motion control . . . . . . . . . . . . . . . . . . . . 5
1.3 Concept of multivariable high-precision motion control . . . . . . . . . . . . . . 10
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

II Multirate Feedforward Control in Multivariable Motion Systems 19

2 Multirate Feedforward Control with Non-Causal Inversion and Mode Selection 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Desired state trajectory generation . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Multirate feedforward control with mode decomposition . . . . . . . . . . . . . 29
2.5 Application to multi-modal motion system . . . . . . . . . . . . . . . . . . . . . 34
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 MIMO Multirate Feedforward Control with Generalized Controllability Indices 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Single-rate feedforward control for multi-input multi-output system . . . . . . . . 46
3.4 Multirate feedforward control for multi-input multi-output system . . . . . . . . 47
3.5 Comparison for intersample behavior analysis . . . . . . . . . . . . . . . . . . . 53
3.6 Application to MIMO motion system . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

III Fixed-Structure Sampled-Data Feedforward and Learning Control 61

4 Linearly Parameterized Feedforward Control with Sampled-Data Differentiator 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Structured feedforward using multirate zero-order-hold differentiator . . . . . . . 68
4.4 Comparison with multirate feedforward control . . . . . . . . . . . . . . . . . . 72
4.5 Application to multi-modal motion system . . . . . . . . . . . . . . . . . . . . . 75



4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Iterative Learning Control with MIMO Sampled-Data Basis Functions 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Basis function design using multirate zero-order-hold differentiator . . . . . . . . 82
5.4 Iterative learning control with MIMO structured basis functions . . . . . . . . . 86
5.5 Application to MIMO motion system . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

IV Feedback Controller Design using Frequency Response Data 95

6 Disturbance Rejection with Robust Performance in Dual-Stage Actuator 97
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Convex optimization of multiple resonant filters . . . . . . . . . . . . . . . . . . 100
6.4 Application to dual-stage actuator hard disk drive . . . . . . . . . . . . . . . . . 103
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Disturbance Rejection with Robust Stability in MIMO Motion Systems 111
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3 Convex optimization of rational peak filter . . . . . . . . . . . . . . . . . . . . . 116
7.4 Application to MIMO high-precision scan stage . . . . . . . . . . . . . . . . . . 120
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

V Closing 129

8 Conclusion 131

Bibliography 135

Publications 147

Abstract (in Japanese) 153

Acknowledgment (in Japanese) 157

Curriculum Vitae 159



Part I

Introduction





Chapter 1

Multivariable High-Precision Motion
Control in Industrial Applications

1.1 Advanced motion control in industrial applications
Control engineering is a hidden technology although in many industrial applications. Technology
has an important role in modern society and many of them are based on control engineering. Con-
trol technologies are developed in both academics and industries, and bridging the gap between
academics and industries makes a large impact on industrial development. Advanced motion
control has an important role in the increasing demand for mechatronic systems in industrial
applications such as shown in Fig. 1.1. FPD lithography system in Fig. 1.1(a) [1] and semicon-
ductor lithography systems in Fig. 1.1(b) [2] are fundamentals of modern information societies
and are used to manufacture PCs and smartphones. The accuracy of the high-precision stages
in lithography systems directly leads to the improvement of the performance of semiconductors
known as Moore’s law [3]. Machine tools in Fig. 1.1(c) [4] and industrial robots in Fig. 1.1(d) [5]
are widely used in industrial manufacturing processes such as making automobiles. The accuracy
and task flexibility enable the manufacturing of high-value-added products with small quantities
and large variety. Printers in Fig. 1.1(e) [6] are also used for modern manufacturing processes
not only printing on paper but also additive manufacturing. Printing can be used to make an
electric circuit and additive manufacturing technology is paid attention to space development.
Hard disk drives in Fig. 1.1(f) [7] enable a modern information society based on big data. The
accuracy of the magnetic head makes the volume of the data storage larger. Motor drives that
are used in air conditioners Fig. 1.1(g) [8] and electric vehicles in Fig. 1.1(h) [9] make human
life comfortable. The improvement of the current control in motor drives leads to both better
performance and efficiency [10,11]. Electric vehicles with in-wheel motors are paid attention to
the degree-of-freedoms of control that can be used to improve ride comfort [9, 12]. The control
performance directly results in product quality and the controllers should be designed consider-
ing the limitation and requirements in actual setups and applicability for on-site engineers who
implement these control techniques.

In most industrial applications, linear control is widely used because of the connection between
theories and applications, and ease of implementation. The history of the linear control is shown
in Fig. 1.2 [13]. Since the 1930s, classical control has been developing. Classical control is based
on the frequency domain and the systems are represented in a transfer function. Classical control
such as the Proportional–Integral–Derivative (PID) controller is intuitive for engineering skills
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(a) FPD lithography system [1]. (b) Semiconductor lithography system [2].

(c) Machine tools [4]. (d) Industrial robot [5]. (e) Printer [6].

(f) Hard disk drive [7]. (g) Air conditioner [8]. (h) Electric vehicle [9].

Fig. 1.1: Mechatronic systems in industrial applications.

and is the most widely used in industrial applications. Since the 1960s after World War II, modern
control has been developing. Modern control is based on the time domain and the systems are
represented in state space. The development of modern control is connected to the development
of computers that enables real-time optimization. Kalan filter which is widely for state estimation
is developed during the Cold War and is said to be implemented in spacecraft in the Apollo
program. Since the 1980s, robust control has been developing. It is because modern control with
optimization is difficult to guarantee robust stability. Robust control models the uncertainty and
considers it in controller design, and it is one of the uniqueness of control engineering. Although
robust control has guaranteed robust stability, the controller can be designed conservatively and
the performance is not enough in many applications.

To achieve both robust stability and robust performance, several advanced control approaches
have been developed. Multivariable control [14] is developed for complex systems with many
degree-of-freedoms (DOFs) and considers the interaction. Sampled-data control [15] is the ap-
proach to minimize the gap between discrete-time implementation and continuous-time controlled
system. Model predictive control [16] is used for the controlled system that needs real-time op-
timization with constraints. In summary, advanced motion control approaches are developed to
improve the performance of industrial applications.



1.2. Background of multivariable motion control 5

frequency
domain

time
domain
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• intuitive for engineering skill
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• modeling uncertainty
• robust stability
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• H∞ control

• multivariable control (1970 ∼)
• sampled-data control (1980 ∼)
• model predictive control (1990 ∼)
• etc...

Fig. 1.2: History of linear control.

1.2 Background of multivariable motion control
To improve control performance, industrial mechatronic systems tend to be complicated and be
extended from single-input single-output (SISO) systems to multi-input multi-output (MIMO)
systems. As an example, the six-degree-of-freedom high-precision scan stage in the FPD lithog-
raphy system is shown in Fig. 1.3. To make the tracking error of the high-precision scan stage
in nm scale, multivariable motion control is applied. The basic controller design procedure for
multivariable systems is as follows.

1. interaction analysis: choose the input and output pairs that are mainly used for control.

2. static decoupling: make the system diagonally dominant by using input and output decou-
pling matrix with real static values.

3. decentralized control: design the controllers diagonally with ensuring MIMO stability.

To deal with multivariable dynamics in controller design, several properties of multivariable
systems should be considered.

1.2.1 Analysis of multivariable systems
To analyze the dynamics of multivariable systems, the basic properties such as pole and zeros,
stability, and interaction are described [14].

The nu-inputs ny outputs nth order continuous-time linear time-invariant system G is given
by

G
s=
[

A B
C D

]
= C(sI − A)−1B + D = C

adj(sI − A)
det(sI − A)B + D, (1.1)

where A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, and D ∈ Rny×nu . G is assumed to be controllable
and observable and is given by minimal realization.
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Fig. 1.3: A six-degree-of-freedom high-precision scan stage in an FPD lithography system.

The Smith-McMillan form of the system G is given by

M (s) = U1(s)G(s)U2(s) =



n1(s)
d1(s) O

. . .
nr(s)
dr(s)

O O

 , (1.2)

where U1 and U2 are unimodular, ni and di are coprime, and r is the normal rank of G.

Poles

In the state space, the poles are defined as follows.

Definition 1.1 (Poles in state space) : The poles pi of a system G in state-space realization are
the eigenvalues λi(A) (i = 1, . . . , n) of the state matrix A. The poles are the roots of the pole
polynomial

ϕ(s) = det(sI − A) = 0. (1.3)

In the transfer function, the poles are defined as follows.

Definition 1.2 (Poles in transfer function) : The pole polynomial ϕ(s) corresponding to a minimal
realization of a system with transfer function G(s) is the least common denominator of all non-
identically zero minors of all orders of G. The poles are the roots of the pole polynomial

ϕ(s) =
r∏

i=1
di(s) = 0. (1.4)
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Zeros

In the state space, the zeros are defined as follows.

Definition 1.3 (Zeros in state space) : The system G is given by

Π(s)
[
x(s)
u(s)

]
=
[

0
y(s)

]
, (1.5)

where the Rosenbrock system matrix Π(s) is defined as

Π(s) =
[
A − sI B

C D

]
=
[
A B
C D

]
− s

[
I O
O O

]
. (1.6)

The transmission zeros are the values for which the Rosenbrock system matrix loses rank.

Note that if D is invertible, then

det
([

A − sI B
C D

])
= det

([
A − sI B

C D

] [
I O

−D−1C I

])

= det
([

(A − BD−1C) − sI B
O D

])
. (1.7)

Since D is invertible, the transmission zeros are eigenvalues of A − BD−1C.
In the transfer function, the zeros are defined as follows.

Definition 1.4 (Zeros in transfer function) : The zero polynomialψ(s), corresponding to a minimal
realization of the system, is the greatest common divisor of all the numerators of all order rminors
of G(s), where r is the normal rank of G, provided that these minors have been adjusted in such
a way as to have the pole polynomial ϕ(s) as their denominator. The transmission zeros are the
roots of the zero polynomial

ψ(s) =
r∏

i=1
ni(s) = 0. (1.8)

Stability

For the parametric model of the system, the stability of the system is determined by the poles.

Definition 1.5 : A linear dynamic system ẋ(t) = Ax(t) + Bu(t) is stable if and only if all the
poles are in the open left-half plane (LHP); that is, Re(pi) = Re(λi(A)) < 0, ∀i.

For the non-parametric model of the system such as frequency response data, the stability of
the system is analyzed by Nyquist stability criteria. Let L(s) be the open-loop transfer function
matrix, Nyquist plot is given by an image of det(I + L(s)) as s goes clockwise around the
Nyquist D-contour in Fig. 1.4. In multivariable systems, the necessary and sufficient condition
of the stability is defined in generalized (MIMO) Nyquist theorem and Eigenvalue Loci.

Definition 1.6 (Generalized (MIMO) Nyquist theorem) : Let Pol denote the number of open-loop
unstable poles in L(s). The closed-loop system with L(s) and negative feedback is stable if and
only if the Nyquist plot of det(I + L(s))
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Re

Im

0

D

Fig. 1.4: Nyquist D-contour. shows the poles on the imaginary axis.

(i) makes Pol anti-clockwise encirclements of the origin, and

(ii) does not pass through the origin.

Definition 1.7 (Eigenvalue loci) : Let Pol denote the number of open-loop unstable poles in L(s).
The closed-loop system with L(s) and negative feedback is stable if and only if the characteristic
loci 1 + λi(jω), taken together

(i) makes Pol anti-clockwise encirclements of the origin, and

(ii) does not pass through the origin.

Interaction

Relative Gain Array (RGA) of a non-singular square complex matrix G is a square complex
matrix defined as

Λ(G) ≜ G ◦ (G−1)T, (1.9)

where ◦ is Hadamard product which means element-wise multiplication. The RGA is independent
of input and output scaling and its rows and columns sum to 1. It is preferred to pair such that
the rearranged system, with the selected pairings along the diagonal, has an RGA matrix close
to identity around the frequencies of interest, and should avoid pairing on negative steady-state
RGA elements.

The interaction indexλ(jω) for the system G is defined as a maximum eigenvalue of M (jω|G),
where the matrix M(jω|G) is given by

M (jω|G) =


0 (j = i)∣∣∣∣∣Gji(jω)
Gii(jω)

∣∣∣∣∣ (j ̸= i)
. (1.10)

The interaction index is small if the system is diagonally dominant in that frequency. The radius
ri of the generalized Gershgorin bands in the axis i for the system G with the diagonal feedback
controller K is given by

ri(jω) = λ(jω) |Gii(jω)Kii(jω)| . (1.11)

The open-loop frequency response of each axis i may move within the radius at each frequency
point on the SISO Nyquist plot when MIMO systems have an interaction between each axis.
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Fig. 1.5: Block diagram of the feedback control in the dual-input dual-output system.

1.2.2 Controller design for multivariable systems
The control strategy for multivariable systems is described in the example of the dual-input
dual-output system that is shown in Fig. 1.5.

Static decoupling

In the decoupling process, static decoupling is basically used and the input decoupling matrix
Tu and the output decoupling matrix Ty are designed as the static real value matrix to make
the decoupled system TyGTu diagonally dominant so that the RGA is close to identity around
the frequencies of interest. Dynamic decoupling that means Tu and Ty have dynamics also
can be designed. Although the dynamic decoupling enables the perfect decoupling such as
TyGTu = I in all frequencies, the dynamic decoupling may be very sensitive to modeling errors
and uncertainties, and it is not recommended to use the dynamic decoupling in practice. If the
system G is non-square, the Singular Value Decomposition (SVD) G0 = UΣV T can be used
as the input decoupling matrix Tu = V and the output decoupling matrix Ty = UT where G0 is
a real approximation of G(jω0) at a frequency of interest ω0.

Decentralized control

After the decoupling process, the decentralized controller is basically designed for the diagonally
dominant square system Gdec = TyGTu. In decentralized control, the off-diagonal term of the
controller in Fig. 1.5 isK12 = K21 = 0. Decentralized control has the advantage that the diagonal
term of the controller K11 and K22 is physically intuitive for the meaning of each axis and can
be designed by the SISO controller design approach. Centralized control is also the approach
for the feedback controller design of multivariable systems. In centralized control, off-diagonal
term of the controller in Fig. 1.5 is K12 ̸= 0 and K21 ̸= 0. Although centralized control has
more degree of freedom for controller design and can actively change the interaction dynamics,
the physical meaning of the controller is not intuitive and has difficulty in the tuning process.
Note that decentralized control is normally used in the static-decoupled system that is diagonally
dominant in low-frequency dynamics such as industrial mechatronic systems. The concept of
decentralized control is extended to glocal control [17, 18] that can be applied to large-scale
multivariable systems with interacted subsystems such as multi-agent dynamical systems and
hierarchical networked systems.
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Gc(s)
u[k] u(t) y(t)

Ty

y[k]

Zero-Order-Hold
(D/A Converter)
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Fig. 1.6: Block diagram of the discretized system with sampler and zero-order-hold.
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Fig. 1.7: Sampled-data controller design.

1.3 Concept of multivariable high-precision motion control
In the dissertation, the multivariable high-precision motion control is characterized by two con-
cepts that are “sampled-data controller design for intersample performance” and “data-driven
controller design with structured modeling”.

1.3.1 Sampled-data controller design for intersample performance
The designed controllers are implemented to actual setups in discrete time as shown in Fig. 1.6.
Due to discretization, there is a performance limitation because of the sampling time. Fig. 1.7
shows the controller design methods in sampled-data systems. In the controller design for
sampled-data systems, there are three controller design approaches that are continuous-time,
discrete-time, and sampled-data design. In the continuous-time design, the continuous-time
controller is designed for the continuous-time model and the discrete-time controller is designed
by discretizing the designed continuous-time controller. Although the continuous-time design is
simple and physically intuitive, it is difficult to consider the effect of discretization by sampler and
zero-order-hold. In the discrete-time design, the discrete-time model is provided by discretizing
the continuous-time model and the discrete-time controller is designed for the discrete-time
model. Although the discrete-time design considers the effect of discretization by sampler and
zero-order-hold, the designed controller ignores the continuous-time dynamics of the controlled
system. Compared to the continuous-time and discrete-time design, the discrete-time controller
is designed for the continuous-time model in the sampled-data design and it considers both the
continuous-time dynamics of the controlled system and the effect of discretization by sampler
and zero-order-hold. In high-precision motion control applications, the sampled-data controller
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Table 1.1: Zeros of Euler-Frobenius polynomial [19].

relative degree discretization zeros
2 −1
3 −2 −

√
3, 1/(−2 −

√
3)

4 −5 − 2
√

6, −1, 1/(−5 − 2
√

6)
...

...

stable

unstable

z-plane Re

Im

1

1−1

−1

0

(a) Discretization zeros on z-plane.

u(t)

Hu[k]

(b) Signal with zero-order-hold.

Fig. 1.8: Effect of discretization with sampler and zero-order-hold.

design is necessary to improve continuous-time tracking performance.

In a two-degree-of-freedom control approach, the feedforward controller is designed for
tracking performance and the feedback controller is designed for disturbance rejection. The
feedforward controller design is based on the model inversion and the feedforward controller
becomes unstable when the model has nonminimum-phase zeros. The nonminimum-phase zeros
are on the closed right-half plane (RHP) of s-plane in continuous time and on the outside of
the closed unit circle of z-plane in discrete time. The challenge of the feedforward controller
design is that the model discretized by sampler and zero-order-hold (ZOH) can have discretization
zeros including nonminimum-phase zeros depending on the relative degree of the continuous-
time model that is known as Euler-Frobenius polynomial in Table 1.1. Table 1.1 shows that
the discretization zeros when the relative degree of the continuous-time model is more than 2.
For example, the discretization zeros when the relative degree of the continuous-time model
is 4 are shown in Fig. 1.8(a). Fig. 1.8(b) shows the constraint of the control input signal due
to zero-order-hold. The difficulty of the zero-order-hold control input is that the discretization
zeros around z = −1 result in the oscillating feedforward input that deteriorates intersample
performance even if the feedforward controller is stable. There are several implementation
methods of the sampled-data controller design to improve the intersample performance. The
state tracking approach is one of the solutions because it enables natural intersample interpolation
for mechatronic systems considering the state trajectory tracking of the controlled system by
multirate sampling control [20].
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Fig. 1.9: Block diagram of the structured controller examples.

1.3.2 Data-driven controller design with structured modeling
Structured parameterization

In industrial applications, the multivariable controllers have a lot of tuning parameters, and it leads
to too much effort and time in the tuning process for on-site engineers. It results in the demand for
data-driven controller design. Although the main tuning process is conducted by the optimization
in data-driven controller design, the designed controller should be interpretable by the engineers
for analysis and manual tuning in the implementation process in industrial mechatronic systems.
In the dissertation, the structured controller is defined as follows.

Definition 1.8 (Structured controller) : The control input from the structured controller is defined
as u = Ψθ that is linearly parameterized by the basis functions Ψ =

[
ψ1 · · · ψn

]
and the

tuning parameters θ =
[
θ1 · · · θn

]T
.

The structured controller is interpretable if the basis functions Ψ and the tuning parameters
θ are physically intuitive. Examples of the structured controller are shown in Fig. 1.9. In
Fig. 1.9(a), the feedforward signal consists of the basis functions Ψ =

[
r(t) d

dt
r(t) d2

dt2 r(t)
]
,

that correspond to position, velocity, and acceleration of the reference r(t), and the tuning
parameters θ =

[
k b m

]T
, that correspond to spring, damper, and mass coefficients of the

continuous-time rigid body model. In Fig. 1.9(b), the feedback signal consists of the basis
functions Ψ =

[∫
e(t)dt e(t) d

dt
e(t)

]
, that correspond to integral, proportional, and derivative

of the error e(t), and the tuning parameters θ =
[
kI kP kD

]T
, that correspond to integral,

proportional, and derivative gains of the PID feedback controller. The linearly parameterized
controller has an advantage because it is preferable for convex optimization [21] during the tuning
process.

Iterative learning control

The structured feedforward controller can be optimized by the error data using iterative learning
control [22, 23] as shown in Fig. 1.10. In the iterative learning control, the feedforward input in
task j + 1 is updated from the task j and is given by

fj+1 = Q(fj + Lej), (1.12)
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Fig. 1.11: Improvement of tracking error in iterative learning control through experiments.

where L is a learning filter and Q is a robustness filter. For simplification, the robustness filter is
assumed to be Q = I . The error of the closed-loop system in task j + 1 is given by

ej+1 = Sr − SGfj+1

= (ej + SGfj) − SG(fj + Lej)
= (I − SGL)ej, (1.13)

where the sensitivity function is S = (I + GK)−1. It shows that ej+1 = 0 if L = (SG)−1

and it has the same challenges as the feedforward controller design. The monotonic convergence
condition requires σ(I −GSL) < 1 where σ(·) is a maximum singular value. In practice, there is
a modeling error, and the robustness filter Q is used so that the monotonic convergence condition
σ(Q(I − GSL)) < 1 is satisfied. The iterative learning control improves the error ej through
iterations as shown in Fig. 1.11(a). Fig. 1.11(b) shows the comparison of the Root Mean Square
(RMS) error in each iteration. Iteration j = 0 is using the input that is from only the feedback
controller and iteration j = 1 is using the input that is approximately equal to the feedforward
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xi x

Fig. 1.12: Sequential linearization in concave-convex procedure.

and controller. It shows that the error is further reduced by learning through iterations when the
monotonic convergence condition is satisfied.

Although the traditional iterative learning control achieves high performance for the specific
reference signal, there is a trade-off of performance and flexibility compared to the traditional
feedforward control. To achieve both performance and flexibility, iterative learning control with
basis functions is developed [24,25]. Instead of learning the time-series feedforward input fj , the
iterative learning control with basis functions updates the tuning parameter θj and the feedforward
input fj is given by

fj = F (θj)rj (1.14)

where F (θ) is the feedforward controller and rj is the reference in Task j. The advantage of
this parameterization is the learning is decoupled from the reference trajectory. In the iterative
learning control with basis functions, structured parameterization can be applied to construct
F (θ) so that the tuning parameters θ are physically intuitive.

Data-driven convex optimization

The structured feedback controller can be optimized by the frequency response data. The tradi-
tional feedback controller design with optimization [26–29] is based on the parametric model.
Although the mathematical theory is clear and it can be extended to the structured controller
design [30], it is hard to get a parametric model of the multivariable system with necessary
and sufficient complexity in practice. To overcome the difficulty in the modeling process, the
structured controller design using frequency response data [31–33] is developed. The approach
can directly use the nonparametric model of the controlled system and the nonparametric model
can be measured as frequency response data by the excitation experiments. The challenge in
data-based design is the convex formulation of the optimization problem because the non-convex
optimization problem is not monotonically conversing and it could take a long time for the
optimization calculation. Fig. 1.12 shows the concept of sequential linearization using concave-
convex procedure [34]. In the concave-convex procedure, the non-convex functions f(x) − g(x)
consisting of the difference between the convex functions f(x) and g(x) can be solved by the
sequential linearization of g(x) and iterative convex optimization. The sequential linearization
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Fig. 1.13: Framework of the dissertation.

method using the concave-convex procedure has an advantage in monotonic convergence to a
saddle point or a local optimum and suits controller design in industrial applications.

1.4 Contributions
The goal of the dissertation is as follows.

Goal : Develop a framework for multivariable high-precision motion control combining model-
based and data-based approaches that is suitable for mechatronic systems in industrial applica-
tions.

The key to achieving the goal is to consider the redundancy of the multivariable systems in
the controller design. The framework of the dissertation is shown in Fig. 1.13. There are several
redundancies such as multirate sampling, multi-modal dynamics, and multi-input multi-output
interactions. The redundancy should be effectively used to improve the control performance,
and the optimization of these redundancies should be intuitive and tuning-friendly for industrial
applicability. The challenges in the dissertation consist of two parts.

Challenge (model-based aspect) : The dynamics of the multivariable controlled system should be
considered as a model structure with respect to the limitations of sampled-data characteristics
and multi-modal flexibility, and the control approach should be successfully implemented in
physically intuitive tuning parameters for industrial applicability.

Challenge (data-based aspect) : The tuning parameters of the multivariable controllers should be
tuned by the intuitive process or data-driven optimization to avoid too much effort in the tuning
process when the controllers are implemented in industrial mechatronic systems.

To overcome these challenges toward the goal, the contributions of the dissertations are
presented. The framework of multivariable high-precision motion control can be divided into
three categories that are “multirate feedforward control in multivariable motion systems”, “fixed-
structure sampled-data feedforward and learning control”, and “feedback controller design using
frequency response data”.
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Multirate feedforward control in multivariable motion systems
The contributions of multirate feedforward control in multivariable motion systems are presented
in Part II which consists of Contributions M-1 and M-2.

Contribution M-1 : The state trajectory generation method is extended to a general framework
including non-minimum-phase and MIMO motion systems, and the redundancy of the multi-modal
system is considered by the mode selection. It is the result of Chapter 2.

Contribution M-2 : The redundancy of multirate input sampling is analytically optimized by the
state controllability of the generalized controllability indices. It is the result of Chapter 3.

Fixed-structure sampled-data feedforward and learning control
The contributions of fixed-structure sampled-data feedforward and learning control are presented
in Part III which consists of Contributions M-3 and D-1.

Contribution M-3 : The state tracking sampled-data feedforward controller is linearly parame-
terized and it enables intuitive tuning and ease for the extension to data-driven parameter updates.
It is the result of Chapter 4.

Contribution D-1 : Iterative learning control with sampled-data basis functions is presented for
MIMO systems and it enables the data-driven parameter update and interaction compensation of
MIMO systems without the MIMO model. It is the result of Chapter 5.

Feedback controller design using frequency response data
The contributions of feedback controller design using frequency response data are presented in
Part IV which consists of Contributions D-2 and D-3.

Contribution D-2 : The feedback controller for disturbance rejection is designed by convex op-
timization considering the robust performance that includes model variations, stroke constraints,
and actuator redundancies. It is the result of Chapter 6.

Contribution D-3 : The feedback controller for disturbance rejection is designed by convex
optimization considering MIMO robust stability, and it is the first attempt to apply the high-gain
filter to the actual industrial large-scale MIMO high-precision scan stage. It is the result of
Chapter 7.

1.5 Outline of the dissertation
The outline of the dissertation is shown in Fig. 1.14. In the dissertation, multivariable high-
precision motion control with structured modeling and data-driven convex optimization is pre-
sented. In Chapter 2, multirate feedforward control is generalized to multi-modal motion systems.
In Chapter 3, multirate feedforward control is generalized to MIMO motion systems. In Chapter 4,
the linearly parameterized feedforward control with sampled-data differentiator is presented. In
Chapter 5, the iterative learning control with MIMO sampled-data basis functions is presented.
In Chapter 6, the frequency response data-based disturbance rejection with robust performance
is presented. In Chapter 7, the frequency response data-based disturbance rejection with MIMO
robust stability is presented. In Chapter 8, conclusions are presented.
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Part II

Multirate Feedforward Control
in Multivariable Motion Systems





Chapter 2

Multirate Feedforward Control with
Non-Causal Inversion and Mode Selection

Multirate feedforward control enables perfect tracking control for the desired state trajectory at
every sample as the same number of the model order. The aim of this chapter is the comparison of
perfect tracking control approaches for intersample performance in multi-modal motion systems.
The multirate feedforward control has a trade-off between the number of states for perfect tracking
control and the reference sampling frequency. To balance the trade-off, the states for the perfect
tracking control can be selected by the mode decomposition. Intersample performance of each
approach in a multi-modal motion system is compared in both frequency domain and time domain.

2.1 Introduction
Feedforward control based on exact model inversion enables perfect tracking control [35] for
the model of the controlled system. The quality of the feedforward controller directly results
in tracking performance in high-precision mechatronic systems such as wafer scanners [36],
wire bonders [37], and ball-screw-driven stages [38]. In industrial applications, the system is
controlled in discrete time but the tracking performance should be improved in continuous time.

The exact model inversion has a challenge when the model has nonminimum-phase zeros
such as intrinsic and discretization zeros [19]. The single-rate stable inversion approach [39]
generates the noncausal bounded feedforward input for the model with nonminimum-phase zeros
and provides perfect output tracking for every sample. However, it cannot compensate for the
zeros around −1 that cause the oscillating input and deteriorate intersample performance when
the relative degree of the model is more than 2 [19].

To improve intersample performance, the multirate feedforward control [20,40] is presented.
The multirate feedforward control provides perfect n states tracking for every n sample and
prevents intersample oscillation. There is a trade-off in the multirate feedforward control between
the number of states for perfect tracking control and the reference sampling frequency. To balance
the trade-off, the multirate feedforward control approaches based on modal form with additive
decomposition [41, 42] and multiplicative decomposition [43] are presented. Both approaches
select the states for perfect tracking control and balance the trade-off to improve intersample
performance.

Although several approaches are available to design the perfect tracking controller, the choice
of the feedforward controller can be arbitrarily and there is no comparison in terms of intersample
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S HF G
r(t) r[k] u[k] u(t) y(t) e(t)

− +

Fig. 2.1: Block diagram of tracking control. The continuous-time system G is controlled by the
discrete-time controller F with sampler S and zero-order-hold H. The objective is to minimize
the continuous-time error e(t).

performance for perfect tracking controllers. The aim of this chapter is the analysis of pre-existing
perfect tracking controllers in both frequency domain and time domain and provides the guideline
to design the feedforward controller to improve intersample performance. The main contributions
of this chapter are as follows.

Contribution 2.1 : Perfect tracking control approaches are described focusing on improving
intersample performance in multi-modal motion systems.

Contribution 2.2 : Intersample performance of each approach is evaluated in both frequency
domain and time domain.

The theory is described in a general multi-input multi-output (MIMO) system and the verifi-
cation is conducted in a single-input single-output (SISO) system.

The outline is as follows. In Section 2.2, the tracking problem for intersample performance
is formulated. In Section 2.3, the desired state trajectory generation method is presented for
SISO and MIMO systems. In Section 2.4, the multirate feedforward controller design methods
with additive and multiplicative decomposition are presented. In Section 2.5, the intersample
performance is validated in a multi-modal motion system. In Section 2.6, conclusions are
presented.

2.2 Problem formulation
In this section, the problem to improve continuous-time tracking performance is formulated.
The perfect tracking control methods based on the single-rate and multirate feedforward are
described. From the trade-off of these two approaches, the requirements of the optimal perfect
tracking controller design are presented.

2.2.1 Intersample performance in sampled-data control
The considered tracking control configuration is shown in Fig. 2.1, with input u ∈ Rnu×1,
output y ∈ Rny×1, reference r ∈ Rny×1, and error e ∈ Rny×1. In this chapter, the system is
assumed to be square as nu = ny = m. The m-input m-output nth order continuous-time linear
time-invariant system Gc

s= (Ac,Bc,Cc,O) is given by

ẋ(t) = Acx(t) + Bcu(t), (2.1)
y(t) = Ccx(t), (2.2)

where Ac ∈ Rn×n, Bc ∈ Rn×m, and Cc ∈ Rm×n. The discrete-time system Hd of the
continuous-time system Hc discretized by sampler S and zero-order-hold H in sampling time δ
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is generally defined as

Hc
s=
[

Ac Bc

Cc Dc

]
, (2.3)

Hd
z= SHcH =

[
Ad Bd

Cd Dd

]
=
[
eAcδ A−1

c (eAcδ − I)Bc

Cc Dc

]
, (2.4)

x[k] = x(kδ). (2.5)

The discrete-time system Gd
z= (Ad,Bd,Cd,O) = SGcH is given by

x[k + 1] = Adx[k] + Bdu[k], (2.6)
y[k] = Cdx[k]. (2.7)

The control objective considered in this chapter is to minimize the continuous-time error e(t)
that includes both on-sample and intersample performance for the continuous-time reference r(t)
that is assumed to be known in advance.

2.2.2 Single-rate feedforward control based on discrete-time model inver-
sion

The one-sample forward shifted system G̃d of Gd from u[k] to y[k + 1] is given by

x[k + 1] = Adx[k] + Bdu[k], (2.8)
y[k + 1] = CdAdx[k] + CdBdu[k]. (2.9)

For the system H = (A,B,C,D) with nonsingular D, the inverse system H−1 is generally
defined as

H−1 =
[

A − BD−1C BD−1

−D−1C D−1

]
. (2.10)

By inverting G̃d, the input u generated by the single-rate feedforward controller is given by

u[k] = G̃−1
d r[k + 1], (2.11)

where the single-rate feedforward controller G̃−1
d is given by

G̃−1
d =

[
Ad − Bd(CdBd)−1CdAd Bd(CdBd)−1

−(CdBd)−1CdAd (CdBd)−1

]
. (2.12)

When G̃−1
d has unstable poles, it can be decomposed as[

xs[k + 1]
xu[k + 1]

]
=
[
As O
O Au

] [
xs[k]
xu[k]

]
+
[
Bs

Bu

]
r[k + 1], (2.13)

u[k] =
[
Cs Cu

] [xs[k]
xu[k]

]
+ Dr[k + 1], (2.14)



24 Chapter 2. Multirate Feedforward Control with Non-Causal Inversion and Mode Selection

where |λ(As)| ≤ 1 and |λ(Au)| > 1. The bounded feedforward input u is given by

u[k] = Csxs[k] + Cuxu[k] + Dr[k + 1] (2.15)

where xs follows from solving

xs[k + 1] = Asxs[k] + Bsr[k + 1], xs[−∞] = 0 (2.16)

forward in time and xu follows from solving

xu[k + 1] = Auxu[k] + Bur[k + 1], xu[∞] = 0 (2.17)

backward in time [39]. The generated feedforward input u provides perfect output tracking for
every sample.

Note that although the feedforward input generated by the single-rate stable inversion approach
is bounded, the oscillating poles around λ = −1 cannot be compensated. The oscillating
feedforward input can deteriorate intersample performance.

2.2.3 Multirate feedforward control for full-state tracking
To compensate for oscillating poles of the feedforward controller due to discretization, multirate
feedforward control [20] based on perfect state tracking is presented.

The n samples lifted system Hd of Hd
z= (Ad,Bd,Cd,Dd) is generally defined as

Hd
zn

= LnHdL−1
n =

[
Ad Bd

Cd Dd

]

=



An
d An−1

d Bd An−2
d Bd · · · AdBd Bd

Cd Dd O · · · · · · O

CdAd CdBd Dd

. . .
...

...
...

. . .
. . .

. . .
...

CdAn−2
d CdAn−3

d Bd CdAn−4
d Bd

. . . Dd O
CdAn−1

d CdAn−2
d Bd CdAn−3

d Bd · · · CdBd Dd


(2.18)

u[in] = Lnu[k] =
[
u[nin] · · · u[nin + (n− 1)]

]T
∈ R(m×n), (2.19)

y[in] = Lny[k] =
[
y[nin] · · · y[nin + (n− 1)]

]T
∈ R(m×n), (2.20)

where u[in] and y[in] are column vectors, and Ln is n samples lifting operator [15].
The N (≤ n) samples lifted system of Gd is given by

Gd
zN

= LNGdL−1
N =

[
Ad Bd

Cd Dd

]
. (2.21)

Note that the number of lifting samples isN = n in SISO systems but it is not the case in MIMO
systems, see [44]. The desired state trajectory of Gd is given by the multirate sampler for every
N sample SN that is defined as

x̂[iN ] = SN x̂(t) = x̂(iNNδ), (2.22)
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where x̂(t) is the desired state trajectory in continuous time. By inverting the state equation of
Gd, the input u generated by the multirate feedforward controller is given by

u[k] = L−1
N

(
B−1

d x̂[iN + 1] − B−1
d Adx̂[iN ]

)
= L−1

N B−1
d (I − z−NAd)x̂[iN + 1], (2.23)

where z is shift operator in sampling time δ. The generated feedforward input u provides perfect
state tracking for every N sample and improves intersample performance.

Note that the desired state trajectory x̂ is given by the reference and its derivatives in continuous
time for the rigid body system without zeros in such as controllable canonical form. When the
system has zeros, the desired state trajectory generation method is described in the next section.
Although the multirate feedforward controller provides perfect state tracking for everyN sample,
the sampling time of the desired state trajectory isNδ, and the higherN is, the lower the reference
sampling frequency 1/Nδ is.

2.2.4 Problem description
From these discussions, the optimal perfect tracking controller should be designed by considering
the following requirements.

Requirement 2.1 : Oscillating poles of the feedforward controller due to discretization is com-
pensated by state tracking.

Requirement 2.2 : States for perfect tracking control are selected to make reference sampling
frequency enough high.

The state tracking can be provided by multirate feedforward control and the states can be
selected based on the mode decomposition. In this chapter, two kinds of multirate feedforward
controllers with mode selection in additive decomposition [41, 42] and multiplicative decom-
position [43] are described and intersample performance is compared with pre-existing perfect
tracking control approaches.

2.3 Desired state trajectory generation
In this section, the desired state trajectory methods are presented for the SISO and MIMO systems
[45]. For the SISO system, the desired state trajectory is generated in controllable canonical form.
For the MIMO system, the desired state trajectory is generated by the state transformation using
the singular value decomposition of the input matrix. The bounded desired state trajectory is
generated by the stable and unstable decomposition and the non-causal convolution with time
axis reversal.

2.3.1 Desired state trajectory generation for SISO system
The single-input single-output continuous-time linear time-invariant nth order system is given by

Gc(s) = B(s)
A(s) = bms

m + · · · + b1s+ b0

sn + an−1sn−1 + · · · + a1s+ a0
, (2.24)
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where n > m and b0 ̸= 0. Gc in controllable canonical form Gc,ccf
s= (Ac,ccf , bc,ccf , cc,ccf , 0) is

given by

ẋccf (t) = Ac,ccfxccf (t) + bc,ccfu(t), (2.25)
y(t) = cc,ccfxccf (t), (2.26)

where

[
Ac,ccf bc,ccf

cc,ccf 0

]
=



0 1 0 0
. . .

. . .
...

0 0 1 0
−a0 · · · · · · −an−1 1
b0 · · · bm 0 0

 . (2.27)

The filter for the state trajectory generation is given by

β(t) = L−1
[
B(s)−1

]
, (2.28)

where L[·] is the unilateral Laplace transform. The desired state trajectory in the controllable
canonical form is given by

x̂ccf (t) =
∫ t

0
β(t− τ)rn(τ)dτ, (2.29)

where

x̂ccf (t) =
[
x̂ccf,0(t) · · · x̂ccf,n−1(t)

]T
, (2.30)

rn(t) =
[
1 · · · dn−1

dtn−1

]T
r(t). (2.31)

When B(s)−1 has unstable poles, it can be decomposed as

B(s)−1 = B−1
s (s) +B−1

u (s), (2.32)

where all poles ps ∈ C ofB−1
s (s) are Re(ps) ≤ 0 and all poles pu ∈ C ofB−1

u (s) are Re(pu) > 0.
The filters of stable and unstable parts for the state trajectory generation are given by

βs(t) = L−1
[
B−1

s (s)
]
, (2.33)

βu(t) = L−1
[
B−1

u (−s)
]
. (2.34)

The stable and unstable parts of the desired state trajectory are given by

x̂s(t) =
∫ t

−∞
βs(t− τ)rn(τ)dτ, (2.35)

x̂u(t) =
∫ ∞

t
βu(t− τ)rn(τ)dτ, (2.36)

and the bounded desired state trajectory in controllable canonical form x̂ccf is given by

x̂ccf (t) = x̂s(t) + x̂u(t). (2.37)
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The state transformation of the system H = (A,B,C,D) with the state transformation
matrix T is generally defined as

T (H ,T ) =
[

T AT −1 T B
CT −1 D

]
. (2.38)

The state transformation matrix T −1
ccf from the system in controllable canonical form Gccf to the

system Gc
s= (Ac, bc, cc, 0) with the states x is given by

T −1
ccf =

[
Bc · · · An−1

c Bc

]

a1 · · · an−1 1
... . .

.
. .
.

an−1 . .
.

1 O

 , (2.39)

where

Gc,ccf = T (Gc,Tccf ), (2.40)
xccf (t) = Tccfx(t). (2.41)

2.3.2 Desired state trajectory generation for MIMO system
Them-inputm-outputnth order continuous-time linear time-invariant system Gc

s= (Ac,Bc,Cc,O)
is given by

ẋ(t) = Acx(t) + Bcu(t), (2.42)
y(t) = Ccx(t), (2.43)

where Ac ∈ Rn×n, Bc ∈ Rn×m, and Cc ∈ Rm×n. Singular Value Decomposition (SVD) of Bc

is given by

Bc = UΣV H, (2.44)

where U ∈ Rn×n and V ∈ Rm×m are unitary matrices so that U−1 = UH and V −1 = V H. The
elements of Σ ∈ Rn×m are given by

Σ =
[
∆
O

]
, (2.45)

∆ = diag(σi) (i = 1 · · ·m ∈ N), (2.46)

where σi (i = 1 · · ·m ∈ N) are the singular values of B.
The system Gsvd

s= (Asvd,Bsvd,Csvd,O) = T (Gc,U
H) with the states xsvd = UHx is

given by  Wu(s) ∆V H

Wl(s) O(n−m)×m

Csvd Om×m

 [ xsvd(s)
u(s)

]
=

 Om×m

O(n−m)×m

y(s)

 , (2.47)
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where u(s) = L [u(t)], x(s) = L [x(t)], y(s) = L [y(t)], Wu(s) ∈ Rm×n, Wl(s) ∈ R(n−m)×n,
and the Rosenbrock system matrix Πsvd(s) is given by

Πsvd(s) =
[

Asvd − sI Bsvd

Csvd O

]
=

 Wu(s) ∆V H

Wl(s) O(n−m)×m

Csvd Om×m

 . (2.48)

The following theorem shows that Wl(s) contains the property for the invariant zeros of the
system.

Theorem 2.1 (Identity of invariant zeros) : Invariant zeros of Gsvd are the values when Wl(s) is
not full row rank.

Proof. The invariant zero is defined as the value when the Rosenbrock system matrix is not full
rank. It is assumed that rank(∆V H) = m and the upperm rows of Πsvd(s) are full row rank. It is
assumed that rank(Cc) = m and rank(U) = n. From Sylvester’s rank inequality, for X ∈ Rl×n

and X ∈ Rn×k it generally follows

rank(X) + rank(Y ) − n ≤ rank(XY ). (2.49)

Sylvester’s rank inequality is applied to X as Cc and Y as U . It follows that rank(Csvd) =
rank(CcU) = m and the lowerm rows of Πsvd(s) are full row rank. Therefore, the values when
Wl(s) is not full rank are the same as the values when the Rosenbrock system matrix is not full
rank.

From (2.47), [
Wl(s)
Csvd

]
xsvd(s) =

[
O(n−m)×m

y(s)

]
, (2.50)

and it follows that

xsvd(s) =
[

Wl(s)
Csvd

]−1 [
O(n−m)×m

y(s)

]
. (2.51)

Let the state transformation be

x(s) = Uxsvd(s) = U

[
Wl(s)
Csvd

]−1 [
O(n−m)×m

y(s)

]
. (2.52)

Let the inverse Laplace transform be β(t) = L−1[B−1(s)], where

B−1(s) = U

[
Wl(s)
Csvd

]−1

. (2.53)

The desired state trajectory is given by

x̂(t) =
∫ t

0
β(t− τ)

[
O(n−m)×m

r(τ)

]
dτ. (2.54)
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When B(s)−1 has unstable poles, it can be decomposed as

B(s)−1 = B−1
s (s) + B−1

u (s), (2.55)

where all poles ps ∈ C of B−1
s (s) are Re(ps) ≤ 0 and all poles pu ∈ C of B−1

u (s) are Re(pu) > 0.
The filter matrices of stable and unstable parts for the state trajectory generation are given by

βs(t) = L−1
[
B−1

s (s)
]
, (2.56)

βu(t) = L−1
[
B−1

u (−s)
]
. (2.57)

The stable and unstable parts of the desired state trajectory are given by

x̂s(t) =
∫ t

−∞
βs(t− τ)

[
O(n−m)×m

r(τ)

]
dτ, (2.58)

x̂u(t) =
∫ ∞

t
βu(t− τ)

[
O(n−m)×m

r(τ)

]
dτ, (2.59)

and the bounded desired state trajectory x̂ is given by

x̂(t) = x̂s(t) + x̂u(t). (2.60)

Note that the unitary matrix U that is used as the state transformation matrix is not unique
in singular value decomposition but the desired state trajectory is generated uniquely for the
desired state-space representation. The calculation of the singular value decomposition can be
numerically ill-conditioned and the state-space representation should be properly formulated so
that the state transformation matrix U is not numerically ill-conditioned.

2.4 Multirate feedforward control with mode decomposition
In this section, the multirate feedforward control with mode decomposition is presented. First,
the model of the multi-modal motion system is defined. Second, the multirate feedforward
control with additive decomposition is described. Third, the multirate feedforward control with
multiplicative decomposition is described. The intersample performance of these two approaches
is verified in the next section.

2.4.1 Definition of multi-modal motion system
The m-input m-output continuous-time multi-modal motion system [46] is defined as

Gc(s) =
nm∑

km=1

ckmbkm

s2 + 2ζkmωkms+ ω2
km

=
nm∑

km=1
Gc,mod,km(s), (2.61)

where ω is the resonance angle frequency, ζ is the damping coefficient, and nm is the number of
modes. The vectors b ∈ R1×m and c ∈ Rm×1 are associated with the inputs, the outputs, and the
mode shapes. Gc in modal formcGc,mod

s= (Ac,mod,Bc,mod,Cc,mod,O) is given by

ẋmod(t) = Ac,modxmod(t) + Bc,modu(t), (2.62)
y(t) = Cc,modxmod(t), (2.63)
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Tµ SN L−1
NB−1

µ (I − z−N Aµ)
x̂mod(t) x̂µ(t) x̂µ[iN + 1] u[iN ] u[k]

Tν zN

Fig. 2.2: Block diagram of multirate feedforward control with additive decomposition.

where

[
Ac,mod Bc,mod

Cc,mod O

]
=


Ac,mod,1 O Bc,mod,1

. . .
...

O Ac,mod,nm Bc,mod,nm

Cc,mod,1 · · · Cc,mod,nm O

 , (2.64)

xmod(t) =
[
xmod,1(t) · · · xmod,nm(t)

]T
, (2.65)

and the subsystem Gc,mod,km

s= (Ac,mod,km ,Bc,mod,km ,Cc,mod,km ,O) is given by

[
Ac,mod,km Bc,mod,km

Cc,mod,km O

]
=

 0 1 O
−ω2

km
−2ζkmωkm bkm

ckm O O

 . (2.66)

xmod,km(t) =
[
xmod,km,0(t) xmod,km,1(t)

]T
. (2.67)

2.4.2 Multirate feedforward control with additive decomposition
The overview of multirate feedforward control with additive decomposition [41, 42] is shown in
Fig. 2.2. The indices µ of the selected modes are defined as

µ = {km|km ∈ 1, . . . , nm}, (2.68)

and the order ν of the selected modes is defined as

ν = 2 × number{µ}. (2.69)

The permutation matrix for the selected modes is defined as

Tµ =
[
Eµ

E×

]
, (2.70)

where Eµ and E× consist of standard basis vectors of selected and unselected modes, and the
standard basis vectors of the mode km is defined as

Ekm =
[
O2×2(km−1) I2 O2×2(nm−km)

]
. (2.71)

The model reduction matrix extracting upper ν states is defined as

Tν =
[
Iν Oν×(n−ν)

]
. (2.72)

The system of the selected modes Gc,µ is given by

ẋµ(t) = Ac,µxµ(t) + Bc,µu(t), (2.73)
y(t) = Cc,µxµ(t), (2.74)
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x̂mr(t) x̂mr[iN + 1]
Tµ SN L−1

N G−1
srB−1

mr(I − z−N Amr)
x̂mod(t) rsr[iN ] rsr[k] u[k]

Tms Tν zN

Fig. 2.3: Block diagram of multirate feedforward control with multiplicative decomposition.

where

xµ(t) = TνTµxmod(t), (2.75)
Ac,µ = TνTµAc,modT −1

µ T T
ν , (2.76)

Bc,µ = TνTµBc,mod, (2.77)
Cc,µ = Cc,modT −1

µ T T
ν . (2.78)

The discrete-time system of Gc,µ is given by

Gd,µ
z= SGc,µH =

[
Ad,µ Bd,µ

Cd,µ O

]
, (2.79)

and the N (≤ ν) samples lifted system of Gd,µ is given by

Gd,µ
zN

= LNGd,µL−1
N =

[
Ad,µ Bd,µ

Cd,µ Dd,µ

]
. (2.80)

Note that the number of lifting samples is N = ν in SISO systems but it is not the case in MIMO
systems, see [44]. By inverting the state equation of Gd,µ, the input u generated by the multirate
feedforward controller with additive decomposition is given by

u[k] = L−1
N

(
B−1

d,µx̂µ[iN + 1] − B−1
d,µAd,µx̂µ[iN ]

)
= L−1

N B−1
d,µ(I − z−NAd,µ)x̂µ[iN + 1], (2.81)

where x̂µ[iN ] = SNTνTµx̂mod(t). The generated feedforward input u provides perfect state
tracking for every N sample for the states corresponding to the selected modes µ.

Note that although perfect state tracking for selected states does not guarantee perfect output
tracking, it can provide better intersample performance because the desired state trajectory is
generated by the model with full states, and the reference sampling frequency for selected ν states
becomes higher to 1/Nδ where N ≤ ν ≤ n.

2.4.3 Multirate feedforward control with multiplicative decomposition
The overview of multirate feedforward control with multiplicative decomposition [43] is shown
in Fig. 2.3. The one-sample forward shifted system G̃d,mod

z= (Ãd,mod, B̃d,mod, C̃d,mod, D̃d,mod)
of the discrete-time system in modal form Gd,mod

z= (Ad,mod,Bd,mod,Cd,mod,O) = SGc,modH
from u[k] to y[k + 1] is given by[

Ãd,mod B̃d,mod

C̃d,mod D̃d,mod

]
=
[

Ad,mod Bd,mod

Cd,modAd,mod Cd,modBd,mod

]
. (2.82)
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When ν states corresponding to the modes µ are selected,

Π = S

[
Iν Oν×(n−ν)

O(n−ν)×ν O(n−ν)

]
S−1 (2.83)

is defined with full rank S =
[
V V×

]
, where V ∈ Rn×ν and V× ∈ Rn×(n−ν) are a column

space of an invariant subspace of A = Ãd,mod and A× = Ãd,mod − B̃d,modD̃−1
d,modC̃d,mod that

correspond to the poles of Gmr and the zeros of Gsr. Then the state-space realizations are given
by

Gmrf
z=
[

Ãd,mod ΠB̃d,modD̃−1
d,mod

C̃d,mod I

]
, (2.84)

Gsrf
z=
[

Ãd,mod B̃d,mod

C̃d,mod(I − Π) D̃d,mod

]
. (2.85)

Let the permutation matrix Tµ be such that

T (Gmrf ,Tµ) z=

 Amr O Bmr

O Asr O
Cmr Cmrr I

 , (2.86)

T (Gsrf ,Tµ) z=

 Amr O Bsrr

O Asr Bsr

O Csr Dsr

 . (2.87)

Gmr with states xmr and Gsr with states xsr are given by

Gmr
z=
[

Amr Bmr

Cmr I

]
, (2.88)

Gsr
z=
[

Asr Bsr

Csr D

]
. (2.89)

The product of the system H1 = (A1,B1,C1,D1) and H2 = (A2,B2,C2,D2) is generally
defined as

H1H2 =

 A1 B1C2 B1D2
O A2 B2
C1 D1C2 D1D2

 . (2.90)

The state transformation matrix Tms is given by

Tms =
[

Iν X
Oν×(n−ν) I(n−ν)

]−1

, (2.91)

where X ∈ Rν×(n−ν) is the solution of the Sylvester equation

AmrX − XAsr = BmrCsr. (2.92)
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G̃ms
z= (Ãms, B̃ms, C̃ms, d) = T (G̃d,mod,TmsTµ) = GmrGsr is given by

[
Ãms B̃ms

C̃ms D

]
=

 Amr BmrCsr Bmrd
O Asr Bsr

Cmr Csr D

 . (2.93)

The N (≤ ν) samples lifted system of Gmr is given by

Gmr
zN

= LNGmrL−1
N =

[
Amr Bmr

Cmr O

]
. (2.94)

Note that the number of lifting samples is N = ν in SISO systems but it is not the case in
MIMO systems, see [44]. By inverting the state equation of Gmr, the reference for the single-rate
inversion rsr is given by

rsr[k] = L−1
N

(
B−1

d,mrx̂mr[iN + 1] − B−1
d,mrAd,mrx̂mr[iN ]

)
= L−1

N B−1
d,mr(I − z−NAd,mr)x̂mr[iN + 1], (2.95)

where x̂mr[iN ] = SNTνTmsTµx̂mod(t). Then, the input u generated by the multirate feedforward
controller with multiplicative decomposition is given by

u[k] = G−1
sr rsr[k], (2.96)

where

G−1
sr =

[
Asr − BsrD

−1
sr Csr BsrD

−1
sr

−D−1
sr Csr D−1

sr

]
. (2.97)

Note that the one-sample backward shifted system of G̃ms is given by

Gms = T (Gd,mod,TmsTµ) =
[

Ams Bms

Cms O

]

=
[

Ãms B̃ms

C̃msÃ
−1
ms O

]
=

 Amr BmrCsr BmrD
O Asr Bsr

C∗
mr D∗

mrC
∗
sr D∗

mrD


=
[

Amr Bmr

C∗
mr D∗

mr

] [
Asr Bsr

C∗
sr D

]
, (2.98)

where D∗
mrD = O and the output is given by

y[k] = C∗
mrxmr[k] + D∗

mrC
∗
srxsr[k]. (2.99)

It shows that the approach provides perfect output tracking for every N sample with D∗
mr = O

because the multirate inversion provides perfect state tracking of xmr for every N sample. If
the system is decomposed as D∗

mr ̸= O, there is no perfect output tracking because perfect state
tracking of xsr is not guaranteed. Therefore, V and V× should be selected such that D∗

mr = O.
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Table 2.1: Comparison of 8 approaches. Tr is the reference sampling time. Gc,mr and Gc,sr are
the continuous-time model for the multirate and single-rate inversion. Intersample performance
is evaluated by the Root Mean Square of the tracking error eRMS = RMS(e(t)) with the sampling
time δ/20 = 0.5 ms. The evaluations are conducted by the simulation of Gc without feedback
control, Ĝ without feedback control, and Ĝ with feedback control, and by the experiment.

Case Line Approach Tr Gc,mr Gc,sr Gc w/o FB Ĝ w/o FB Ĝ with FB Experiment
1 Single-rate δ - Gc 9862 nm 16 811 nm 17 642 nm 27 152 nm
2 Multirate 4δ Gc - 5174 nm 11 646 nm 12 406 nm 15 027 nm
3 Additive 2δ G1 - 8199 nm 12 176 nm 13 397 nm 17 210 nm
4 Additive 2δ G2 - >1 mm >1 mm - -
5 Multiplicative 2δ N1/D1 N2/D2 9309 nm 11 280 nm 12 510 nm 22 579 nm
6 Multiplicative 2δ N2/D1 N1/D2 8559 nm 14 547 nm - -
7 Multiplicative 2δ N1/D2 N2/D1 9309 nm 11 280 nm - -
8 Multiplicative 2δ N2/D2 N1/D1 8559 nm 14 547 nm - -

2.5 Application to multi-modal motion system
In this section, the intersample performance of the perfect tracking control approaches is validated
in a multi-modal motion system. The intersample performance is evaluated in both frequency
domain and time domain. The nominal and robust performance is verified in the simulation
using the model without and with modeling error. The experimental validation is conducted with
feedback controller.

2.5.1 Conditions
The validation is conducted in a single-input single-output multi-modal motion system in Fig. 2.4.
The frequency response of the controlled system is shown in Fig. 2.5. For the verification of the
modeling error, the high-order continuous-time model Ĝ is given by

Ĝ(s) = 2.44
s2 + 1.1

s2 + 2 × 0.024 × (2π × 30)s+ (2π × 30)2

+ −2.44
s2 + 2 × 0.038 × (2π × 89)s+ (2π × 89)2 + −1.1

s2 + 2 × 0.07 × (2π × 297)s+ (2π × 297)2

= G1(s) +G2(s) +G3(s) +G4(s). (2.100)

For the controller design, a low-order continuous-time model Gc is given by

Gc(s) = G1(s) +G2(s) = 2.44
s2 + 1.1

s2 + 2 × 0.024 × (2π × 30)s+ (2π × 30)2

= 3.54
s2 × s2 + 2 × 0.02 × (2π × 25)s+ (2π × 25)2

s2 + 2 × 0.024 × (2π × 30)s+ (2π × 30)2 = N1(s)
D1(s)

× N2(s)
D2(s)

. (2.101)

The controller is designed by the low-order continuous-time model Gc and the continuous-time
performance is verified by the simulation in the low-order continuous-time model Gc without
modeling error and the high-order continuous-time model Ĝwith modeling error. The verification
is conducted in both frequency domain and time domain. The sampling time of the controller is
δ = 10 ms. The intersample performance is evaluated in the sampling time δ/20 = 0.5 ms. The
compared 8 approaches are shown in Table 2.1.
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u

y

Fig. 2.4: High-precision positioning stage with input current u [A] generating force with linear
motor and output displacement y [m] measured by linear encoder with 1 nm resolution.
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Fig. 2.5: Bode diagram of the controlled system: frequency response data ( ), a high-order
continuous-time model Ĝ ( ), a low-order continuous-time model Gc ( ), and a low-order
discrete-time model for controller design Gd ( ). Vertical lines ( ) and ( ) show Nyquist
frequency 1/2δ and sampling frequency 1/δ, respectively.



36 Chapter 2. Multirate Feedforward Control with Non-Causal Inversion and Mode Selection

2.5.2 Frequency domain verification

In frequency domain verification, the intersample performance is verified by the performance
frequency gain |Er| [47–49] in the simulation that is the steady state continuous-time tracking
error normalized by the step sine wave reference and is defined as

|Er(jω)| = RMS(ejω(t))
RMS(rjω(t)) , (2.102)

where rjω(t) can only contain a single frequency at each frequency and the intersample perfor-
mance is evaluated in the sampling time δ/20 = 0.5 ms.

The performance frequency gain of the continuous-time tracking error inGc without modeling
error is shown in Fig. 2.6. It shows that Case 5 = Case 7 and Case 6 = Case 8 in the performance
frequency gain. It is because the discretization only affects the dynamics of zeros, and the choice
of the pole does not affect the performance. Case 4 makes a large error for the whole frequency
range because it cannot compensate for rigid body dynamics. The approaches like Case 1, Case
6, and Case 8 that cannot compensate for oscillating poles of the feedforward controller due to
discretization make large errors around Nyquist frequency. In low frequency, |Er| is smaller in
order of Case 1 < Case 5 = Case 7 < Case 2 < Case 3. From these analyses, Case 2 with
multirate feedforward control for full-state tracking provides the best performance in steady state,
and Case 2, Case 3, Case 5, and Case 7 are preferable approaches.

The performance frequency gain of the continuous-time tracking error in Ĝ with modeling
error is shown in Fig. 2.7. There is the same trend around Nyquist frequency compared to the
simulation in Gc without modeling error. In low frequency, |Er| is around the same performance
in all approaches except Case 4. It is because the controller cannot compensate for the low-
frequency compliance of the unmodeled high-frequency dynamics.

2.5.3 Time domain verification

In the time domain verification, the intersample performance is verified by the continuous-time
tracking error in the simulation for the continuous-time reference trajectory shown in Fig. 2.8.
The intersample performance is evaluated by Root Mean Square error eRMS = RMS(e(t)) in
Table 2.1 with the sampling time δ/20 = 0.5 ms.

The time series error e(t) in Gc without modeling error is shown in Fig. 2.9. The result
shows that Case 2 achieves the best performance because there is no modeling error between the
controller and the controlled system and perfect tracking for all states provides smooth intersample
behavior.

The time series error e(t) in Ĝwith modeling error is shown in Fig. 2.10. The result shows that
Case 5 and Case 7 achieve the best performance because the control input contains relatively low-
frequency components compared to Case 2, and it does not excite the resonances of the unmodeled
dynamics. The performance of Case 1, Case 6, and Case 8 is getting worse in Ĝ because
the oscillating feedforward input due to discretization excites the unmodeled high-frequency
dynamics. From these analyses, multirate feedforward control with mode decomposition can
provide better intersample performance in transient response than that of multirate feedforward
control for full-state tracking.
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Fig. 2.6: Performance frequency gain of the continuous-time tracking error in Gc. Vertical lines
( ) and ( ) show Nyquist frequency 1/2δ and sampling frequency 1/δ, respectively.
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Fig. 2.7: Performance frequency gain of the continuous-time tracking error in Ĝ. Vertical lines
( ) and ( ) show Nyquist frequency 1/2δ and sampling frequency 1/δ, respectively.
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Fig. 2.9: Error e(t) in the simulation of Gc with sampling time δ/20 = 0.5 ms. ( ), ( ), and ( )
show sampling point every δ, 2δ, and 4δ.
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Fig. 2.10: Error e(t) in the simulation of Ĝ with sampling time δ/20 = 0.5 ms. ( ), ( ), and ( )
show sampling point every δ, 2δ, and 4δ.
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Fig. 2.11: Block diagram of the experimental validation. G, Gd, K, S and H denote a controlled
system, a low-order discrete-time model for controller design, a feedback controller, sampler and
zero-order-hold, respectively.

2.5.4 Experimental validation
From the result of the simulation verification, the experimental validation is conducted in Case 1,
Case 2, Case 3, and Case 5 as shown in Table 2.1 with the same reference that is shown in Fig. 2.8.
The overview of the experimental validation is shown in Fig. 2.11. A feedback controller K is
used for stabilization and compensation for low-frequency modeling errors in the experimental
validation. For the feedback controller, the PD controller is designed as 5 Hz bandwidth and 6 dB
modulus margin. The simulation with the feedback controller and the quantization of the linear
encoder is also conducted for the validation of the experimental results.

The time series error e(t) in the experiment is shown in Fig. 2.12. The result has a similar
trend to the simulation in Ĝwith feedback control. Note that due to experimental conditions such
as model mismatches, the exact on-sample tracking is not provided. The intersample performance
is evaluated by Root Mean Square error eRMS = RMS(e(t)) in Table 2.1 with the sampling time
δ/20 = 0.5 ms. It shows that Case 2 with multirate feedforward control for full-state tracking
provides the best performance in simulation and experiment with feedback control. The amplitude
spectrum of error e(t) in the experiment is shown in Fig. 2.13. The result shows that Case 1 and
Case 5 which contain single-rate filters have a large error in over sampling frequency because the
frequency components of the feedforward input over sampling frequency excite the unmodeled
high-frequency dynamics.

2.6 Conclusion
In this chapter, perfect tracking control approaches are described focusing on intersample per-
formance in multi-modal motion systems. The model of the multi-modal motion system is
decomposed into combinations of the states that can be selected for the perfect tracking control.
The simulation verification and experimental validation in a multi-modal motion system show
that state tracking should be used to compensate for the oscillating poles of the feedforward
controller due to discretization. In summary, the feedforward controller to improve intersample
performance should be designed with the following conditions.

• State tracking approach can compensate for oscillating poles of the feedforward controller
due to discretization when the relative degree of the model is more than 2.

• For steady-state performance without modeling error, multirate feedforward control for
full-state tracking provides the best performance.
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Fig. 2.12: Error e(t) in the experiment with sampling time δ/20 = 0.5 ms. The solid black line
shows that in the simulation of Ĝ with feedback control.
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Fig. 2.13: Amplitude spectrum of error e(t) in the experiment with sampling time δ/20 = 0.5 ms.
The solid black line shows that in the simulation of Ĝ with feedback control. Vertical lines ( )
and ( ) show Nyquist frequency 1/2δ and sampling frequency 1/δ, respectively.

• Multirate feedforward control with mode decomposition can provide the best intersample
performance in transient response depending on the frequency components of the reference
and the unmodeled dynamics of the controlled system.

Ongoing research focuses on the optimal mode selection depending on the reference signal in
higher-order motion systems.



Chapter 3

MIMO Multirate Feedforward Control
with Generalized Controllability Indices

Inversion-based feedforward control is a basic method of tracking controls. The aim of this chapter
is to design MIMO multirate feedforward controller that improves continuous-time tracking
performance in MIMO LTI systems considering not only on-sample but also intersample behavior.
Several types of MIMO multirate feedforward controllers are designed and evaluated in terms of
the 2-norm of the control inputs. The approach is compared with a conventional MIMO single-
rate feedforward controller in simulations. The interaction compensation is compared with a
conventional SISO multirate feedforward controller in experiments. The approach improves the
intersample behavior through the optimal selection of input multiplicities with MIMO multirate
system inversion.

3.1 Introduction
Inversion-based feedforward controllers play an important role in the tracking control of many
high-precision mechatronic systems, such as wafer and LCD scanners, and industrial robots
[50]. For the demands of high-performance, high-speed, and flexible tasks, many high-precision
mechatronic systems have multiple degree-of-freedoms and are multi-input multi-output (MIMO)
systems.

Many high-precision mechatronic systems are usually controlled by single-input single-output
(SISO) controllers under the assumption that they are mechanically decoupled, and coupling prob-
lems between each axis can be ignored. Several high-precision mechatronic systems with severe
coupling problem between each axis, such as a 6-degree-of-freedom high-precision positioning
stage, are controlled with MIMO controllers, such as SISO controllers with a continuous-time pre-
compensator [51], feedforward input shaping approach [52], and feedforwardH∞ approach [53].
However, these continuous-time controllers are usually discretized by Tustin transform for digital
implementation. Therefore, the effect of discretization by sampler and zero-order-hold is not
strictly considered and perfect tracking control cannot be achieved for a discrete-time model.

In high-precision positioning systems with multiple actuators and sensors, such as a 6-degree-
of-freedom high-precision positioning stage, it is common that the number of actuators and
sensors are imaginarily converted by coordinate transformation to the same number of degrees of
freedom of motion [51]. In this framework, this chapter mainly focuses on MIMO linear-time-
invariant (LTI) systems with an equal number of inputs and outputs. For the tracking control
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of MIMO LTI systems, MIMO feedforward controllers are needed to achieve good tracking
performance by considering the coupling problems and redundancy of MIMO LTI systems.

The continuous-time inversion-based approaches such as [54–56] can be used for continuous-
time systems. However, practical tracking controllers are often implemented by digital systems
for large flexibility and low-cost [15]. Therefore, the tracking control is conducted with digital
control and has some limitations attributed to discretization. The main problem of the inversion-
based feedforward controllers is the unstable discretized zeros, which are out of the unit circle on
the z plane, of the controlled system discretized by a sampler and a holder. The inversion-based
feedforward controllers are designed by the inverse of controlled systems and they have unstable
poles due to the unstable zeros of the controlled systems.

To overcome the discretized unstable zero problems, several approximated inverse approaches
are presented in the single-rate feedforward control, such as nonminimum-phase zeros ignore
(NPZI) [57], zero phase error tracking control (ZPETC) [35] and zero magnitude error tracking
controller (ZMETC) method [58]. However, these methods cannot achieve the exact tracking at
sampling points because of the approximation.

An exact inverse approach, discrete-time stable inversion [39], is presented, but this method
cannot cope with the discretized zeros around z = −1 that become oscillating poles of the
inversion-based feedforward controllers [59, 60]. It is noted that these single-rate feedforward
control approaches can be extended to MIMO LTI systems [61, 62]. FIR filter tuning with a
gradient approximation-based algorithm is presented for decoupling control of MIMO systems
with a discrete-time controller [63]. However, this approach uses an optimization in the algorithm
and it is not suitable when many kinds of references are used.

Based on these approaches in the single-rate feedforward control, a multirate control approach
is presented [20]. Compared with the single-rate system, the multirate system has all zeros at
z = 0. Therefore, the multirate feedforward controller has all poles at z = 0, and exact on-sample
tracking can be achieved, and intersample behavior is also improved.

Although several multirate control approaches have been developed, the optimal design for
redundancy of the multiple inputs in MIMO systems is not presented. Previous researches show
that the multirate feedforward control approach can be extended from the SISO LTI systems to
the MIMO LTI systems [48]. MIMO multirate feedforward controller is effective to reject cross-
coupling effects compared with the basic pre-compensator approach [64]. The MIMO multirate
feedforward controller can be designed for several kinds because of the redundancy of MIMO
LTI systems and multirate sampling periods. In this chapter, a procedure of designing an optimal
MIMO multirate feedforward controller is presented.

The main contributions of this chapter are as follows.

Contribution 3.1 : The redundancy of multiple inputs in MIMO systems is optimized by evaluating
the control input for the normalized state vector.

Contribution 3.2 : The performance improvement of the MIMO multirate feedforward controller
considering the sampled-data dynamics is demonstrated by the comparison between the MIMO
single-rate feedforward controller.

Contribution 3.3 : The performance improvement of the MIMO multirate feedforward controller
considering the interaction compensation is demonstrated by the comparison between the SISO
multirate feedforward controller.

The outline is as follows. In Section 3.2, the problem of tracking with digital control is
formulated. In Section 3.3, the conventional MIMO single-rate feedforward control approach and
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S HF G
r(t) r[k] u[k] u(t) y(t) e(t)

− +

Fig. 3.1: Block diagram of tracking control. The continuous-time system G is controlled by the
discrete-time controller F with sampler S and zero-order-hold H. The objective is to minimize
the continuous-time error e(t).

its limitations are presented before introducing the proposed method. In Section 3.4, the proposed
MIMO multirate feedforward control approach is presented. In Section 3.5, the advantages of
the approach in the continuous-time tracking performance are demonstrated by application to
a MIMO motion system in the simulation. In Section 3.6, the advantages of the approach in
the interaction compensation are demonstrated by application to a MIMO motion system in the
experiment. In Section 3.7, the conclusion of this chapter is presented.

3.2 Problem formulation
In this section, the control problem is formulated. The overview of tracking control is shown in
Fig. 3.1.

3.2.1 Definition of multi-input multi-output system
The state equation and the output equation of an m-input m-output nth order continuous-time
linear time-invariant system Gc are given by

ẋ(t) = Acx(t) + Bcu(t), (3.1)
y(t) = Ccx(t), (3.2)

Bc =
[
bc1 · · · bcm

]
, Cc =

[
cc1 · · · ccm

]T
,

where the state variables are x(t) ∈ Rn×1, inputs are u(t) ∈ Rm×1, outputs are y(t) ∈ Rm×1, and
the matrices are Ac ∈ Rn×n, Bc ∈ Rn×m, and Cc ∈ Rm×n. this chapter mainly focuses on the
MIMO LTI systems that have the same number of inputs and outputs. This is a natural assumption
for mechatronic systems to achieve both state controllability and hardware cost reduction.

3.2.2 Discretization and sampling periods
The discrete-time system Gd discretized by sampler and zero-order-hold with Gc and the gener-
alized sampling period δ is given by

x[k + 1] = Adx[k] + Bdu[k], (3.3)
y[k] = Cdx[k], (3.4)

where k ∈ Z. Ad, Bd, and Cd are given by

Ad = eAcδ, Bd =
∫ δ

0
eAcτ Bcdτ, Cd = Cc. (3.5)
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In the discrete-time system, three sampling periods exist, Tr, Ty, and Tu, which represent the
sampling periods of a reference r(t), an output y(t), and a control input u(t), respectively. Three
sampling periods Tr, Ty, and Tu are the same in the single-rate system and are different in the
multirate system.

3.2.3 Perfect tracking control and intersample behavior
In the problem of tracking control, the discrete-time controller F should be designed as GdF = I ,
where Gd = SGcH ,at every sampling point and achieves perfect tracking control.

The perfect tracking control is defined as follows [35].

Definition 3.1 : The perfect tracking control is defined as a method with which the plant output
perfectly tracks the desired trajectory with zero tracking error at every sampling point.

It is important that the perfect tracking control only guarantees the tracking error on the
discrete-time sampling points, but not in the continuous-time. In the problem of tracking control,
the objective is to minimize the continuous-time error e(t). Therefore, not only on-sample
tracking error but also intersample tracking error should be considered in the design of the
discrete-time controller F .

3.2.4 Problem description
In this chapter, the feedforward controller is designed with respect to the following requirements.

Requirement 3.1 : The redundancy of the multiple inputs should be optimized in designing the
MIMO multirate feedforward controller.

Requirement 3.2 : The sampled-data characteristics of the system discretized by sampler and
zero-order-hold should be considered to improve the continuous-time tracking performance.

Requirement 3.3 : The coupling dynamics of the MIMO system should be compensated by the
MIMO feedforward controller design.

For comparison, two types of discrete-time controllers are described in this chapter, the first
is a single-rate feedforward controller and the second is a multirate feedforward controller.

3.3 Single-rate feedforward control for multi-input multi-output
system

The single-rate system Gs discretized by sampler and zero-order-hold with Gc and the sampling
period δ = Tu is given by

x[k + 1] = Asx[k] + Bsu[k], (3.6)
y[k] = Csx[k]. (3.7)

From the state-space representation of the single-rate system Gs, control inputs uff [k] of the
single-rate feedforward controller Fsr for the reference of the desired output trajectory are given
by

uff [k] = Fsrr[k + 1], (3.8)
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where Fsr is given by

Fsr =
[

As − Bs(CsBs)−1CsAs Bs(CsBs)−1

−(CsBs)−1CsAs (CsBs)−1

]
. (3.9)

There is exact tracking of the desired output trajectory r at every sample in the systems with the
single feedforward control.

However, the single-rate feedforward controller has a problem. It is known that a single-rate
system discretized by sampler and zero-order-hold has discretized zeros depending on the relative
degree of the continuous-time system [19]. The discretized zeros appear around z = −1 on the
real axis on the z plane. The single-rate feedforward controller is designed as the inverse of the
single-rate system, and the zeros of the single-rate system become the poles of the single-rate
feedforward controller. When the pole of the system is around z = −1 of the z plane, the system
becomes oscillated or diverged. Therefore, the single-rate feedforward controller has the problem
that the generated control inputs may be oscillated or diverged. If the single-rate feedforward
controllerFsr has unstable poles, a stable inversion approach or an approximated inverse approach
is used, see details in [39, 62].

On the other hand, the multirate feedforward controller is designed so that all poles are at
z = 0 and the generated control inputs are not oscillated or diverged. In this chapter, a MIMO
multirate feedforward controller is proposed to make the continuous-time error smaller than that
of a MIMO single-rate feedforward controller.

3.4 Multirate feedforward control for multi-input multi-output
system

In this section, the design method of the MIMO multirate feedforward controller is proposed for
the tracking control of MIMO LTI systems. The multirate feedforward control has an advantage
of intersample behavior compared with the single-rate feedforward control [39].

3.4.1 Design of input matrix from generalized controllability indices
The generalized controllability indices are defined as follows [48].

Definition 3.2 : The generalized controllability indices of Ac ∈ Rn×n and Bc = [bc1, · · · , bcm] ∈
Rn×m are defined as

{bc1, · · · , bcm,Acbc1, · · · ,Acbcm, · · · ,An−1
c bcm}.

If (Ac,Bc) is a controllable pair, n linearly independent vectors be selected from the he gener-
alized controllability indices.

The generalized controllability indices are the sets of the input multiplicities σl.
The input multiplicities σl is defined as follows [48].

Definition 3.3 : Input multiplicities σl are defined as the number of the input which comes from
the same input in the same frame period Tf .
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Setting φ as a set of n vectors selected from the generalized controllability indices, σl and N
are defined by

σl = number{k|Ak−1
c bcl ∈ φ}, (3.10)

N = max(σl), (3.11)

where l ∈ N is the index of the inputs. The plant order n is equal to the sum of the input
multiplicities σl as

m∑
l=1

σl = n. (3.12)

In MIMO LTI systems, n vectors are selected from the generalized controllability indices, and the
full row rank matrix B can be designed for almost all discretized sampling periods1. Therefore,
several types of multirate systems are designed according to the selection of input multiplicities.

From the selection of input multiplicities, Tul
, which is the sampling period of lth input ul, is

defined by

Tul
= N

σl

Tu. (3.13)

It is noted that the sampling period Tu is the smallest value of Tul
.

A sampling period Tf is defined as the frame period which is the largest value between Tr,
Ty, and Tu. In this chapter, the frame period Tf of the multirate system is defined by

Tf = Tr = NTy = NTu. (3.14)

The multirate system G discretized by sampler and zero-order-hold with Gc and the sampling
period δ = Tul

is given by

x[i+ 1] = Ax[i] + Bu[i], (3.15)
y[i] = Cx[i], (3.16)

where i ∈ Z. A, B, x[i], and u[i] are given by

A = eAcTf , (3.17)

B =
[
B1 · · · Bl · · · Bm

]
, (3.18)

C = Cc, (3.19)
x[i] = x(iTf ), (3.20)

u[i] =
[
u1[i] · · · um[i]

]T
=
[
u11 [i] · · · u1σ1

[i] u21 [i] · · · umσm
[i]
]T
, (3.21)

1This is possible because the controllability of a continuous-time system is not preserved in the discrete system
only if the two poles ηi and ηj have the same real parts, and the discretizing sampling period T satisfies ηi =
ηj + j 2kπ

T (k = ±1, ±2, . . .); furthermore, it is limited to only several cases [65].
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Fig. 3.2: MIMO multirate input control.

and Bl, Asl
and bsl

are defined as

Bl =
[
Aσl−1

sl
bsl

Aσl−2
sl

bsl
· · · Asl

bsl
bsl

]
, (3.22)

Asl
= eAcTul , bsl

=
∫ Tul

0
eAcτ bcl

dτ. (3.23)

The input matrix B in a multirate system is designed by the generalized controllability indices
depending on the input multiplicities σl. It becomes a nonsingular square matrix because of the
definition of the generalized controllability indices. The state and input of the multirate system
are shown in Fig. 3.2. Note that the numerical condition of the MIMO multirate system is also
improved compared with that of the SISO multirate system in the same order of the model because
the maximum number of lifting samples is reduced.

3.4.2 Controller design and control input generation
From the state equation of the multirate system (3.15), control inputs uff [i] of the multirate
feedforward controller Fmr for the reference of the desired state trajectory are given by

uff [i] = Fmrx̂[i+ 1], (3.24)

where Fmr and zN is given by

Fmr = B−1(I − z−NA)

=
[

O I
−B−1A B−1

]
, (3.25)

zN = (esTu)N = esTf . (3.26)

There is exact tracking of the desired state trajectory x̂ at every N sample in the model with the
multirate feedforward control. It is noted that all poles of the multirate feedforward controller
Fmr are z = 0 because the state matrix of Fmr is O, and smooth control input is generated
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e[k]
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Fig. 3.3: Block diagram of MIMO multirate feedforward control. S, H, and L denote sampler,
zero-order-hold, and lifting operator [15], respectively.

compared with the single-rate feedforward controller Fsr. For the details of the desired state
trajectory generation, see [40,45]. A block diagram of the control system is shown in Fig. 3.3. L
is a discrete-time lifting operator [15]. L−1 outputs the elements of the N th dimensional vector
uff [i], which are inputs at every period Tf , in the order from 1 to σl by Tul

.

3.4.3 Optimal selection of input multiplicities
Several types of multirate feedforward controllers can be designed depending on the multirate
system G with the selection of input multiplicities σl. There is exact tracking of the desired
state trajectory x̂ at every N sample in the systems with all kinds of multirate feedforward
controllers [64]. However, the control inputs and intersample behavior are different depending on
the multirate system G. For the application of high-precision positioning control in mechatronic
systems, continuous-time tracking error is preferred to be small, and also control input u should
be smaller because of the limitation of mechatronic systems. An approach of designing the
optimal MIMO multirate feedforward controller is proposed to make 2-norm of control inputs
smaller in the rest of this section.

From the state equation of a multirate system (3.15), the part in which the control input u
affects to the state x is given by

Bu[i] = x[i+ 1] − Ax[i]. (3.27)

In the multirate feedforward control, there is exact tracking of the state x[i] and x[i + 1]. The
difference of the state v[i] is defined as

v[i] = x[i+ 1] − Ax[i], (3.28)

and the control input u[i] is represented as

u[i] = B−1v[i]. (3.29)

The square of the 2-norm of the control input ∥u[i]∥2
2 = u2

1 + · · · + u2
n is given by

∥u[i]∥2
2 = vT[i](B−1)TB−1v[i], (3.30)

and ∥u[i]∥2
2 becomes a quadratic form of v[i].
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For the normalization of the difference of the state, v[i] is defined as the unit sphere:

∥v[i]∥2
2 = v2

1 + · · · + v2
n = 1. (3.31)

According to the relationship between the range of a quadratic form with the unit sphere and
eigenvalues [66], the range of ∥u[i]∥2

2 is given by

λn ≤ ∥u[i]∥2
2 ≤ λ1 (λn ≤ λ(n−1) ≤ · · · ≤ λ1), (3.32)

where λi is the eigenvalue of (B−1)TB−1. λci, which is the eigenvalue of BBT, is the reciprocal
of λi as

λci = 1
λi

, (3.33)

and the range of ∥u[i]∥2
2 given by

1
λcn

≤ ∥u[i]∥2
2 ≤ 1

λc1
(λc1 ≤ λc2 ≤ · · · ≤ λcn). (3.34)

σci, which is the singular value of the input matrix B is the square root of λci as

σci(B) =
√
λci(BBT), (3.35)

and the range of 2-norm of the control input ∥u[i]∥2 is given by

1
σcn

≤ ∥u[i]∥2 ≤ 1
σc1

(σc1 ≤ σc2 ≤ · · · ≤ σcn). (3.36)

If 2-norm of the control input ∥u[i]∥2 is too large, it is not suitable for the limitation of the
mechatronic systems. Making the upper bound of the 2-norm of control input ∥u[i]∥2 smaller
is equal making the smallest singular value σc1(B) larger. From this consideration, the input
multiplicity is selected so that the smallest singular value σc1(B) becomes the largest. Therefore,
the optimal design of the MIMO multirate feedforward controller to make the maximum value of
2-norm of control inputs smaller is proposed. Note that this analysis is based on the normalized
state vector and the physical meaning of the states depends on the estate-space representation.
The input and output scaling and the state-space realization should be selected properly so that
the normalized state vector represents the state values of the reference sets. The MIMO multirate
feedforward controller cannot specify the band of the continuous-time error because it only
guarantees the exact tracking of the desired state trajectory x̂ at every frame period Tf in the
model, but the intersample behavior becomes smoothly connected between the discrete sampling
points in continuous time with the control inputs of the optimally designed controller. The
analysis of the bound of the continuous-time error is an open issue.

3.4.4 Example of intersample behavior in different sets of input multiplic-
ities

The optimal design of the MIMO multirate feedforward controller is validated with the example
of a numerical simulation.
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Fig. 3.4: Desired output trajectory r(t) = [r1(t) r2(t)]T: they are 7th order polynomials, respec-
tively.

u1

u2

u1

u2

u1

u2

Tu1 = Tu

Tu1 = Tu

3Tu = Tf

4Tu = Tf

6Tu = Tf

1 2 3

1 2 3

1 2 3

1 2

4

1 2 3 4 5 6

(σ1, σ2)

(3, 3)

(4, 2)

(6, 0)

Tu2 = Tu

Tu2 = 2Tu

Tu1 = Tu

not used

Fig. 3.5: Examples of multirate inputs. Two inputs u1 and u2 are generated according to the input
multiplicities (σ1, σ2). A control input with 0 input multiplicity is not in use.

The continuous-time system Gc is defined as the transfer function matrix (3.37).

Gc(s) = 1
s6 + 8895s5 + 3.979 × 107s4 + 2.428 × 109s3 + 9.099 × 1012s2 + 4.382 × 1013s+ 24[
4.702 × 1010s2 + 2.294 × 1011s+ 5.477 × 1015 1.387 × 108s2 + 1.233 × 1012s+ 5.477 × 1015

5.477 × 1015 1220s4 + 1.085 × 107s3 + 4.835 × 1010s2 + 1.462 × 1012s+ 5.477 × 1015

]
(3.37)

The reference of the desired output trajectory r is given by 7th order polynomials which change
from 0 to 1 in 0 s to 0.4 ms for each output. The sampling period of the control input is set to
Tu = 0.4 ms. For the design of MIMO multirate feedforward controller, seven types of sets of
input multiplicities are selected as

(σ1, σ2) = (0, 6), (1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (6, 0). (3.38)

The examples of multirate inputs are shown in Fig. 3.5.
The smallest singular value σc1(B) and the simulation results are shown in Table 3.1. From

the procedure of designing the optimal MIMO multirate feedforward controller, the set of input
multiplicities in which the smallest singular value σc1(B) is the largest is the optimal set of input
multiplicities for the controlled system. The advantage of this procedure is that the optimal MIMO
multirate feedforward controller is designed without numerical simulations. When the order of
the system is high or the number of inputs and outputs is large, the number of the set of input
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Table 3.1: σc1(B), the smallest singular value of B, and root mean square and maximum absolute
value of control inputs u and tracking errors e depending on sets of input multiplicities (σ1, σ2).

(σ1, σ2) σc1(B) RMS(u1) MAX(|u1|) RMS(u2) MAX(|u2|) RMS(e1) MAX(|e1|) RMS(e2) MAX(|e2|)
(0, 6) 1.86 × 10−16 0.00 × 1000 0.00 × 1000 9.81 × 1004 2.27 × 1005 4.48 × 10−01 9.94 × 10−01 7.34 × 1000 1.53 × 1001

(1, 5) 6.77 × 10−13 5.54 × 10−12 7.83 × 10−12 1.71 × 1005 4.27 × 1005 4.01 × 10−01 9.88 × 10−01 9.30 × 1000 2.47 × 1001

(2, 4) 8.09 × 10−07 2.24 × 10−10 5.01 × 10−10 3.95 × 1005 8.37 × 1005 3.28 × 10−01 9.70 × 10−01 1.40 × 1001 3.67 × 1001

(3, 3) 4.70 × 10−07 4.70 × 1003 1.48 × 1004 6.72 × 1005 1.73 × 1006 2.26 × 10−01 8.50 × 10−01 4.01 × 1001 1.28 × 1002

(4, 2) 1.54 × 10−04 2.06 × 1003 4.78 × 1003 8.12 × 1002 1.29 × 1003 2.77 × 10−01 9.20 × 10−01 3.09 × 10−01 8.99 × 10−01

(5, 1) 5.70 × 10−07 5.84 × 1005 1.51 × 1006 2.27 × 1003 3.21 × 1003 3.44 × 1001 1.01 × 1002 7.66 × 10−01 1.70 × 1000

(6, 0) 1.01 × 10−06 3.44 × 1005 7.45 × 1005 0.00 × 1000 0.00 × 1000 1.05 × 1001 2.58 × 1001 4.11 × 10−01 9.96 × 10−01

multiplicities becomes enormous. Therefore, testing all sets with several references in numerical
simulations spends a large amount of time, and the proposed design procedure is effective.

The validity of the procedure can be confirmed from the root mean square and the maximum
absolute value of control inputs u and tracking errors e in Table 3.1. The trend is that control
inputs u and tracking errors e become small when the smallest singular value σc1(B) is large.
From Table 3.1, the optimal MIMO multirate feedforward controller is designed with the set of
input multiplicities (σ1, σ2) = (4, 2) which makes the smallest singular value σc1(B) largest, and
the root mean square of tracking errors e are the smallest in all sets.

In summary, the proposed procedure is validated, and the optimal MIMO multirate feedfor-
ward controller can be designed with the set of input multiplicities which makes the smallest
singular value σc1(B) largest, without spending time on numerical simulations.

3.5 Comparison for intersample behavior analysis
In this section, the tracking performance considering the intersample behavior of the optimal
MIMO multirate feedforward controller is verified compared with that of a MIMO single-rate
feedforward controller.

3.5.1 Modeling
The approach is validated on the two-inertia system motor bench shown in Fig. 3.6(a). The
two-inertia system motor bench has two motors on the left and right side and two motors are
connected by the flexible shaft as shown in Fig. 3.6(b). The two-inertia system motor bench is used
for theoretical and applicability validation. The two-inertia system motor bench has 20 bit/rev
optical encoder for both sides which is enough high resolution for high-precision mechatronic
systems.

In this chapter, the two-inertia system motor bench is modeled as a two-input two-output 4th

order system. The block diagram of the system is shown in Fig. 3.7. The two inputs u are the
left and right side torque, τl and τr, and the outputs y are the left and right side angle, θl and θr,
respectively.

The Bode diagram of a frequency response function measurement of the system is shown in
Fig. 3.8. The measurement is obtained through the identification experiment with a multisine
input [67] from 1 Hz to 1250 Hz, and a sampling frequency is 2500 Hz. From the frequency
response function measurement, the parameters of the two-inertia system motor bench are given
as shown in Table 3.2 and the identified continuous-time system Gc is given by the state-space
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(a) Photograph of two-inertia system motor bench.
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Fig. 3.6: Details of two-inertia system motor bench. In this chapter, the two-inertia system motor
bench is modeled as a two-input two-output system. The two inputs are left side torque τl and
right side torque τr, respectively. The two outputs are left side angle θl and right side angle θr,
respectively.
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Fig. 3.7: Block diagram of two-inertia system.

Table 3.2: Parameters of two-inertia system motor bench.

Jl 8.40 × 10−4 kgm2 Jr 8.20 × 10−4 kgm2

Dl 4.00 × 10−3 Nms/rad Dr 4.00 × 10−3 Nms/rad
K 95.5 Nm/rad

model with the state equation (3.39) and the output equation (3.40).

d
dt


θl(t)
θr(t)
θ̇l(t)
θ̇r(t)

 =


0 0 1 0
0 0 0 1

−K
Jl

K
Jl

−Dl

Jl
0

K
Jr

− K
Jr

0 −Dr

Jr



θl(t)
θr(t)
θ̇l(t)
θ̇r(t)

+


0 0
0 0
1
Jl

0
0 1

Jr


[
τl(t)
τr(t)

]
(3.39)

[
θl(t)
θr(t)

]
=
[
1 0 0 0
0 1 0 0

] 
θl(t)
θr(t)
θ̇l(t)
θ̇r(t)

 (3.40)
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Fig. 3.8: Bode diagram of two-inertia system motor bench. The black line ( ) is a frequency re-
sponse function measurement of the system and the magenta line ( ) is the identified continuous-
time model.

3.5.2 Conditions

The conventional MIMO single-rate feedforward controller Fsr and the proposed MIMO multirate
feedforward controller Fmr are compared in the tracking control of the continuous-time system
Gc. With the proposed procedure, the optimal MIMO multirate feedforward controller is designed
for Gc with the set of input multiplicities (σ1, σ2) = (2, 2) which makes the smallest singular
value σc1(B) largest. The poles and zeros of the feedforward controllers Fsr and Fmr are shown
in Fig. 3.9. From Fig. 3.9(a), the conventional MIMO single-rate feedforward controller Fsr has
one pole around z = −1 which leads to an oscillation, and from Fig. 3.9(b), the proposed MIMO
multirate feedforward controller Fmr has all poles on z = 0. The reference of the desired output
trajectory r is given by 7th order polynomials which change from 0 rad to 0.1 mrad in 0.8 ms
to 2 ms for each output. The sampling period of the control input is set to Tu = 0.4 ms. From
these conditions, the reference signal is steep enough compared with Tu. In Fig. 3.3, the feedback
controller is set to Cfb = O in the simulation.
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Fig. 3.9: Poles and zeros of multirate feedforward controller Fmr and single-rate feedforward
controller Fsr with unit circle on z plane. ( ) and ( ) are poles and zeros, respectively.

3.5.3 Simulation results
The simulation results are shown in Fig. 3.10. Fig. 3.10(a) and Fig. 3.10(b) show that the control
inputs of the conventional MIMO single-rate feedforward controller Fsr oscillate and the proposed
MIMO multirate feedforward controller Fmr generates the smooth control inputs. Fig. 3.10(c)
and Fig. 3.10(d) show that the outputs of the single-rate feedforward controller are oscillated
because of the oscillated control inputs, and the outputs of the multirate feedforward controller
are settled after 2 s. Fig. 3.10(e) and Fig. 3.10(f) show that the continuous-time tracking error of
the multirate feedforward controller is smaller than that of the single-rate feedforward controller,
thus the effectiveness proposed method is verified.

MIMO multirate feedforward controller is used in the two-degree-of-freedom robust control
with feedback controllers which reduce modeling error and disturbances. The role of the feed-
forward controller is to compensate for the tracking performance in the two-degree-of-freedom
control scheme, and the simulation validations accurately verify it. In summary, the proposed
optimal MIMO multirate feedforward controller outperforms the conventional MIMO single-rate
feedforward controller in smooth control inputs and continuous-time tracking errors.

3.6 Application to MIMO motion system
In this section, the tracking performance considering the interaction compensation is validated
by comparing the MIMO multirate feedforward controller and the SISO multirate feedforward
controller in each axis.

3.6.1 Modeling
The approach is validated on the six-degrees-of-freedom (DOF) high-precision stage shown in
Fig. 3.11(a). The six-DOF high-precision stage is supported by a six-DOF air-bearing gravity
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Fig. 3.10: Simulation results of multirate feedforward control ( ), single-rate feedforward control
( ), and 7th order polynomial reference ( ).

canceller. In the experiment, the dual-input dual-output system with the translation x and the
pitching θy is considered as shown in Fig. 3.11(b).

In this chapter, the controlled system is modeled as a two-input two-output 4th order system.
The block diagram of the system is shown in Fig. 3.12. The two inputs u are the force and the
torque, fx and τy, and the outputs y are the translation and pitching, x and θy, respectively. The
multi-input multi-output rigid body mass-damper-spring model structure is given by

d
dt


x(t)
θy(t)
ẋ(t)
θ̇y(t)

 =
[

O I
−M−1K −M−1D

] 
x(t)
θy(t)
ẋ(t)
θ̇y(t)

+
[

O
M−1

] [
fx(t)
τy(t)

]
, (3.41)

[
x(t)
θy(t)

]
=
[
I O

] 
x(t)
θy(t)
ẋ(t)
θ̇y(t)

 , (3.42)
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Fig. 3.11: Details of the six-DOF high-precision stage. In this chapter, the dual-input dual-output
system with the translation x and the pitching θy is considered.
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Fig. 3.12: Block diagram of the dual-input dual-output system with the translation x and the
pitching θy.

where

M =
[
m11 m12
m21 m22

]
∈ R2×2, D =

[
d11 d12
d21 d22

]
∈ R2×2, K =

[
k11 k12
k21 k22

]
∈ R2×2, (3.43)

are mass, damper, and spring coefficient matrices from the equations of motion in the translation
x and the pitching θy that are given by

m11ẍ(t) +m12θ̈y(t) + d11ẋ(t) + d12θ̇y(t) + k11x(t) + k12θy(t) = fx(t), (3.44)
m21ẍ(t) +m22θ̈y(t) + d21ẋ(t) + d22θ̇y(t) + k21x(t) + k22θy(t) = τy(t). (3.45)

The Bode diagram of a frequency response function measurement of the system is shown in
Fig. 3.13. The measurement is obtained through the identification experiment with a multisine
input [67] from 1 Hz to 1000 Hz, and a sampling frequency is 2000 Hz. From the frequency
response function measurement in Fig. 3.13, the continuous-time model with MIMO dynamics
Gc and without off-diagonal dynamics G̃c are identified. Note that the off-diagonal elements
of M , D, and K in the continuous-time model without off-diagonal dynamics G̃c are zero,
respectively.
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Fig. 3.13: Bode diagram of the dual-input dual-output system with the translation x and the
pitching θy: the frequency response function measurement of the system ( ), the identified
continuous-time model with MIMO dynamics Gc ( ) and without off-diagonal dynamics G̃c

( ).

3.6.2 Conditions

The MIMO multirate feedforward controller based on the continuous-time model with MIMO
dynamics Gc and without off-diagonal dynamics G̃c are compared in the experiment. With the
proposed procedure, the optimal MIMO multirate feedforward controller is designed for Gc with
the set of input multiplicities (σ1, σ2) = (2, 2) which makes the smallest singular value σc1(B)
largest. The reference of the desired output trajectory r is given by 7th order polynomials which
change from 0 m to 0.1 mm in 0 s to 20 ms for x and zero constant reference for θy. The sampling
period of the control input is set to Tu = 0.2 ms. In Fig. 3.3, the feedback controller Cfb is
designed as a PID controller with 20 Hz rigid body closed-loop bandwidth for six-DOFs in the
experiment.



60 Chapter 3. MIMO Multirate Feedforward Control with Generalized Controllability Indices

0 0.005 0.01 0.015 0.02
0

0.5

1
×10−4

t [s]

x
[m

]

(a) Output x

0 0.005 0.01 0.015 0.02
−0.5

0
0.5

1
1.5

×10−4

t [s]

θ y
[ra

d]

(b) Output θy

Fig. 3.14: Experimental results of MIMO multirate feedforward controller based on the
continuous-time model with MIMO dynamics Gc ( ) and without off-diagonal dynamics G̃c

( ), and the reference ( ).

3.6.3 Experimental results
The experimental results are shown in Fig. 3.14. It shows that the error of x is almost the same
in the MIMO multirate feedforward controller based on Gc and G̃c because the reference of θy

is set to 0 rad for all time and there is not much interaction from θyto x. However, the error
of θy is much smaller in the MIMO multirate feedforward controller based Gc than the MIMO
multirate feedforward controller based on G̃c because the MIMO multirate feedforward controller
based Gc can compensate to the interaction from θy to x. These results show that the MIMO
multirate feedforward controller based on the continuous-time model with MIMO dynamics Gc

that without off-diagonal dynamics G̃c, and the MIMO dynamics should be considered in the
feedforward controller design.

3.7 Conclusion
The procedure of the optimal MIMO multirate feedforward controller design is proposed. The
optimal MIMO multirate feedforward controller makes the upper bound of the 2-norm of control
input ∥u[i]∥2 smaller, and as a result, the continuous-time tracking errors become smaller. The
numerical simulation is conducted for the 6th order system, and the proposed procedure of the
selection of input multiplicities is validated.

The continuous-time tracking errors of the proposed MIMO multirate feedforward controller
Fmr are compared with the conventional MIMO single-rate feedforward controller Fsr in the
simulation. Depending on the poles of each controller, the conventional single-rate controller
generates oscillated control inputs and the proposed multirate controller generates smooth control
inputs.

The interaction compensation performance is compared with the MIMO multirate feedforward
controller based on the continuous-time model with MIMO dynamics and without off-diagonal
dynamics in the experiment. The experimental results show that the MIMO multirate feedforward
controller based on the continuous-time model with MIMO dynamics outperforms that without
off-diagonal dynamics because of the interaction compensation.

As a result, continuous-time tracking errors of the MIMO multirate controller are better than
that of the MIMO single-rate controller and that of the SISO multirate controller in the MIMO
LTI system.
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Chapter 4

Linearly Parameterized Feedforward
Control with Sampled-Data Differentiator

Sampled-data control requires both on-sample and intersample performance in high-precision
mechatronic systems. The aim is to design a discrete-time linearly parameterized feedforward
controller to improve both on-sample and intersample performance in a multi-modal motion
system. The continuous-time performance is taken into account as state compatibility by a mul-
tirate zero-order-hold differentiator. The developed approach enables the linearly parameterized
feedforward controller design for sampled-data systems with physically intuitive tuning param-
eters. The performance improvement is validated by comparing the developed approach with a
conventional approach using a backward differentiator for a multi-modal motion system.

4.1 Introduction
Feedforward control is essential for reference tracking in industrial high-precision mechatronic
systems such as semiconductor lithography systems [36] and high-speed scanners [68]. The
feedforward controllers are usually implemented in digital hardware, and the parameter of the
feedforward controller is first designed from the model of the controlled system, and secondly
tuned by experimental data. For intuitive tuning of the feedforward controller, it is preferable that
the feedforward controller is represented by the parameters with physical meaning.

The linearly parameterized feedforward control [69] has an advantage because the tuning
process is physically intuitive. Model inversion based feedforward controllers such as zero phase
error tracking control [70] are widely used to improve tracking performance. However, it is
time-consuming to identify the model of the controlled system and hard to tune parameters
manually.

The feedforward controller design for higher-order motion systems has a challenge because of
the model complexity and it results in many non-intuitive parameters in the feedforward controller.
Industrial mechatronic systems are modeled as the dominant rigid mode at a lower frequency
and several flexible modes at a higher frequency due to limited mechanical stiffness [46]. The
feedforward controller can be parameterized in physically intuitive using the modal characteristics.

The sampled-data characteristics should be considered in the feedforward controller design
because of the limitation of the sampling frequency. The feedforward controllers are usually
implemented in discrete time with the sampler and zero-order-hold [15]. Several related studies
using the multirate feedforward control [20] are developed to improve intersample performance
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by compensating for the oscillation of the Nyquist frequency.
Although several linearly parameterized feedforward control approaches exist, the on-sample

performance is mainly discussed in conventional approaches and the sampled-data character-
istics with sampler and zero-order-hold are not taken into account. The conventional linearly
parameterized feedforward control is designed by using the backward differentiator [69] and it
is not compatible with the states of the continuous-time motion system. The pre-existing state
tracking approaches for both on-sample and intersample performance [43] need the model of the
controlled system based on the system identification and they are not linearly parameterized in
tuning parameters.

The main contribution of this chapter is the linearly parameterized feedforward control ap-
proach considering sampled-data characteristics to improve both on-sample and intersample
performance in multi-modal motion systems. The contributions include:

Contribution 4.1 : The multirate zero-order-hold differentiator is developed to design the
discrete-time basis functions Ψ [k] that satisfy state compatibility for the continuous-time ref-
erence r(t).

Contribution 4.2 : The linearly parameterized feedforward considering sampled-data charac-
teristics is designed with a multirate zero-order-hold differentiator and both on-sample and
intersample performance improvement is experimentally validated in a multi-modal motion sys-
tem.

The outline is as follows. In Section 4.2, the problem that is considered in this chapter is
formulated. In Section 4.3, the design method of the feedforward controller using the multirate
zero-order-hold differentiator is developed, constituting Contribution 4.1. In Section 4.4, the
tracking performance of the approach is compared with that of the multirate feedforward in the
simulation. In Section 4.5, the advantage of the approach is demonstrated in the experiment
with a multi-modal motion system, constituting Contribution 4.2. In Section 4.6, conclusions are
presented.

4.2 Problem formulation
In this section, the problem to improve continuous-time tracking performance is formulated. First,
the requirements in this chapter are described. Second, the reference tracking problem is defined
in intersample performance. Third, the low-order feedforward control approach is investigated
for reference tracking in a multi-modal motion system. Fourth, the low-order feedforward control
approach is implemented in discrete-time. Finally, the problem in the conventional approach is
described.

4.2.1 Problem description
In this chapter, the feedforward controller is designed with respect to the following requirements:

Requirement 4.1 : The feedforward controller is linearly parameterized with physical parameters
for intuitive tuning.

Requirement 4.2 : The sampled-data characteristics with
sampler and zero-order-hold are considered in the feedforward controller design.
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Fig. 4.1: Tracking control diagram. The continuous-time system G is controlled by the feedfor-
ward controller F (θ) and the discrete-time feedback controllerK with sampler S and zero-order-
hold H. The objective is to minimize the continuous-time error e(t). The solid and dotted lines
denote the continuous-time and discrete-time signals, respectively.

Requirement 4.3 : The designed feedforward controller can be applied to multi-modal motion
systems.

To improve both on-sample and intersample performance, the main problem in the feedforward
control with acceleration and snap is the discrete-time basis function design that is compatible
with the continuous-time reference r(t) considering sampled-data characteristics.

4.2.2 Reference tracking for intersample performance
The considered tracking control configuration is shown in Fig. 4.1, with reference r(t) ∈ R,
control input u(t) ∈ R, and output y(t) ∈ R. The continuous-time linear time-invariant system
G(s) is controlled by the sampled-data controller that consists of feedforward controller F (θ),
feedback controller K[z], sampler S, and zero-order-hold H, where sampler and zero-order-hold
are defined as follows.

Definition 4.1 (Sampler) : The sampler S with sampling time Ts is defined as

S : r(t) 7→ r[k], r[k] = r(kTs). (4.1)

Definition 4.2 (Zero-order-hold) : The zero-order-hold H
with sampling time Ts is defined as

H : u[k] 7→ u(t), u(kTs + τ) = u[k], τ = [0, Ts). (4.2)

The control objective in this chapter is to minimize the continuous-time error e(t). Tradition-
ally, the conventional discrete-time controller only focuses on the on-sample performance with
the discrete-time error e[k]. To improve the continuous-time error e(t), not only on-sample but
also intersample performance should be considered.

4.2.3 Low-order feedforward for multi-modal motion system
The goal of the feedforward controller design is to extend the rigid mode behavior over a frequency
range as high as possible. Note that the controlled system and the controllers are assumed to be
the continuous-time system only in this subsection.
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Industrial mechatronic systems consist of the dominant rigid mode at a lower frequency and
several flexible modes at a higher frequency due to limited mechanical stiffness. The continuous-
time single-input single-output multi-modal motion system is defined as

Gc(s) = 1
ms2 +

nfl∑
i=1

ki

m(s2 + 2ζiωis+ ω2
i ) , (4.3)

where m is the total mass of the system, nfl is the number of the flexible modes. The resonance
frequency, the damping coefficient, and the mode gain at the ith mode are ωi, ζi, and ki ∈ {−1, 1},
respectively.

To compensate for not only the rigid mode but also the flexible modes, the traditional acceler-
ation feedforward is extended with the additional snap feedforward [71] and the ideal feedforward
controller F ∗(s) is defined as

F ∗(s) = ms2 +D∗(s)s4, (4.4)

where D∗(s) is the coefficient of the snap feedforward.
The objective of the feedforward F ∗(s) is to minimize the closed-loop error given by

e(s) = S(s)r(s) − S(s)Gc(s)F ∗(s)r(s), (4.5)

where S(s) denotes the sensitivity function and is defined as

S(s) = (1 +Gc(s)K(s))−1. (4.6)

It results in F ∗(s) = G−1
c (s) and D∗(s) is given by

D∗(s) = G−1
c (s) 1

s4 −m
1
s2 . (4.7)

Assuming the reference trajectory in the mechatronic systems mainly contains low-frequency
components, the low-frequency contribution of the snap feedforward is given by

D = lim
s→0

D∗(s) = lim
s→0

(
G−1

c (s) 1
s4 −m

1
s2

)

=
−m∑nfl

i=1 ki
∏

j ̸=i ω
2
j∏nfl

i=1 ω
2
i

. (4.8)

Finally, the low-order feedforward controller with acceleration and snap is given by

F (s) = ms2 +Ds4, (4.9)

where m and D are the tuning parameters in acceleration and snap.

4.2.4 Feedforward implementation with basis functions
The feedforward controller design method is discussed above in continuous time. However, the
controllers are implemented to digital hardware in discrete time. As a result, the continuous-time
differentiator d

dt
used in the feedforward controller is conventionally replaced by ξ which consists

of the discrete-time differentiator and sampler S.
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Fig. 4.2: Linearly parameterized feedforward with acceleration and snap.

The linearly parameterized feedforward with acceleration and snap is shown in Fig. 4.2. The
feedforward controller F (θ) from the continuous-time reference r(t) to design the discrete-time
feedforward input uff [k] is defined as

F (θ) =
[
ξ2 ξ4

] [θa

θs

]
, (4.10)

where θ =
[
θa θs

]T
are the tuning parameters in acceleration and snap.

Finally, the discrete-time feedforward input uff [k] with acceleration and snap is given by

uff [k] = F (θ)r(t) = Ψ [k]θ =
[
Ψa[k] Ψs[k]

] [θa

θs

]
, (4.11)

where Ψ [k] =
[
Ψa[k] Ψs[k]

]
=
[
ξ2 ξ4

]
r(t) are the discrete-time basis functions that are

correlated to the acceleration and snap of the continuous-time reference r(t), respectively.

4.2.5 Acceleration snap feedforward using backward differentiator
In the conventional approach [69], the discrete-time basis functions are designed by the continuous-
time reference r(t) and the backward differentiator that is defined as follows.

Definition 4.3 (Backward differentiator) : The nth order backward differentiator ξn
bd is given by

ξn
bd =



(
1 − z−1

Ts

)n

z
n
2 S (n : even)(

1 − z−1

Ts

)n 1 + z−1

2 z
n+1

2 S (n : odd)
, (4.12)

where z is the discrete-time shift operator with sampling time Ts defined as znr[k] = r[k + n].
z

n
2 denotes the phase compensation. When n is odd, the phase compensation consists of the half

sample shift z 1
2 that is a combination of one sample shift and the first order approximation of

averaging the current and previous value [69].

The basis function design in acceleration and snap with backward differentiator is shown in
Fig. 4.3 and the basis functions are given by

Ψbd[k] =
[
ξ2

bd ξ4
bd

]
r(t)

=
(1 − z−1

Ts

)2

zr[k]
(

1 − z−1

Ts

)4

z2r[k]
 , (4.13)
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Fig. 4.3: Basis functions of acceleration and snap with a backward differentiator. The solid and
dotted lines denote the continuous-time and discrete-time signals, respectively.

where r[k] = Sr(t).
Finally, the discrete-time feedforward input uff [k] with backward differentiator is given by

uff [k] = Ψbd[k]θ, (4.14)

where θ =
[
θa θs

]T
is the tuning parameter.

Although the on-sample performance is mainly discussed in the conventional approach using
the backward differentiator, the sampled-data characteristics with sampler and zero-order-hold
are not taken into account.

4.3 Structured feedforward using multirate zero-order-hold
differentiator

In this section, the linearly parameterized feedforward controller design method considering
sampled-data characteristics is presented. The improvement of both on-sample and intersample
performance is based on the state compatibility in a sampled-data system with zero-order-hold
and integrator. The basis functions are designed by the multirate zero-order-hold differentiator.
The approach is applied to the low-order feedforward controller design with acceleration and snap
for multi-modal motion systems. It results in Contribution 4.1.

4.3.1 State compatibility in integrator with zero-order-hold
The continuous-time differentiator d

dt
used in the feedforward controller should be replaced by

the sampled-data differentiator ξ defined as follows.

Definition 4.4 (Sampled-data differentiator) : The nth order sampled-data differentiator ξn with
sampling time Ts is the conversion from the continuous-time signal r(t) to the discrete-time signal
Ψn[k] that is correlated to the nth order derivative of r(t) and defined as

Ψn[k] = ξnr(t). (4.15)

In the n samples lifted system, the exact state tracking can be achieved in every n sample
using such as a minimum-time dead-beat control [72] and multirate feedforward control [20]. In
such cases, the states in every n sample are given by the multirate sampler defined as follows.

Definition 4.5 (Multirate sampler) : The multirate sampler Sn in every n sample with sampling
time Ts is defined as

Sn : r(t) 7→ r[in], r[in] = r(knTs). (4.16)
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The state-space representation of the continuous-time nth order integrator in the controllable
canonical form is given by

(1
s

)n

= Hnc
s=
[

Anc bnc

cnc 0

]
=



0 1 0 0 0

0 . . .
. . . 0

...

0 0 . . . 1 0
0 0 0 0 1
1 0 · · · 0 0


, (4.17)

where Anc ∈ Rn×n, bnc ∈ Rn×1, and cnc ∈ R1×n. To improve both on-sample and intersample
performance in sampled-data systems with zero-order-hold and integrator, the basis functions
used in the linearly parameterized feedforward controller should satisfy the state compatibility
defined as follows.

Definition 4.6 (State compatibility) : The discrete-time signal Ψn[k] correlated to the nth order
derivative signal of the continuous-time signal r(t) satisfies state compatibility if the output
through the system consisted of the continuous-time (n − m)th order integrator H(n−m)c and
zero-order-hold H is equal to the continuous-time mth order derivative signal of r(t) in every n
sample sampled by multirate sampler Sn and defined as

Sn
dm

dtm r(t) = SnH(n−m)cHΨn[k], (4.18)

where m = 0, 1, . . . , n− 1.

4.3.2 Multirate zero-order-hold differentiator for intersample performance
To improve the intersample performance in the discrete-time system, not only the output but also
the states of the reference trajectory are considered. The multirate zero-order-hold differentiator
is designed by the inverse of the continuous-time integrator discretized by sampler and zero-
order-hold to satisfy the state compatibility. In this chapter, it is assumed that the continuous-time
reference r(t) is Cn−1 class and differentiable at least n− 1 times.

To satisfy the n states compatibility in n every sample, the lifted signal is considered using
the lifted operator defined as follows.

Definition 4.7 (Lifting operator) : The lifting operator Ln in every n sample is defined as

Ln : u[k] 7→ u[in], (4.19)

where

u[in] =
[
u[nin] u[nin + 1] · · · u[nin + (n− 1)]

]T
∈ Rn. (4.20)

The n sample lifted system is defined as follows.

Definition 4.8 (Lifted system) : Consider a discrete-time
system Hd

z= Cd(zI − Ad)−1Bd + Dd. The relation between the input and the output in the n
sample lifted system of Hd is given by

y[in] = Lny[k] = (LnHdL−1
n )(Lnu[k]) = Hdu[in], (4.21)
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where

y[in] =
[
y[nin] y[nin + 1] · · · y[nin + (n− 1)]

]T
∈ Rn, (4.22)

and the lifted system Hd is defined as

Hd
zn

= LnHdL−1
n =

[
Ad Bd

Cd Dd

]

=



An
d An−1

d Bd An−2
d Bd · · · AdBd Bd

Cd Dd O · · · · · · O

CdAd CdBd Dd

. . .
...

...
...

. . .
. . .

. . .
...

CdAn−2
d CdAn−3

d Bd CdAn−4
d Bd

. . . Dd O
CdAn−1

d CdAn−2
d Bd CdAn−3

d Bd · · · CdBd Dd


. (4.23)

Considering the states in discrete-time, the nth order integrator discretized by sampler and
zero-order-hold is given by

Hnd
z= SHncH =

[
And bnd

cnd 0

]

=
[
eAncTs A−1

nc (eAncTs − I)bnc

cnc 0

]
. (4.24)

To design the inverse of the continuous-time integrator discretized by sampler and zero-order-
hold, the n sample lifted nth order integrator is given by

Hnd
zn

= LnHndL−1
n =

[
And Bnd

Cnd Dnd

]
, (4.25)

and in state-space representation defined as

xn[in + 1] = Andxn[in] + Bndu[in] (4.26)
y[in] = Cndxn[in] + Dndu[in] (4.27)

where

xn[in] =
[
x0[in] x1[in] · · · xn−1[in]

]T
∈ Rn. (4.28)

Satisfying the state compatibility, the relationship between the reference and the states is given
by

rn[in] = xn[in], (4.29)

where

rn[in] = Sn

[
1 d

dt · · · dn−1

dtn−1

]T
r(t)

=
[
r0[in] r1[in] · · · rn−1[in]

]T
∈ Rn. (4.30)

From the discussions above, the multirate zero-order-hold differentiator is given as follows.
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Fig. 4.4: Basis functions of acceleration and snap using multirate zero-order-hold differentiator.
The solid line denotes the continuous-time signal. The dotted, high-frequency dashed and low-
frequency dashed lines denote the discrete-time signal sampled by Ts, 2Ts, and 4Ts, respectively.

Theorem 4.1 (Multirate zero-order-hold differentiator) : From (4.26) and (4.29), considering the
inverse of the continuous-time nth order integrator discretized by sampler and zero-order-hold
using the multirate feedforward control [20], thenth order multirate zero-order-hold differentiator
that satisfies the state compatibility is given by

ξn
mr = L−1

n B−1
nd (znIn − And)Sn

[
1 d

dt · · · dn−1

dtn−1

]T
. (4.31)

Proof. See Definition 4.6 and [20].

4.3.3 Acceleration snap feedforward using multirate zero-order-hold dif-
ferentiator

To design the feedforward controller with acceleration and snap, the lifted systems of the double
integrator and the 4th integrator discretized by zero-order-hold are given by

H2d
z2
= L2SH2cHL−1

2 =
[

A2d B2d

C2d D2d

]
, (4.32)

H4d
z4
= L4SH4cHL−1

4 =
[

A4d B4d

C4d D4d

]
, (4.33)

where the continuous-time double integrator H2c and 4th integrator H4c are represented in con-
trollable canonical form, respectively.

The basis function design using multirate zero-order-hold differentiator is shown in Fig. 4.4
and the basis functions are given by

Ψmr[k] =
[
ξ2

mr ξ4
mr

]
r(t)

=
[
L−1

2 B−1
2d (z2I2 − A2d)r2[i2]

L−1
4 B−1

4d (z4I4 − A4d)r4[i4]

]T

. (4.34)

Finally, the discrete-time feedforward input uff [k] using the multirate zero-order-hold differ-
entiator is given by

uff [k] = Ψmr[k]θ, (4.35)

where θ =
[
θa θs

]T
is the tuning parameter.
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4.4 Comparison with multirate feedforward control
In this section, the comparison between the linearly parameterized feedforward (LPFF) and the
multirate feedforward (MRFF) [20] is conducted via simulations in a mass-damper-spring motion
system and a mass-spring-mass motion system.

4.4.1 Conditions
The continuous-time reference r(t) is the 4th order polynomial trajectory shown in Fig. 4.5. The
sampling time of the discrete-time controller is Ts = 5 ms. The continuous-time output y(t) is
obtained by higher sampling frequency in every 0.5 ms only for evaluation of the continuous-time
error e(t). The continuous-time error e(t) is compared using the linearly parameterized feed-
forward with model parameters, the linearly parameterized feedforward with tuning min∥e[k]∥2,
and the multirate feedforward with model parameters. The simulation is conducted in an open
loop without a feedback controller.

4.4.2 Controller design for mass-damper-spring motion system
The model G2 of the mass-damper-spring motion system is given by

G2(s) = 1
ms2 + bs+ k

, (4.36)

where m = 4 × 10−4, b = 8 × 10−2, and k = 4.
In the linearly parameterized feedforward, the basis functions are given by

Ψ [k] =
[
1 ξ1

mr ξ2
mr

]
r(t), (4.37)

and the tuning parameters are given by

θ =
[
k b m

]T
. (4.38)

The multirate feedforward provides perfect state tracking at every 2 sample for the second
order model.

4.4.3 Controller design for mass-spring-mass motion system
The model G4 of the mass-spring-mass motion system is given by

G4(s) = 1
m1m2

k
s4 + (m1 +m2)s2

, (4.39)

where m1 = m2 = 2 × 10−4 and k = 20.
In the linearly parameterized feedforward, the basis functions are given by

Ψ [k] =
[
ξ2

mr ξ4
mr

]
r(t), (4.40)

and the tuning parameters are given by

θ =
[
m1 +m2

m1m2

k

]T
. (4.41)

The multirate feedforward provides perfect state tracking at every 4 sample for the 4th order
model.
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Fig. 4.5: Continuous-time 4th order polynomial trajectory reference r(t) and its derivatives.
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Fig. 4.6: Simulation results of tracking error e(t) in mass-damper-spring motion system G2
using linearly parameterized feedforward with model parameters ( ), linearly parameterized
feedforward with tuning min∥e[k]∥2 ( ), multirate feedforward with model parameters ( ). ( )
and ( ) show sampling point every Ts and 2Ts.
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Fig. 4.7: Simulation results of tracking error e(t) in mass-spring-mass motion system G4 using
linearly parameterized feedforward with model parameters ( ), linearly parameterized feedfor-
ward with tuning min∥e[k]∥2 ( ), multirate feedforward with model parameters ( ). ( ) and ( )
show sampling point every Ts and 4Ts.

4.4.4 Comparison

The tracking errors of simulations in the mass-damper-spring motion system are shown in Fig. 4.6.
It shows that the linearly parameterized feedforward with the model parameter makes a large
error at constant velocity regions because of the mismatch between the feedforward model
and the discretized model of the controlled system. After tuning as min∥e[k]∥2, the linearly
parameterized feedforward provides a smaller error than that of the multirate feedforward.

The tracking errors of simulations in the mass-damper-spring motion system are shown
in Fig. 4.7. It shows that the linearly parameterized feedforward with the model parameter
makes a large oscillating error because of the mismatch of the resonance frequency between the
feedforward model and the discretized model of the controlled system. The large oscillating error
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Table 4.1: Root Mean Square error RMS(e(t)) in simulation.

RMS(e(t)) [rad] G2 G4
LPFF with model parameters 1.78 × 10−1 4.14 × 10−3

LPFF with tuning min∥e[k]∥2 2.20 × 10−3 8.35 × 10−4

MRFF with model parameters 1.81 × 10−3 4.65 × 10−4

u y

Fig. 4.8: Experimental setup of a two-inertia system connected via a flexible shaft. The motor
on the left side is used as an input u and the encoder on the right side is used as an output y,
respectively.

is improved in the linearly parameterized feedforward with tuning as min∥e[k]∥2.
The Root Mean Square (RMS) of the tracking errors in simulations is shown in Table 4.1. It

shows that the tracking error of the linearly parameterized feedforward with tuning as min∥e[k]∥2
is around the same scale as that of the multirate feedforward. As a result, the linearly parameterized
feedforward can provide around the same performance as the multirate feedforward through a
tuning process using the experimental data.

4.5 Application to multi-modal motion system
In this section, the approach in Section 4.3 is applied to a multi-modal motion system. The
experimental results demonstrate performance improvement in both rigid and flexible modes. It
results in Contribution 4.2.

4.5.1 Setup
The experimental setup of the two-inertia system is shown in Fig. 4.8. The system is modeled as
the multi-modal representation and given by

Gc(s) = Grb(s) +Gfl(s) (4.42)

= 1
ms2 + k

m(s2 + 2ζωs+ ω2) , (4.43)

where m = 0.0004, k = −1, ζ = 0.01, and ω = 2π × 54 rad/s.
The frequency response data, the continuous-time model Gc, and the discrete-time model Gd

are shown in Fig. 4.9. Note that these models are not directly used for the feedforward controller
design but only used for the physical analysis.
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Fig. 4.9: Bode diagram of experimental setup: frequency response data ( ), continuous-time
model Gc ( ), and discrete-time model Gd ( ). Nyquist frequency is shown in a black dotted
line ( ).

4.5.2 Conditions
The continuous-time reference r(t) is the 4th order polynomial trajectory shown in Fig. 4.5. The
sampling time of the discrete-time controller is Ts = 5 ms. The continuous-time output y(t) is
obtained by higher sampling frequency in every 0.25 ms only for evaluation of the continuous-
time error e(t). The approach using the multirate zero-order-hold differentiator ξmr is compared
to that using the backward differentiator ξbd. The feedforward controller with acceleration and
snap is used in the experiment. The same viscous friction compensation with the basis function
ṙ[k] = S d

dt
r(t) is used in each method. The tuning parameters are optimized by the norm-optimal

iterative learning control with several iterative experiments [73].

4.5.3 Experimental validation
The continuous-time error e(t) in the experimental result is shown in Fig. 4.10. The tracking
performance using the multirate zero-order-hold differentiator is improved in two points compared
to that using the backward differentiator. First, the acceleration feedforward compensates for rigid
dynamics correctly and the error during acceleration and deacceleration periods of the reference
becomes smaller. Second, the snap feedforward compensates flexible dynamics correctly and
the error because of the mechanical resonance becomes smaller. The results demonstrate that
the feedforward using the multirate zero-order-hold differentiator outperforms that using the
backward differentiator in both rigid and flexible modes.
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Fig. 4.10: Tracking error e(t) in experiment with Ψ = [ṙ, Ψa, Ψs]: using backward differentiator
( ) and multirate zero-order-hold differentiator ( ). The feedforward using the multirate zero-
order-hold differentiator outperforms that using the backward differentiator in both rigid and
flexible modes.

4.6 Conclusion
The low-order feedforward control approach considering the sampled-data characteristics is
developed to improve both on-sample and intersample performance for reference tracking in
multi-modal motion systems. The feedforward controller is linearly parameterized and the basis
functions are designed using the multirate zero-order-hold differentiator for the state compatibility
to the continuous-time reference. Application to the multi-modal motion system demonstrates a
significant improvement in tracking performance compared to the conventional approach in the
experiment. Ongoing research focuses on learning the tuning parameters from the experimental
data, rational basis functions considering the sampled-data characteristics, and extension to the
multi-input multi-output systems.
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Chapter 5

Iterative Learning Control with MIMO
Sampled-Data Basis Functions

Increasing performance requirements in high-precision motion systems lead to a situation where
both multivariable and sampled-data implementation aspects need to be addressed. The aim
is to develop a design framework for a multi-input multi-output feedforward controller to im-
prove continuous-time tracking performance through learning. The sampled-data feedforward
controller is designed with physically interpretable parameters using a multirate zero-order-hold
differentiator. The developed approach enables interaction compensation for multi-input multi-
output systems and the feedforward parameters are updated through learning. The performance
improvement is experimentally validated in a multi-input multi-output motion system compared
to a conventional diagonal feedforward controller.

5.1 Introduction
Feedforward control is essential in increasing performance requirements for motion control
in industrial mechatronic systems such as semiconductor lithography systems [63, 74], wire
bonders [37], machine tools [38, 75], printers [50], atomic force microscopies [76], magnetic
bearings [77], and industrial robots [78]. Iterative learning control (ILC) is one of the algorithms
to update the feedforward controller by the error data of the previous iteration, and the error
is reduced through each iteration. It is beneficial that the feedforward controller consists of
physically intuitive parameters to enable manual tuning in an industrial implementing process
after learning from experimental data.

Sampled-data feedforward control improves the continuous-time tracking performance of
high-precision motion systems where the sampling frequency is not sufficiently high compared
to the motion profile [15]. In industrial control applications, the controlled system is discretized
by sampler and zero-order-hold and these characteristics should be considered in feedforward
controller design to improve not only on-sample but also intersample performance. State tracking
feedforward control [20, 43] and ILC [79] with multirate inversion can improve the continuous-
time tracking performance in sampled-data systems. These controllers enable on-sample state
tracking and it leads to physically natural intersample behavior.

Physical interpretability and intuitive tuning of the feedforward controller are achieved by
physical analysis of the model structure for the controlled system [80, 81]. From these analyses,
the feedforward controller can be parameterized with tuning parameters and basis functions [69].
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Basis functions typically consist of a reference signal and its derivatives [69] and nonlinear
functions such as friction compensation [38]. This structure enables low-complexity parameteri-
zation and tuning parameters can have a physical meaning depending on the structure of the basis
functions.

Although important contributions have been made to improve the performance and intuitive-
ness of feedforward control, the sampled-data characteristics with sampler and zero-order-hold
are not taken into account in the basis function design, and the structure of multi-input multi-
output (MIMO) feedforward control is not discussed in the context of intuitive tuning and leaning
from experimental data. The aim of this chapter is to design the MIMO feedforward controller to
improve the continuous-time tracking performance through learning. Compared to conventional
approaches, the developed basis function design considers the sampled-data characteristics. In
this chapter, the feedforward controller is parameterized with basis functions for MIMO mo-
tion systems and it enables physical interpretation of the feedforward controller parameters and
analytic solution of data-driven parameter tuning.

The main contribution of this chapter is fixed-structure feedforward considering sampled-data
characteristics and interactions in MIMO motion systems. The contributions include:

Contribution 5.1 : Discrete-time basis functions are designed for continuous-time reference
considering sampled-data characteristics.

Contribution 5.2 : ILC with basis functions is formulated considering the dynamics and inter-
action of MIMO motion systems.

Contribution 5.3 : The developed approach is experimentally validated in a MIMO motion
system.

The outline is as follows. In Section 5.2, the problem that is considered in this chapter is
formulated. In Section 5.3, the basis function design considering continuous-time performance is
described, constituting Contribution 5.1. In Section 5.4, ILC with basis functions is formulated in
MIMO motion systems, constituting Contribution 5.2. In Section 5.5, the performance improve-
ment with interaction compensation is experimentally validated, constituting Contribution 5.3.
In Section 5.6, conclusions are presented.

5.2 Problem formulation
In this section, the problem to improve continuous-time tracking performance in MIMO motion
systems is formulated. First, the reference tracking problem is defined in continuous time. Second,
interaction compensation is investigated for reference tracking in MIMO motion systems. Finally,
the problems in this chapter are described.

5.2.1 Continuous-time performance in sampled-data control
The considered tracking control configuration in anu-inputny-output continuous-time linear time-
invariant system G is shown in Fig. 5.1, with reference r(t) ∈ Rny , control input u(t) ∈ Rnu ,
and output y(t) ∈ Rny .

The system is controlled by the sampled-data controller that consists of feedforward controller
F (θ), feedback controller K, sampler S, and zero-order-hold H, where sampler and zero-order-
hold are defined as follows.
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y[k]u(t)u[k]

uff [k]
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+
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−

F (θ)
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Fig. 5.1: Tracking control diagram. The continuous-time system G is controlled by the feed-
forward controller F (θ) and the discrete-time feedback controller K with sampler S and zero-
order-hold H. The objective is to minimize the continuous-time error e(t). The solid and dotted
lines denote the continuous-time and discrete-time signals, respectively.

Definition 5.1 (Sampler) : The sampler S with sampling time Ts is defined as

S : r(t) 7→ r[k], r[k] = r(kTs). (5.1)

Definition 5.2 (Zero-order-hold) : The zero-order-hold H with sampling time Ts is defined as

H : u[k] 7→ u(t), u(kTs + τ) = u[k], τ = [0, Ts). (5.2)

The control objective in this chapter is to minimize the continuous-time error e(t). Tradition-
ally, the conventional discrete-time controller only focuses on the on-sample performance with
the discrete-time error e[k]. To improve the continuous-time error e(t), not only on-sample but
also intersample performance should be considered.

5.2.2 Decoupling control for interaction compensation
In the motion control of MIMO motion systems, the static decoupling is applied by the input
decoupling matrix Tu and the output decoupling matrix Ty. The decoupled system TyGTu

should be square and diagonally dominant. In many cases, the single-input single-output (SISO)
controller is designed after the static decoupling. Even if the system is statically decoupled, the
off-diagonal terms still remain and it results in interaction between inputs and outputs [63].

In this chapter, the feedforward controller is designed considering both diagonal and off-
diagonal dynamics to compensate for interaction through learning from data with less modeling
effort of the MIMO motion system.

5.2.3 Problem description
In this chapter, the controller design problem is with respect to the following requirements:

Requirement 5.1 : The sampled-data characteristic should be considered in the discrete-time
basis functions to improve continuous-time performance.

Requirement 5.2 : The basis functions should be parameterized with physically interpretable
parameters considering the dynamics and interaction of MIMO motion systems.

Requirement 5.1 is dealt with in Section 5.3 and it results in Contribution 5.1. Requirement 5.2
is dealt with in Section 5.4 and it results in Contribution 5.2.
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5.3 Basis function design using multirate zero-order-hold dif-
ferentiator

In this section, the basis function design using a sampled-data differentiator is presented. First,
the conventional approach using a backward differentiator is analyzed in sampled-data control.
Second, the idea of state compatibility is defined to improve intersample performance. Third, the
multirate zero-order-hold differentiator is developed to design the sampled-data basis functions
that satisfy state compatibility. Finally, continuous-time performance improvement is shown in a
single-mass motion system example. It results in Contribution 5.1.

5.3.1 Challenge in sampled-data basis function design
The continuous-time feedforward controller can be parameterized using the reference signals
r and its derivatives. It results in the combination with the tuning parameters θ and the
continuous-time basis functions that consist of a continuous-time differentiator d

dt
. For example,

the continuous-time acceleration feedforward controller F (θ) can be designed for a single-mass
motion system G(s) = 1

ms2 as F (θ) = θ d2

dt2 . In this example, the basis function is Ψ = d2

dt2 r(t)
and the tuning parameter is θ = m. However, in industrial mechatronic systems, the motion
controllers are typically implemented in discrete time. Therefore, to design the discrete-time
basis function Ψ , the continuous-time differentiator d

dt
should be replaced by the sampled-data

differentiator ξ defined as follows.

Definition 5.3 (Sampled-data differentiator) : The nth order sampled-data differentiator ξn with
sampling time Ts is the conversion from the continuous-time signal r(t) to the discrete-time signal
Ψn[k] that is compatible with the nth order derivative of r(t) and defined as

Ψn[k] = ξnr(t). (5.3)

In the conventional approach [69], the discrete-time basis functions are designed by the
continuous-time reference r(t) and the backward differentiator defined as follows.

Definition 5.4 (Backward differentiator) : The nth order backward differentiator ξn
bd is given by

ξn
bd =



(
1 − z−1

Ts

)n

z
n
2 S (n : even)(

1 − z−1

Ts

)n 1 + z−1

2 z
n+1

2 S (n : odd)
, (5.4)

where z is the discrete-time shift operator with sampling time Ts defined as znr[k] = r[k + n].
z

n
2 denotes the phase compensation. When n is odd, the phase compensation consists of the half

sample shift z 1
2 that is a combination of one sample shift and the first order approximation of

averaging the current and previous value [69].

The backward differentiator does not take into account the effects of sampler and zero-order-
hold, the performance deteriorates when the sampling frequency is not sufficiently high.



5.3. Basis function design using multirate zero-order-hold differentiator 83

5.3.2 State compatibility for intersample performance
The sampled-data characteristics can be taken into account by the state tracking control framework
[20, 43, 79]. In the n samples lifted system, the exact state tracking can be achieved in every n
sample using such as a minimum-time dead-beat control [72] and multirate feedforward control
[20]. In such cases, the states in every n sample are given by the multirate sampler defined as
follows.

Definition 5.5 (Multirate sampler) : The multirate sampler Sn in every n sample with sampling
time Ts is defined as

Sn : r(t) 7→ r[in], r[in] = r(innTs). (5.5)

The state-space representation of the continuous-time nth order integrator in the controllable
canonical form is given by

(1
s

)n

= Hnc
s=
[

Anc bnc

cnc 0

]
=



0 1 0 0 0

0 . . .
. . . 0

...

0 0 . . . 1 0
0 0 0 0 1
1 0 · · · 0 0


, (5.6)

where Anc ∈ Rn×n, bnc ∈ Rn×1, and cnc ∈ R1×n. To improve both on-sample and intersample
performance in sampled-data systems with zero-order-hold and integrators, the basis functions
should satisfy the state compatibility defined as follows.

Definition 5.6 (State compatibility) : The discrete-time signal Ψn[k], which is compatible with
the nth order derivative signal of the continuous-time signal r(t), satisfies state compatibility if
the output through the system, that consists of the continuous-time (n − m)th order integrator
H(n−m)c and zero-order-hold H, is equal to the continuous-time mth order derivative signal of
r(t) in every n sample sampled by multirate sampler Sn and defined as

Sn
dm

dtm r(t) = SnH(n−m)cHΨn[k], (5.7)

where m = 0, 1, . . . , n− 1.

The sampled-data differentiator that satisfies the state compatibility should be designed to
enable the feedforward parameterization with basis functions to improve continuous-time perfor-
mance.

5.3.3 Multirate zero-order-hold differentiator with state compatibility
To improve the intersample performance in the discrete-time system, not only the output but also
the states of the reference trajectory are considered. The multirate zero-order-hold differentiator is
designed by the inverse of the continuous-time integrator discretized by sampler and zero-order-
hold to satisfy the state compatibility. In this chapter, the reference is assumed to be sufficiently
smooth and satisfies the following assumption:
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Assumption 5.1 (Smoothness of reference) : The continuous-time reference r(t) for n states
tracking is Cn−1 class and differentiable at least n− 1 times.

To satisfy the n states compatibility in every n sample, the lifted signal is considered using
the lifting operator defined as follows.

Definition 5.7 (Lifting operator) : The lifting operator Ln in every n sample is defined as

Ln : u[k] 7→ u[in], (5.8)

where

u[in] =
[
u[nin] u[nin + 1] · · · u[nin + (n− 1)]

]T
∈ Rn. (5.9)

The n samples lifted system is defined as follows.

Definition 5.8 (Lifted system) : Consider a discrete-time
system Hd

z= Cd(zI − Ad)−1Bd + Dd. The relation between the input and the output in the n
samples lifted system of Hd is given by

y[in] = Lny[k] = (LnHdL−1
n )(Lnu[k]) = Hdu[in], (5.10)

where

y[in] =
[
y[nin] y[nin + 1] · · · y[nin + (n− 1)]

]T
∈ Rn, (5.11)

and the lifted system Hd is defined as

Hd
zn

= LnHdL−1
n =

[
Ad Bd

Cd Dd

]

=



An
d An−1

d Bd An−2
d Bd · · · AdBd Bd

Cd Dd O · · · · · · O

CdAd CdBd Dd

. . .
...

...
...

. . .
. . .

. . .
...

CdAn−2
d CdAn−3

d Bd CdAn−4
d Bd

. . . Dd O
CdAn−1

d CdAn−2
d Bd CdAn−3

d Bd · · · CdBd Dd


. (5.12)

Considering the states in discrete-time, the nth order integrator discretized by sampler and
zero-order-hold is given by

Hnd
z= SHncH =

[
And bnd

cnd 0

]

=
[
eAncTs A−1

nc (eAncTs − I)bnc

cnc 0

]
. (5.13)

To design the inverse of the nth order integrator discretized by sampler and zero-order-hold,
the n samples lifted system is given by

Hnd
zn

= LnHndL−1
n =

[
And Bnd

Cnd Dnd

]
, (5.14)
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r(t)
Sn

Ψn[k]
B−1

nd (znIn − And) L−1
n

rn[in][
1 d

dt · · · dn−1

dtn−1

]T

Fig. 5.2: Block diagram of basis function design using multirate zero-order-hold differentiator.
The dotted and dashed lines denote the discrete-time signal sampled by Ts and nTs, respectively.

and in state-space representation defined as

xn[in + 1] = Andxn[in] + Bndu[in] (5.15)
y[in] = Cndxn[in] + Dndu[in] (5.16)

where

xn[in] =
[
x0[in] x1[in] · · · xn−1[in]

]T
∈ Rn. (5.17)

Satisfying the state compatibility, the relationship between the reference and the states is given
by

rn[in] = xn[in], (5.18)

where

rn[in] = Sn

[
1 d

dt · · · dn−1

dtn−1

]T
r(t)

=
[
r0[in] r1[in] · · · rn−1[in]

]T
∈ Rn. (5.19)

From the discussions above, the multirate zero-order-hold differentiator is given as follows.

Theorem 5.1 (Multirate zero-order-hold differentiator) : From (5.15) and (5.18), considering the
inverse of the state equation in the continuous-time nth order integrator discretized by sampler
and zero-order-hold using the multirate feedforward control [20], the nth order multirate zero-
order-hold differentiator ξn

mr that satisfies the state compatibility is given by

ξn
mr = L−1

n B−1
nd (znIn − And)Sn

[
1 d

dt · · · dn−1

dtn−1

]T
. (5.20)

Proof. See Definition 5.6 and [20].

The basis function design procedure using multirate zero-order-hold differentiator is shown
in Fig. 5.2.

5.3.4 Example in continuous-time performance improvement
The continuous-time performance improvement can be shown clearly in a single-mass motion
system example. The controlled system is given as G(s) = 1

ms2 where m = 1 kg is the mass of
the rigid body. The reference is the fourth order polynomial trajectory as shown at the top of
Fig. 5.3. The sampling time is set to Ts = 10 ms.

The center of Fig. 5.3 shows control inputs with the acceleration feedforward using the back-
ward differentiator u[k] = mξ2

bdr(t) [N] and that using the multirate zero-order-hold differentiator
u[k] = mξ2

mrr(t) [N].
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Fig. 5.3: Simulation results of the open-loop tracking in a single-mass motion system with
acceleration feedforward using the backward differentiator ( ) and that using the multirate zero-
order-hold differentiator ( ). Top: fourth order reference ( ). Center: control inputs and a
continuous-time acceleration profile ( ). Bottom: tracking errors. The multirate zero-order-hold
differentiator considers the sampled-data characteristics with sampler and zero-order-hold, and it
results in a smaller error than the backward differentiator. ( ) and ( ) show the sampling points
every Ts and 2Ts.

The bottom of Fig. 5.3 shows the comparison of the open-loop tracking errors. It shows
that the acceleration feedforward using a multirate zero-order-hold differentiator outperforms
that of the backward differentiator because of the state compatibility which compensates for the
controlled system discretized by sampler and zero-order-hold.

5.4 Iterative learning control with MIMO structured basis
functions

In this section, the feedforward parameterization and the parameter updating framework using
ILC with basis functions are presented. The structured feedforward parameterization for MIMO
motion systems is formulated with physically intuitive parameters. Parameter update through
learning is described with the monotonic convergence condition in MIMO motion systems. It
results in Contribution 5.2.
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5.4.1 MIMO structured low-order feedforward parameterization
The dynamics of mechatronic systems are typically dominated by mechanics assuming that
electronics are much faster than mechanics. This results in a situation where rigid modes are
dominating the lower frequency and there are several flexible modes at a higher frequency due
to limited mechanical stiffness. The nu-input ny-output continuous-time multi-modal motion
system [46] is defined as

Gc(s) = Gr(s) + Gf (s)

=
nr∑

kr=1

ckrbkr

(s2 + 2ζkrωkrs+ ω2
kr

)︸ ︷︷ ︸
rigid modes

+
nf∑

kf =1

ckf
bkf

(s2 + 2ζkf
ωkf

s+ ω2
kf

)︸ ︷︷ ︸
flexible modes

, (5.21)

where nr ∈ N+ and nf ∈ N+ are the number of rigid and flexible modes, ω ∈ R+ and ζ ∈ R+
are the resonance angular frequency and the damping coefficient. The vectors b ∈ R1×nu and
c ∈ Rny×1 are associated with the inputs, the outputs, and the mode shapes. In this chapter, the
system is assumed to be square as ny = nu.

To compensate for not only the rigid modes but also the flexible modes in MIMO motion
systems, the traditional rigid body feedforward is extended with the additional snap feedforward
[80] and the ideal feedforward controller F ∗(s) is defined as

F ∗(s) = G−1
r (s) + D∗(s)s4, (5.22)

where D∗(s) is the coefficient of the snap feedforward aiming to compensate for the compliance
of the flexible modes.

The objective of the feedforward controller F ∗(s) is to minimize the closed-loop error given
by

e(s) = S(s)r(s) − S(s)Gc(s)F ∗(s)r(s), (5.23)

where S(s) denotes the sensitivity function matrix and is defined as

S(s) = (I + Gc(s)Kc(s))−1. (5.24)

It results in F ∗(s) = G−1
c (s) and D∗(s) is given by

D∗(s) = 1
s4 (G−1

c (s) − G−1
r (s)). (5.25)

Assuming the reference trajectory in the mechatronic systems mainly contains the low-
frequency components and the resonance frequencies of the rigid modes are enough smaller
than that of flexible modes approximated to ωkr ≃ 0, the compliance that corresponds to the
low-frequency behavior of the flexible modes is given by

D = lim
s→0

D∗(s) = lim
s→0

{ 1
s4 (G−1

c (s) − G−1
r (s))

}

= −

 nr∑
kr=1

ckrbkr

−1 nf∑
kf =1

ckf
bkf

ω2
kf

 nr∑
kr=1

ckrbkr

−1

. (5.26)
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Fig. 5.4: Block diagram of iterative learning control with basis functions.

Hence, the low-order feedforward controller for MIMO motion systems is parameterized as

F (θ) = Θp + Θv
d
dt + Θa

d2

dt2︸ ︷︷ ︸
rigid body

compensation

+ Θs
d4

dt4︸ ︷︷ ︸
compliance

compensation

, (5.27)

where Θp,Θv,Θa,Θs ∈ Rnu×ny are the parameter matrices of the feedforward controller corre-
sponding to the position, velocity, acceleration and snap basis functions. Finally, the continuous-
time differentiator d

dt
is replaced by the sampled-data differentiator ξ, and the fixed-structure

sampled-data feedforward controller for MIMO motion systems is given by

F (θ) = Θp + Θvξ + Θaξ
2 + Θsξ

4. (5.28)

Note that this feedforward parameterization includes the pole dynamics of the rigid mode and
the compliance of pole and zero dynamics in flexible modes. The dynamics of the discretization
zeros are included in the sampled-data differentiator.

5.4.2 Norm-optimal ILC with basis functions
Achieving higher performance and ease of tuning for the MIMO feedforward controller, ILC
with basis functions is implemented. The controller structure is shown in Fig. 5.4. To update
feedforward parameters through learning, the optimization criterion from the present studies
[73, 81] is defined as follows.

Definition 5.9 (Norm-optimal MIMO ILC with basis functions) : The optimization criterion for
norm-optimal ILC with basis functions is given by

J (θj+1) = ∥ej+1∥We + ∥uffj+1∥Wff
+ ∥uffj+1 − uffj

∥W∆ff
, (5.29)

where the weighting matrices are We ≻ 0, Wff ,W∆ff ⪰ 0, the parameters of the feedforward
controller are θj ∈ Rnθ , and the feedforward input in next iteration is uffj+1 = F (θj+1)r.

Here, the weighting matrices We, Wff , W∆ff correspond to optimal performance, robustness
for model uncertainty, and robustness for trial varying disturbances, respectively.

The error in trial j + 1 is given by

ej+1 = Sr − SGuffj+1 (5.30)
= ej − SG(uffj+1 − uffj

), (5.31)
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where S = (I + GK)−1.
The feedforward parameter update is given by

θ∗
j+1 = arg min

θj+1

J (θj+1). (5.32)

When the feedforward input is linearly parameterized in parameters θj+1 and basis functions
Ψ and defined as

uffj+1 = F (θj+1)r = Ψθj+1, (5.33)

the optimization criterion (5.29) is quadratic in θj+1 from (5.31), and an analytic solution to
(5.32) exists [73, 81]. From basis functions Ψ = ∂

∂θj
F (θj)r ∈ Rnu×nθ and weighting matrices

We, Wff , W∆ff , the analytic solution to (5.32) for parameter update is given by

θj+1 = Qθj + Lej, (5.34)

where the learning filters Q and L are given by

Q = (ΨT((SG)TWe(SG) + Wff + W∆f )Ψ )−1ΨT((SG)TWe(SG) + W∆ff )Ψ , (5.35)
L = (ΨT((SG)TWe(SG) + Wff + W∆ff )Ψ )−1ΨT(SG)TWe. (5.36)

From (5.30), (5.33), and (5.34), parameter update is given by

θj+1 = (Q − LSGΨ )θj + LSr, (5.37)

and parameter update in (5.37) leads to monotonic convergence of ∥uffj
∥ if provided weighting

matrices We, Wff , W∆ff are selected properly as satisfying following conditions:

σ(Q − LSGΨ ) < 1 ⇔
σ((ΨT((SG)TWe(SG) + Wff + W∆ff )Ψ )−1ΨTW∆ffΨ ) < 1, (5.38)

where σ(·) is the maximum singular value of the matrix.

5.5 Application to MIMO motion system
In this section, the developed approach combining Section 5.3 and Section 5.4 is applied to a
MIMO motion system. The results demonstrate the performance improvement with interaction
compensation in both the simulation and the experiment. It results in Contribution 5.3.

5.5.1 Motion system
The MIMO motion system that consists of a suspended beam is shown in Fig. 5.5. After the static
decoupling, the controlled system G is given in translation and rotation motions with dual-inputs
(Fy, Tz) and dual-outputs (y,Rz). The frequency response data, the continuous-time model
Gc with the higher-order dynamics for the simulation and the discrete-time model Gd with the
only diagonal rigid dynamics for parameter update are shown in Fig. 5.6. The continuous-time
reference of the translation y is the 4th order polynomial trajectory as shown in Fig. 5.7, and that of
the rotation Rz is set to 0 rad for all time. The sampling frequency of the discrete-time controller
is Fs = 128 Hz and the sampling time is Ts = 1/Fs. The continuous-time outputs y and Rz are
also measured in higher sampling frequency 1024 Hz only for evaluation of the continuous-time
errors e(t). The feedback controller K is designed diagonally with a PD controller and a notch
filter as a 5 Hz closed-loop bandwidth and a 6 dB modulus margin.
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Fig. 5.5: Top view of the experimental setup. The system consists of the suspended beam
with actuation through actuators (u1, u2) and position measurement through sensors (y1, y2) in a
horizontal direction.
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Fig. 5.6: Bode magnitude plot of the experimental setup: frequency response data ( ),
continuous-time model Gc ( ) with the higher-order dynamics for the simulation, and discrete-
time model Gd ( ) with the only diagonal rigid dynamics for parameter update. Nyquist
frequency of the controller is shown in a black dotted line ( ).

5.5.2 Basis function design

From Section 5.4, the low-order feedforward controller for a MIMO motion system is parameter-
ized as

F (θ) =
[
θp11 θp12
θp21 θp22

] [
1
1

]
+
[
θv11 θv12
θv21 θv22

] [
ξ
ξ

]

+
[
θa11 θa12
θa21 θa22

] [
ξ2

ξ2

]
+
[
θs11 θs12
θs21 θs22

] [
ξ4

ξ4

]
, (5.39)
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where the multirate zero-order-hold differentiator ξmr presented in Section 5.3 is used as a
sampled-data differentiator ξ. The basis functions of each output are defined as

Ψy =
[
ry ξry ξ2ry ξ4ry

]
, (5.40)

ΨRz =
[
rRz ξrRz ξ2rRz ξ4rRz

]
, (5.41)

and the tuning parameter vectors are defined as

θ11 =
[
θp11 θv11 θa11 θs11

]
, θ12 =

[
θp12 θv12 θa12 θs12

]
,

θ21 =
[
θp21 θv21 θa21 θs21

]
, θ22 =

[
θp22 θv22 θa22 θs22

]
. (5.42)

In the conventional approach, only the diagonal terms of the feedforward controller are
considered. The feedforward input in the conventional approach is parameterized as

uff = F (θ)r = Ψθ =
[
Ψy 0
0 ΨRz

] [
θ11 θ22

]T
. (5.43)

In the developed approach, not only the diagonal terms but also the off-diagonal terms of the
feedforward controller are taken into account. The off-diagonal terms also can be obtained for
interaction compensation through learning even if there is only a diagonal model. The feedforward
input in the developed approach is parameterized as

uff = F (θ)r = Ψθ

=
[
Ψy ΨRz 0 0
0 0 Ψy ΨRz

] [
θ11 θ12 θ21 θ22

]T
. (5.44)

In both the simulation and the experiment, the weighting matrices are set to We = I and
Wff = W∆ff = O in both the conventional and developed approaches.

5.5.3 Simulation results
The continuous-time errors in the simulations after 20 iterations are shown in Fig. 5.8. It shows
that the rotation error eRz in the conventional approach is improved by the developed approach
due to interaction compensation about factor 100. The translation error ey is also improved but
the interaction effect is not serious in the translation y because the reference of the rotation Rz is
set to 0 rad for all time.

5.5.4 Experimental results
The continuous-time errors in the experiments after 20 iterations are shown in Fig. 5.9. It shows
that the rotation error eRz in the conventional approach is improved by the developed approach
due to interaction compensation also in the experiment about factor 10. The errors ey and eRz

show a similar trend in both the simulation and experimental results. Note that the scales of the
errors in simulation and experiment are different about factor 10 in translation y and about factor
5 in rotation Rz because of the dynamics not included in the simulation model, measurement
noise, and quantization of the sensors and actuators.
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Fig. 5.7: Reference of y: continuous-time 4th order polynomial trajectory and its derivatives.
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Fig. 5.8: Tracking error e(t) in simulation: without ( ) and with ( ) interaction compensation.
Rotation error eRz is improved about factor 100.
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Fig. 5.9: Tracking error e(t) in experiment: without ( ) and with ( ) interaction compensation.
Rotation error eRz is improved about factor 10.
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5.6 Conclusion
Fixed-structure feedforward control considering sampled-data characteristics and interactions in
MIMO motion systems is developed. The feedforward inputs parameterized by MIMO sampled-
data basis functions and physically intuitive tuning parameters are updated through learning.
Application to the MIMO motion system demonstrates a significant improvement in tracking
performance with interaction compensation compared to the conventional diagonal approach in
both the simulation and the experiment even if the parameters are updated with the diagonal
model of the controlled system. Ongoing research focuses on ILC with rational sampled-data
basis functions and basis function design with higher-order dynamics.
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Chapter 6

Disturbance Rejection with Robust
Performance in Dual-Stage Actuator

Disturbance rejection of a Hard Disk Drive (HDD) enables a large amount of data storage in a
recent information society. The aim is to design a feedback controller which rejects disturbances
at multiple frequencies in HDDs. The disturbance rejection is achieved using resonant filters
which have a large peak at disturbance frequencies. The developed approach enables the convex
optimization of resonant filters with phase stabilization and stroke limitation using frequency
response data of a controlled system. The disturbance rejection performance of the optimized
resonant filters is validated in a dual-stage actuator HDD benchmark problem.

6.1 Introduction
Increasing demand for storage capacity of data servers in a recent information society leads to the
importance of the track-following performance in a Hard Disk Drive (HDD) [82]. To improve the
track-following performance, the feedback controller should be designed to reject disturbances in
HDDs.

Model-based approaches are traditionally developed such as using adaptive control [83–86],
resonant filter [87], repetitive control [88, 89], Youla–Kucera parameterization [90], disturbance
observer [91], and coupling controller [92]. They basically need a modeling process of a controlled
system that makes it difficult to consider model variations of mass-produced HDDs. These
approaches also need a heuristic tuning process. Data-based approaches are also developed to
recover disadvantages of model-based approaches such as usingH∞ andH2 robust control [93,94].
These approaches only consider the gain stabilization and it can result in a conservative controller
design. Hardware constraints such as maximum strokes also should be considered for actual
implementation.

Although important contributions have been made to design feedback controllers for dis-
turbance rejection in HDDs, phase stabilization and stroke limitation are not considered in the
optimization of feedback controllers. In this chapter, the developed approach enables the struc-
tured multiple resonant filter design considering phase stabilization and stroke limitation.

The main contributions of this chapter are as follows.

Contribution 6.1 : Resonant filters for a dual-input single-output system are designed by iterative
convex optimization.
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Fig. 6.1: Hard disk drive with a dual-stage actuator.

Contribution 6.2 : Model variations of HDDs are directly dealt with multiple sets of frequency
response data.

Contribution 6.3 : Phase stabilization and stroke limitation are considered in optimization
calculation.

The outline is as follows. In Section 6.2, the track-following problem of a dual-stage actuator
HDD is formulated. In Section 6.3, the developed approach is presented. In Section 6.4, the
performance improvement with the developed approach is validated in a dual-stage actuator HDD
benchmark problem. In Section 6.5, conclusions are presented.

6.2 Problem formulation
Fig. 6.1 illustrates the basic schematic of a dual-stage actuator HDD. This HDD consists of a Voice
Coil Motor (VCM) and a PieZoelecTric (PZT) actuator. The objective of this benchmark problem
is to minimize the tracking error of the magnetic head [95]. The track-following performance is
evaluated in 3σ(yc) the worst case of three times of standard deviation value of the continuous-
time magnetic head position in steady state response for 1 s. The track pitch is Tp = 52.7 nm
and sampling time is Ts = 1/(7200/60)/420 ≃ 1.9841 × 10−6 s. Because of the hardware
constraints, the output stroke of the PZT actuator must be smaller than 50 nm.

Fig. 6.2 shows the block diagram of the dual-stage actuator HDD with continuous-time
control systems Pc, discrete-time feedback controllers Cd, discrete-time multirate filters Fm. The
subscripts p and v denote a PZT actuator and VCM, respectively. The continuous-time control
system has 9 cases of model variations and the subscript kc = 1, . . . , 9 denotes the index of the
9 cases. m ∈ N is the number of multirate. Im is interpolator for m times up-sampling. Hm is
multirate zero-order-hold in m times up-sample. S is sampler.

The frequency response data of the given open-loop controlled systemsGp andGv in Fig. 6.2
that consists of the controlled systems and pre-designed feedback controllers [95] is shown in
Fig. 6.3. In this benchmark problem, the external disturbances consist of repeatable run-out dRRO,
rotational vibration df , and fan-induced vibration dp. These three disturbances can be combined
into one output disturbance d equivalently that is given by

dkc(jωkf
) = Pcv,kc(jωkf

)df (jωkf
) + dp(jωkf

) − dRRO(jωkf
). (6.1)

The amplitude spectrum of the output disturbance d in 9 cases is shown in Fig. 6.4.
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Fig. 6.2: Block diagram of a hard disk drive with a dual-stage actuator.

(a) PZT actuator Gp. (b) VCM Gv .

Fig. 6.3: Frequency responses of given open-loop systems.

Fig. 6.4: Amplitude spectrum of output disturbances.

In this chapter, the reference signal is r = 0 in all time and the objective is designing the
resonant filters Frp and Frv for each actuator in addition to given open-loop controlled systemGp

and Gv to minimize the worst case of track-following error against to the output disturbance d.
From these conditions, the data-based feedback controller design method should be presented

with respect to the following requirements.

Requirement 6.1 : The feedback controller is represented in structured parameterization and the
parameters can be designed by convex optimization using frequency response data.
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Fig. 6.5: Block diagram of resonant filters.

Requirement 6.2 : The feedback controller satisfies robust stability and robust performance by
considering the model variation of the controlled system.

Requirement 6.3 : The feedback controller can be applied to a dual-stage actuator HDD with
respect to hardware restrictions.

Considering these requirements, the design method of multiple resonant filters using convex
optimization is presented in this chapter.

6.3 Convex optimization of multiple resonant filters

In this section, the optimization method of multiple resonant filters for a dual-stage actuator
HDD is formulated. The structure of the designed resonant filters is presented. The optimization
problem that directly uses frequency response data is formulated with conditions of robust stability,
robust performance, and hardware constraints. The optimization problem is solved by iterative
convex optimization with sequential linearization.

6.3.1 Structure of designed resonant filters

To improve the track-following performance, disturbances can be rejected by the resonant filters
[87] that have the same resonance frequency as the disturbance frequencies because of the internal
model principle. In this chapter, multiple resonant filters are designed in disturbance frequencies
to improve the track-following performance.

The block diagram of the designed resonant filters with multiple resonance frequencies is
shown in Fig. 6.5. The resonant filter in each actuator is defined as
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Fig. 6.6: Vector locus using a resonant filter with modulus margin and phase stabilization in
Nyquist diagram.
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) + ω2
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=



1
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T



1
(jωkf

)
(jωkf

)2 + 2ζr,1ωr,1(jωkf
) + ω2

r,1
(jωkf

)2

(jωkf
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r,1
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(jωkf

)
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)2 + 2ζr,nrωr,nr(jωkf
) + ω2
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(jωkf
)2

(jωkf
)2 + 2ζr,nrωr,nr(jωkf

) + ω2
r,nr


= ρT

ku
ϕ(jωkf

), (6.2)

where the subscripts that correspond to each actuator is ku ∈ {p, v}, the number of designed
resonance frequency is nr ∈ N, the index of the resonance frequency is kr = 1, . . . , nr, the tuning
parameter is ρ = [ρp,ρv] that consists of ρku ∈ R2nr+1, the resonance angular frequency is ωr,kr ,
and the damping coefficient is ζr,kr .

The designed resonant filter consists of the sum of the resonant modes and phase compensators
that are defined as

F (s) = κs2 + κψs

s2 + 2ζrωrs+ ω2
r

. (6.3)

Fig. 6.6 shows the vector locus using a resonant filter and the coefficients κ and ψ represent the
gain and phase of each resonant mode.

6.3.2 Optimization problem formulation
In this chapter, robust stability, robust performance, and hardware constraints are considered in
frequency response data. For robust performance, the resonant filters are optimized to minimize
the worst case of the error amplitude spectrum. For hardware constraints, the stroke limitation
of the PZT actuator is considered that the maximum amplitude spectrum of yp is less than the
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maximum value with the given feedback controller. For robust stability, the vector locus with
resonant filters must be on the same side against (−1, j0) and at the outside of the modulus
margin. From these conditions, the optimization problem is formulated as follows.

minimize
ρ

max
∀kc,∀kf

|ekc(jωkf
)| (6.4a)

subject to
∀kc,∀kf

|yp,kc(jωkf
)| ≤ yp,max (6.4b)

ws(jωkf
)|Skc(jωkf

,ρ)| ≤ 1 (6.4c)

− π

2 ≤ ∠
(
1 + Lkc(jωkf

,ρ)
)

− ∠
(
1 +Gkc(jωkf

)
)

≤ π

2 , (6.4d)

where ws is the weighting of the sensitivity function and

Gkc(jωr) = Gp,kc(jωkf
) +Gv,kc(jωkf

), (6.5)
Lkc(jωkf

,ρ) = Lp,kc(jωkf
,ρp) + Lv,kc(jωkf

,ρv), (6.6)
Lp,kc(jωkf

,ρp) = Gp,kc(jωkf
)Frp(jωkf

,ρp), (6.7)
Lv,kc(jωkf

,ρv) = Gv,kc(jωkf
)Frv(jωkf

,ρv), (6.8)

Skc(jωkf
,ρ) = 1

1 + Lkc(jωkf
,ρ) . (6.9)

6.3.3 Convex optimization using sequential linearization

In (6.4a), the objective function can be equivalently given by

minimize
ρ

max
∀kc,∀kf

|ekc(jωkf
)| ⇔ maximize

ρ
min

∀kc,∀kf

1
|ekc(jωkf

)|

⇔ minimize
ρ

−
(

min
∀kc,∀kf

∣∣∣∣∣ 1
dkc(jωkf

)
(
1 + Lkc(jωkf

,ρ)
)∣∣∣∣∣
)
, (6.10)

where the error frequency response data is given by

ekc(jωkf
) = Skc(jωkf

,ρ)dkc(jωkf
). (6.11)

In (6.4b), the amplitude spectrum of the output of the PZT actuator is evaluated as

|yp,kc(jωkf
)| =

∣∣∣∣∣Lp,kc(jωkf
,ρp)dkc(jωkf

)
1 + Lkc(jωkf

,ρ)

∣∣∣∣∣ , (6.12)

and the maximum value with the given feedback controller is given by

yp,max = max
∀kc,∀kf

∣∣∣∣∣Gp,kc(jωkf
)dkc(jωkf

)
1 +Gkc(jωkf

)

∣∣∣∣∣ . (6.13)



6.4. Application to dual-stage actuator hard disk drive 103

In (6.4d), the angle of the vector locus is evaluated by atan2 function using the real and imaginary
part of the vector locus. From these analyses, the optimization problem is given by (6.14).

minimize
ρ

− γ (6.14a)

subject to
∀kc,∀kf

γ −
∣∣∣∣∣ 1
dkc(jωkf

)
(
1 + Lkc(jωkf

,ρ)
)∣∣∣∣∣ ≤ 0 (6.14b)

|dkc(jωkf
)|

yp,max

∣∣∣Lp,kc(jωkf
,ρp)

∣∣∣− ∣∣∣1 + Lkc(jωkf
,ρ)

∣∣∣ ≤ 0 (6.14c)

ws(jωkf
) −

∣∣∣1 + Lkc(jωkf
,ρ)

∣∣∣ ≤ 0 (6.14d)

∓atan2
(

Im(1 + Lkc(jωkf
,ρ))

Re(1 + Lkc(jωkf
,ρ))

)
± atan2

(
Im(1 +Gkc(jωkf

))
Re(1 +Gkc(jωkf

))

)
− π

2 ≤ 0 when ± Re(1 +Gkc(jωkf
)) ≥ 0 (6.14e)

±atan2
(

Im(1 + Lkc(jωkf
,ρ))

Re(1 + Lkc(jωkf
,ρ))

)
∓ atan2

(
Im(1 +Gkc(jωkf

))
Re(1 +Gkc(jωkf

))

)
− π

2 ≤ 0 when ± Re(1 +Gkc(jωkf
)) ≥ 0 (6.14f)

The optimization problem (6.14) is nonlinear and non-convex. Using sequential linearization,
the optimization problem can be calculated by the iterative convex optimization and is given by
(6.15).

minimize
ρki

− γ (6.15a)

subject to
∀kc,∀kf

γ − Re



(
1

dkc(jωkf
)(1 + Lkc(jωkf

,ρki−1))
)∗

∣∣∣∣∣ 1
dkc(jωkf
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,ρki−1))
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1
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) − Re


(
1 + Lkc(jωkf
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6.4 Application to dual-stage actuator hard disk drive
In this section, the verification of disturbance rejection performance is conducted in a dual-stage
actuator HDD benchmark problem. The result shows that the resonant filters are optimized
with the conditions of robust stability, robust performance, and hardware constraints. The track-
following performance with designed resonant filters outperforms that without resonant filters.



104 Chapter 6. Disturbance Rejection with Robust Performance in Dual-Stage Actuator

6.4.1 Conditions
The frequency response data is used from 100 Hz to Nyquist frequencyFs/2 = 1/2Ts = 25.2 kHz.
The frequency response data is arranged at linearly even intervals in every 1 Hz and the number
of data points is nf = 25101. Nyquist diagram, sensitivity function, amplitude spectrum of
e, and amplitude spectrum of yp without resonant filters are shown in Fig. 6.7(a), Fig. 6.8(a),
Fig. 6.9(a), Fig. 6.10(a), and Fig. 6.11(a). From Fig. 6.7(a), the resonant filters are designed at
eight frequencies with vertical black dotted lines, and the dumping coefficients of all resonant
filters are set to ζr = 0.05. For the initial condition, all tuning parameters are set to ρ = 0 and
Frp = Frv = 1. In the robust stability condition, the modulus margin is set to 1/ws = 6 dB.

6.4.2 Optimization results
The optimization of the resonant filter design is conducted by YALMIP [96] and Mosek [97]
until the improvement of the objective function from the previous iteration becomes less than
0.1 %. Nyquist diagram, sensitivity function, amplitude spectrum of e, and amplitude spectrum
of yp with resonant filters are shown in Fig. 6.7(b), Fig. 6.8(b), Fig. 6.9(b), Fig. 6.10(b), and
Fig. 6.11(b). The optimization result shows that the resonant filters are designed with conditions
of robust stability, robust performance, and hardware constraints in 9 cases of the controlled
system.

The comparison of the inverse disturbance spectrum |1/d| and the sensitivity function without
and with resonant filters are shown in Fig. 6.12. It shows that the sensitivity function with resonant
filters is reshaped as following the inverse disturbance spectrum and the resonant filters contain
the model of the disturbance.

6.4.3 Simulation results
The time domain simulation is conducted in a dual-stage actuator HDD benchmark problem
without and with resonant filters in 9 cases of the controlled system. The time series of the
head position in the simulation are shown in Fig. 6.13. Fig. 6.14(a) shows the track-following
performance. It shows that the tracking errors with resonant filters are smaller than those without
resonant filters in all 9 cases. Fig. 6.14(b) shows the maximum stroke in a PZT actuator. It shows
that the maximum stroke values with resonant filters are almost the same as those without resonant
filters and both controlled systems satisfy the stroke limitation. As a result, the controlled system
with resonant filters outperforms that without resonant filters.
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(a) Without resonant filters. (b) With resonant filters.

Fig. 6.7: Amplitude spectrum of e.

(a) Without resonant filters. (b) With resonant filters.

Fig. 6.8: Amplitude spectrum of yp.
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(a) Without resonant filters. (b) With resonant filters.

Fig. 6.9: Nyquist diagram (around the origin).

(a) Without resonant filters. (b) With resonant filters.

Fig. 6.10: Nyquist diagram (wide view).
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(a) Without resonant filters. (b) With resonant filters.

Fig. 6.11: Sensitivity function.

(a) Without ( ) and with ( ) resonant filters in Case
9.

(b) With resonant filters and the scaled inverse distur-
bance spectrum.

Fig. 6.12: Scaled inverse disturbance spectrum and sensitivity function.
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(a) Without resonant filters. (b) With resonant filters.

Fig. 6.13: Time series of the head position in the simulation.

(a) Track-following performance 3σ(yc). (b) Maximum stroke in a PZT actuator max|ycp|.

Fig. 6.14: Simulation results without and with resonant filters. ( ) and ( ) denote without and
with optimized resonant filters.
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6.5 Conclusion
In this chapter, the design method of optimal resonant filters is developed to improve track-
following performance in a dual-stage actuator HDD. The resonant filters with structured param-
eterization are optimized by iterative convex optimization directly using the frequency response
data of the controlled system. Robust stability, robust performance, and hardware constraints are
considered for the optimization calculation in 9 cases of the controlled system. The disturbance
rejection performance of the optimized resonant filters is validated in a dual-stage actuator HDD
benchmark problem. Ongoing researches focus on the usage of both frequency domain and time
domain data, designing other feedback controllers simultaneously, and the optimal design of
multirate filters.



110 Chapter 6. Disturbance Rejection with Robust Performance in Dual-Stage Actuator



Chapter 7

Disturbance Rejection with Robust
Stability in MIMO Motion Systems

A large-scale high-precision scan stage is important equipment in the industrial productions of
micro-fabrication such as flat panel display (FPD) lithography systems. Designing controllers
for multi-input multi-output (MIMO) systems is time-consuming and needs experience because
of the interaction between each axis and many controller tuning parameters. The aim of this
chapter is to develop a peak filter design method based on frequency response data to reduce
repetitive disturbance. This data-based approach does not use the model and only uses the
frequency response data of the controlled system and the disturbance spectrum calculated from
the scanning error data (Contribution 7.1). The peak filter is designed by convex optimization and
satisfies robust stability conditions for six-degree-of-freedom systems (Contribution 7.2). The
control performance of the designed peak filter is experimentally demonstrated with an industrial
large-scale MIMO high-precision scan stage in reducing the scanning error of the main stroke of
the translation along the x-axis (Contribution 7.3).

7.1 Introduction
Large-scale high-precision scan stages have an important role in industries such as manufacturing
semiconductors and flat panel displays (FPD). To improve throughput and product quality, fast
and precise positioning control is required, and these specifications become severe year by year
because of the growing need for TVs, PCs, and smartphones [50].

The large-scale scan stage has several challenges in position control such as low resonant
modes because of the low stiffness and many disturbances because of the wide scan range [98].
The large-scale scan stage is typically controlled with two-degree-of-freedom (DOF) control
with a feedforward controller for reference tracking such as a perfect tracking control based
on a multirate feedforward control [20, 44] and a feedback controller for disturbance rejection.
In the scan region, the reference trajectory of the high-precision scan stage is with constant
velocity without acceleration, and the feedback controller plays a major role in tracking control
performance.

Classical scan stages move along (x, y, θz)-axes, and the interaction between each axis is
ignored, and a single-input single-output (SISO) decentralized control is commonly employed.
However, in these applications, the high-precision scan stages are supported by the magnetic force
or air pressure and moving in 6-DOF with (x, y, θz, z, θx, θy)-axes to reduce disturbances by the
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friction and the vibration from the ground and to improve tracking performance, and they become
multi-input multi-output (MIMO) systems [51, 64, 99, 100]. The controller design of the MIMO
systems has several challenges such as stability analysis in a coupled system between each axis,
modeling of MIMO systems, and enormous tuning parameters of the controllers. Especially,
improving the tuning method of the controller parameters is important for the cost of time and
effort of on-site control engineers.

Based on these challenges in designing the feedback controller, several data-based controller
design approaches with an optimization method are proposed, such as genetic algorithm [101],
Nelder-Mead method [102], particle swarm optimization [103], loop shaping method [104],
bundle method [105, 106], sequential linearization method [107–110] using concave-convex
procedure [34].

Among these methods, the sequential linearization method using the concave-convex proce-
dure has an advantage in monotonic convergence to a saddle point or a local optimum and suits
for controller design. Other methods also need the parametric model of the controlled system.
Precise modeling is difficult when the system is complicated such as MIMO systems.

In this chapter, the sequential linearization method using the concave-convex procedure is
used with the frequency response data of the controlled system and disturbance spectrum to
design the optimal feedback controller.

The disturbance spectrum during the scanning motion with constant velocity has a repetitive
characteristic such as motor cogging and has a large amplitude in a certain frequency.

The repetitive control approaches are presented to reject the periodic disturbances [89, 111,
112]. They reject the disturbance on not only main disturbance frequency but also harmonic ones.
The experimental setup in this chapter does not have a characteristic of harmonic disturbance
frequencies, and the repetitive control approaches are not suitable for it.

Previous researches show that repetitive disturbance can be effectively rejected by a peak
filter, which is the same as an inverse notch filter in other literature, with the same resonance
frequency, and it is applied in several industrial products such as hard disk drives [87]. However,
in the application of the high-precision scan stage, the repetitive disturbance rejection by a peak
filter has not been reported in the literature.

Since the peak filter has a large gain at a certain frequency, it may easily deteriorate the closed-
loop stability due to the interaction. Moreover, the combination of the controller parameter can
blow up in such a multi-axis system. Hence, the heuristic tuning approach depends on experiences
and efforts, and it is not the optimal solution. To address this problem, the frequency response
data-based peak filter design method considering both the SISO robust stability condition and the
MIMO stability condition is proposed in this chapter.

The optimal disturbance filter design method is also presented [113]. However, the peak
filter is designed with a nonlinear optimization procedure that is not with convex optimization.
The convergence of the nonlinear optimization procedure is not monotonic and it could take a
long time for the optimization. Therefore, the data-based peak filter design method with convex
optimization suitable to industrial applications is proposed in this chapter.

The proposed peak filter design method has an advantage in convex optimization without
parametric modeling. The control performance of the designed peak filter is experimentally
demonstrated with an industrial large-scale MIMO high-precision scan stage in reducing the
scanning error of the main stroke of the translation along the x-axis. this chapter consists of
mainly these three following contributions:
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Fig. 7.1: Experimental setup of FPD lithography system [1].

Contribution 7.1 : The optimization problem of data-based peak filter design for the MIMO
system is formulated.

Contribution 7.2 : The data-based peak filter design method with convex optimization is pre-
sented.

Contribution 7.3 : The designed peak filter is validated in the experiment with the industrial
large-scale MIMO high-precision scan stage.

7.2 Problem formulation
In this section, the control problem is formulated.

7.2.1 MIMO high-precision scan stage
The experimental setup is shown in Fig. 7.1.

The experiment is conducted with the MIMO high-precision scan stage in the FPD lithography
system which is 6-DOFs with six-inputs (fx, fy, τz, fz, τx, τy) and six-outputs (x, y, θz, z, θx, θy).

The 6-DOFs stage is floating by the air bearing to cancel the gravity and frictions and is
actuated by voice coil motors and linear motors [99]. The positions and angles of the stage are
measured by laser displacement sensors and linear encoders.

The frequency response of the experimental setup is shown in Fig. 7.2.
The main stroke of the scan stage is the translation along the x-axis. The scan trajectory of

translation along the x-axis is shown in Fig. 7.3. The scan stage moves with constant velocity
through four scan regions at the same scanning procedure. The same controllers are used through
four scan regions at the same scanning procedure.

7.2.2 Disturbance rejection with peak filter
Previous researches in high-precision positioning systems such as a hard disk drive show that
a repetitive disturbance that has a large spectrum in a specific frequency is rejected by a peak
filter that has the same resonance frequency [87] due to the internal model principle [114]. The
transfer function of the peak filter is given by

FPeak(jω, ρ, η) = s2 + 2ρωs+ ω2

s2 + 2ηωs+ ω2 = Fn(jω, ρ)
Fd(jω, η)

(0 ≤ η < ρ ≤ 1), (7.1)
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Fig. 7.2: Bode magnitude plot of 6-DOF experimental setup.
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Fig. 7.3: Scan trajectory of translation along the x-axis. The scan stage moves through four scan
regions ( ) at the same scanning procedure. The scanning velocity of translation along the x-axis
is set to 0.1 m/s.

where the resonance frequency is ω ∈ R, the damping coefficients are ρ ∈ R and η ∈ R, and ρ
must be larger than η in the peak filter. It is noted that it becomes a notch filter when ρ is smaller
than η.

The scan stage moves with constant velocity in the scan region and has several repetitive
disturbances such as cogging. Therefore, the repetitive disturbance rejection approach with peak
filter is applied to the MIMO high-precision scan stage. This approach has not been commonly
used in the MIMO high-precision scan stage because the MIMO system high-gained by peak
filter easily becomes unstable due to the interaction between each axis. In this chapter, the peak
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Fig. 7.4: Block diagram of 6-DOF controlled system.

filter is designed with SISO robust stability condition and MIMO stability condition not to make
the controlled system unstable.

7.2.3 Details of controlled system
The block diagram of the 6-DOF controlled system is shown in Fig. 7.4. The 6-DOF controlled
system P is given by frequency response data, as shown in Fig. 7.2. The 6-DOF experimental
setup is decoupled by the mechanical design and the thrust distribution.

The diagonal term in the frequency range less than about 10 Hz is modeled as a second-order
rigid body system in each axis. The feedback controllers are conventionally designed with the
model of the second-order rigid body systems in only diagonal terms for ease of the on-site final
tuning process. In the proposed method, the peak filter can be designed with convex optimization
using the frequency response data of the controlled system without the mathematical modeling
of the large-scale MIMO high-precision scan stage.

The fixed diagonal feedback controller C that consists of PID controllers, disturbance ob-
servers, phase lead filters, and notch filters is given beforehand. The diagonal peak filter F is
designed with a proposed data-based design method.

The 6-DOF controlled system P , the fixed diagonal feedback controller C, and the diagonal
peak filter F are defined as

P (jωk) = Plm(jωk), (7.2)

C(jωk) =

Cl(jωk) (l = m)
0 (l ̸= m)

, (7.3)

F (jωk,ρ,η) =


Fnl

(jωk,ρl)
Fdl

(jωk,ηl)
(l = m)

0 (l ̸= m)
, (7.4)

where (l,m) ∈ {x, y, θz, z, θx, θy} denotes the index of the 6-DOFs and the subscript k represents
the frequency point of the frequency response data. The damping coefficients ρ and η of the peak
filter are defined as

ρ =
[
ρx · · · ρθy

]T
, (7.5)

η =
[
ηx · · · ηθy

]T
. (7.6)

7.2.4 Problem description and outline
In this chapter, the data-based peak filter design method is presented for the industrial large-scale
MIMO high-precision scan stage with respect to the following requirements:



116 Chapter 7. Disturbance Rejection with Robust Stability in MIMO Motion Systems

Requirement 7.1 : The diagonal peak filter is designed with the fixed diagonal feedback controller
and FRF data of the 6-DOF controlled system.

Requirement 7.2 : The optimization problem is convex.

Requirement 7.3 : The scanning error of the translation along the x-axis which is the main stroke
of the scan stage should be reduced in the experiment.

As is outlined in Section 7.1, pre-existing approaches fail to meet all requirements: the
approaches with loop shaping method [104] and bundle method [105, 106] do not satisfy Re-
quirement 7.1; the approaches with genetic algorithm [101], Nelder-Mead method [102], and
particle swarm optimization [103] do not satisfy Requirement 7.2; the approach with sequential
linearization method [107–109] using concave-convex procedure [34] does not satisfy Require-
ment 7.3. In summary, only the proposed approach satisfies the structured, diagonal, and convex
optimized characteristics compared with other preexisting approaches.

In Section 7.3, the proposed data-based peak filter design method is presented that attains
Requirement 7.1 through the weighting function of the sensitivity function with estimated distur-
bance spectrum, the SISO robust stability condition, and the MIMO stability condition, constitut-
ing Contribution 7.1. The convex optimization problem is formulated that attains Requirement 7.2
through sequential linearization method [107–109] using concave-convex procedure [34], consti-
tuting Contribution 7.2. In Section 7.4, the benefit of the approach that attains Requirement 7.3 is
demonstrated through the experiment with the industrial large-scale MIMO high-precision scan
stage, constituting Contribution 7.3. In Section 7.5, conclusions are presented.

7.3 Convex optimization of rational peak filter
In this section, the data-based peak filter design method is formulated as a convex optimization
problem. The proposed method is formulated to design the peak filters for the MIMO controlled
system in each axis, independently.

7.3.1 Weighting for sensitivity function using disturbance spectrum
As shown in Fig. 7.4, a sensitivity function S is a transfer function from the output disturbance
d to the tracking error e. The sensitive function S in Fig. 7.4 is given by

S(jωk) = (I + P (jωk)C(jωk)F (jωk))−1

= Slm(jωk), (7.7)

and the output disturbance d and the tracking error e are also given by

d(jωk) =
[
dx(jωk) · · · dθy(jωk)

]T
, (7.8)

e(jωk) =
[
ex(jωk) · · · eθy(jωk)

]T
. (7.9)

The output disturbance d does not deteriorate the tracking error e within the frequency in which
the gain of the sensitivity function S is low. Therefore, the weighting function of the sensitivity
function is designed from the disturbance spectrum of the scanning motion.
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The output disturbance spectrum estimated from the tracking error of the scanning motion is
given by

d(jωk) = S−1(jωk)e(jωk). (7.10)

The weighting function of the sensitivity function using the output disturbance spectrum [115] is
given by

WS(jωk) =
[
WSx(jωk) · · · WSθy

(jωk)
]T
, (7.11)

where

|WSl
(jωk)| = αl|dl(jωk)|, (7.12)

and αl is a scaling parameter.
The feedback controller is designed to satisfy the condition of the sensitivity function as

|Sll(jωk)WSl
(jωk)| ≤ 1. (7.13)

As shown in Fig. 7.5, when the scaling parameter αl becomes large, 1/WSl
goes down. Therefore,

the effective disturbance rejection is achieved when the condition (7.13) is satisfied in a larger
scaling parameter αl.

7.3.2 SISO robust stability condition with circle condition
In this chapter, the stability condition of the controlled system is analyzed by the Nyquist stability
theorem. The SISO robust stability condition is considered with the circle condition calculated
from the gain margin gm and the phase margin Φm [116].

The center (−σ, 0j) and radius rm of a circle condition on the Nyquist diagram is given by

σ = g2
m − 1

2gm(gm cos Φm − 1) , (7.14)

rm = (gm − 1)2 + 2gm(1 − cos Φm)
2gm(gm cos Φm − 1) . (7.15)

As shown in Fig. 7.6, when the controller is stable and the open-loop frequency response does
not cross the circle condition on the Nyquist diagram, the controller satisfies the SISO robust
stability condition for the gain margin gm and the phase margin Φm.
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7.3.3 MIMO stability condition with generalized Gershgorin bands

The MIMO controlled system may become unstable due to the interaction between each axis even
if the SISO controlled system in each axis is stable. The MIMO stability condition is considered
in the Direct Nyquist Array (DNA) method with generalized Gershgorin bands [117–119].

In the DNA method, the interaction index λ(jωk|P ) of the controlled system P is defined as
a maximum eigenvalue of M (jωk|P ), where the matrix M(jωk|P ) is given by

M (jωk|P ) =

0 (l = m)∣∣∣ Plm(jωk)
Pmm(jωk)

∣∣∣ (l ̸= m)
. (7.16)

The radius rgl
of the generalized Gershgorin bands is given by

rgl
(jωk) = λ(jωk)

∣∣∣∣∣Pll(jωk)Cl(jωk)Fnl
(jωk, ρ)

Fdl
(jωk, η)

∣∣∣∣∣ . (7.17)

The open-loop frequency response of each axis may move within the radius at each frequency
point on the Nyquist diagram when MIMO systems have an interaction between each axis. As
shown in Fig. 7.6, when the controller is stable and the generalized Gershgorin bands do not
include the point of (−1, 0j) on the Nyquist diagram, the controlled system satisfies a MIMO
stability condition with the interaction between each axis.
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7.3.4 Optimization problem formulation
The optimization problem to design a peak filter with a disturbance spectrum, a SISO robust
stability condition, and a MIMO stability condition is formulated from (7.18) to (7.22).

maximize
ρl,ηl

αl (7.18)

subject to
∀k

|WSl
(jωk)| −

∣∣∣∣∣Pll(jωk)Cl(jωk)Fnl
(jωk, ρl)

Fdl
(jωk, ηl)

+ 1
∣∣∣∣∣ ≤ 0 (7.19)

rm −
∣∣∣∣∣Pll(jωk)Cl(jωk)Fnl

(jωk, ρl)
Fdl

(jωk, ηl)
+ σ

∣∣∣∣∣ ≤ 0 (7.20)

rgl
(jωk) −

∣∣∣∣∣Pll(jωk)Cl(jωk)Fnl
(jωk, ρl)

Fdl
(jωk, ηl)

+ 1
∣∣∣∣∣ ≤ 0 (7.21)

0 ≤ βηl ≤ ρl ≤ 1 (β > 1) (7.22)

7.3.5 Concave-convex procedure
There are two challenges in solving this optimization problem with convex optimization. First, the
peak filter has tuning parameters not only in the numerator but also in the denominator. Second,
the constraints of the formulated optimization problem are non-convex functions because of the
difference of the convex functions. To solve these challenges, a sequential linearization method
using concave-convex procedure [34] with tuning parameters in both the numerator and the
denominator [120] is applied to this optimization problem.

First, the denominator |Fd(jωk, η)| is multiplied on both sides of the constraints, as shown in
(7.23), (7.24), and (7.25).

|WSl
(jωk)Fdl

(jωk, ηl)| − |Pll(jωk)Cl(jωk)Fnl
(jωk, ρl) + Fdl

(jωk, ηl)| ≤ 0 (7.23)
rm|Fdl

(jωk, ηl)| − |Pll(jωk)Cl(jωk)Fnl
(jωk, ρl) + σFdl

(jωk, ηl)| ≤ 0 (7.24)
rgl

(jωk)|Fdl
(jωk, ηl)| − |Pll(jωk)Cl(jωk)Fnl

(jωk, ρl) + Fdl
(jωk, ηl)| ≤ 0 (7.25)

Second, a first-order approximation of the difference term of the constraints is calculated, as
shown in (7.26), (7.27), and (7.28).

|WSl
(jωk)Fdl

(jωk, ηl)| − Re
(

(Pll(jωk)Cl(jωk)Fnl
(jωk, ρli−1) + Fdl

(jωk, ηli−1))∗

|Pll(jωk)Cl(jωk)Fnl
(jωk, ρli−1) + Fdl

(jωk, ηli−1)| (Pll(jωk)Cl(jωk)Fnl
(jωk, ρli) + Fdl

(jωk, ηli))
)

≤ 0 (7.26)

rm|Fdl
(jωk, ηli)| − Re

(
(Pll(jωk)Cl(jωk)Fnl

(jωk, ρli−1) + σFdl
(jωk, ηli−1))∗

|Pll(jωk)Cl(jωk)Fnl
(jωk, ρli−1) + σFdl

(jωk, ηli−1)| (Pll(jωk)Cl(jωk)Fnl
(jωk, ρli) + σFdl

(jωk, ηli))
)

≤ 0 (7.27)

rgl
(jωk)|Fdl

(jωk, ηl)| − Re
(

(Pll(jωk)Cl(jωk)Fnl
(jωk, ρli−1) + Fdl

(jωk, ηli−1))∗

|Pll(jωk)Cl(jωk)Fnl
(jωk, ρli−1) + Fdl

(jωk, ηli−1)| (Pll(jωk)Cl(jωk)Fnl
(jωk, ρli) + Fdl

(jωk, ηli))
)

≤ 0 (7.28)

From these two procedures, the constraints of the optimization problem become convex in the
current operating point. It is noted that ρli−1 and ηli−1 are the values of the optimization result
in the previous iteration, and this optimization problem can be solved as a convex optimization
problem with iterative calculations. In this chapter, a dichotomy method is used for an iterative
calculation algorithm.
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7.4 Application to MIMO high-precision scan stage
In this section, experimental validation is conducted. The aim of this chapter is to develop a peak
filter design method based on frequency response data. The control performance of the designed
peak filter is experimentally demonstrated with an industrial large-scale MIMO high-precision
scan stage in reducing the scanning error of the main stroke of the translation along the x-axis.

7.4.1 Experimental setup

The experimental setup is shown in Fig. 7.1. In this setup, the MIMO high-precision scan stage
moves with the constant velocity through four scan regions at the same scanning procedure as
shown in Fig. 7.3. In this chapter, the scanning velocity of translation along the x-axis is set to
0.1 m/s. The frequency response of the 6-DOF experimental setup, as shown in Fig. 7.2, and the
scanning error data are collected by pre-experiment and used for the peak filter design.

7.4.2 Optimization conditions

The peak filter is designed by convex optimization with the frequency response of the 6-DOF
experimental setup and the scanning error data. The number of frequency response data points
is set to 1000, and they are arranged at logarithmically even intervals in the range from 1 Hz
to 500 Hz. The error spectrum and disturbance spectrum are averaged in four scan regions to
consider four scan regions with the same designed peak filter.

The flowchart of the proposed peak filter design method is shown in Fig. 7.7. In this chapter,
only one peak filter is designed in translation along the x-axis which is the main stroke of the
scan stage, and the peak filters in other axes are set to 1. The frequency response data of Cx that
is a fixed feedback controller along the x-axis consisting of PID controller, disturbance observer,
phase lead filter, and notch filter is shown in Fig. 7.8.

The resonance frequency of the peak filter in translation along the x-axis is set to a constant
frequency ωx = 41.1 rad/s (fx = ωx/2π = 6.54 Hz) in which the power spectra of the scanning
error is the maximum. From the difference of the disturbance spectrum at the peak and peripheral
frequency, the gain of the peak filter should be larger than 6 dB (≈ 2). Therefore, the minimum
gain of the peak filter is set to β = 6 dB (≈ 2) in the parameter constraints (7.22). The initial
value of each parameter is set to ρini

x = 1 × 10−2 and ηini
x = 1 × 10−3, respectively. It is noted

that the initial condition is set to be a feasible solution. Note that when the initial condition is
not a feasible solution, there are several considerations that are making the gain of the peak filter
smaller, making the gain and phase margin smaller, and redesigning the static decoupling to make
interaction smaller.

The gain margin and the phase margin in the SISO robust stability condition are set to
gm = 4 dB and Φm = 20 deg, respectively. This condition is satisfied in the controlled system
without peak filter.

In the MIMO stability condition, the generalized Gershgorin bands are considered only in
the frequency range fc/2 ≤ f < 2fc, when fc is the gain cross over frequency of the open-loop
transfer function without using the peak filter. The MIMO stability condition with the generalized
Gershgorin bands is a sufficient condition, and the controlled system should not be designed too
conservatively. Therefore, only this frequency range in which the stability condition is most
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Fig. 7.8: Frequency response data of Cx that is fixed feedback controller along x-axis consisting
of PID controller, disturbance observer, phase lead filter, and notch filter.

affected is considered in the MIMO stability condition. In other frequencies, the interference
index is set to λ(jωk) = 0.

The dichotomy method is used to solve the convex optimization problem with a sequential
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Fig. 7.9: Output disturbance spectrum along x-axis used for weighting function of sensitivity
function with scaling parameter αx.

linearization method using the concave-convex procedure. The output disturbance spectrum along
the x-axis used for the weighting function of the sensitivity function with the scaling parameter
αx is shown in Fig. 7.9. The main reason for the disturbance in the frequency range from 5 Hz to
10 Hz is the vibrations from a coarse stage and a ground transmitted through the gravity canceller.

The objective function αx is searched in the range of αmin
x = 1 × 105 and αmax

x = 1 × 107.
The sensitivity function without peak filter and the weighting functions with the initial conditions
are shown in Fig. 7.10. The Nyquist diagram without peak filter is shown in Fig. 7.11(a). The
Nyquist diagram with the initial peak filter is shown in Fig. 7.11(b).

In the proposed peak filter design method, a parametric model of the controlled system and
the given controller are not needed, and the frequency response data of them are enough for
designing the peak filter.

The iterative optimization by the dichotomy method is repeated until αng
x

αok
x

≤ 1.01, where αok
x

and αng
x are defined as the values of αx in the feasible and infeasible solutions, respectively. The

optimization calculation searches the feasible set of the parameter with larger ρ in the current
operating point to design a peak filter with a wider resonance peak. The optimization problem is
calculated by YALMIP [96] and Mosek [97].

7.4.3 Optimization results

By the optimization calculation, the values of the objective function and the optimal peak filter
are given by αopt

x = 1482520, ρopt
x = 0.02325, and ηopt

x = 0.011653, respectively.
The sensitivity function and the weighting function with the initial and the optimal peak filter

are shown in Fig. 7.10. It is confirmed that the controller gain at the frequency of the maximum
error spectrum becomes high due to using the peak filter, and the gain of the sensitivity function
becomes low.

The Nyquist diagram with the optimal peak filter is shown in Fig. 7.11(c). It is confirmed that
the designed controller satisfies both the SISO robust stability condition and the MIMO stability
condition.
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Fig. 7.11: Nyquist diagram of translation along the x-axis.

7.4.4 Simulation evaluation
The simulation evaluation is conducted before the experiment.

The error with the peak filter ew(jωk) is calculated from the sensitivity function with and
without the peak filter, Sw(jωk) and S(jωk), and the error without the peak filter e(jωk) as follows.

ew(jωk) =Sw(jωk)S−1(jωk)e(jωk)
=(I + P (jωk)C(jωk)F (jωk,ρ,η))−1

(I + P (jωk)C(jωk))e(jωk). (7.29)

The time series of the simulated scanning errors of translation along the x-axis in four scan
regions are calculated by inverse Fourier transform as shown in Fig. 7.12. The unit “[count]”
means the resolution of the measurement sensor in the setup. From the simulation results, the
optimized peak filter outperforms the without and with the initial peak filters.

7.4.5 Experimental results
The experimental validation is conducted without and with the peak filter. In conventional
methods, the peak filter cannot be designed with convex optimization using the frequency response
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Fig. 7.12: Simulated position error of translation along the x-axis in four scan regions. No peak
filter is used in w/o ( ), one peak filter of translation along the x-axis with initial condition is
used in ( ), and one peak filter of translation along the x-axis with optimized condition is used
in w/ ( ). Errors in one peak filter of translation along the x-axis with initial and optimized
conditions are overlapped but a little improved in the optimized condition.

data of the controlled system, not using the model of the controlled system. Therefore, the
feedback controller without peak filter is used as the conventional method in the experimental
validation.

The time series of the scanning errors of translation along the x-axis in four scan regions are
shown in Fig. 7.13. The amplitude spectra of the scanning errors of translation along the x-axis
in four scan regions are also shown in Fig. 7.14.

The scanning error is effectively reduced in scan region 1 and 4, as shown in Fig. 7.13(a) and
Fig. 7.13(d). The disturbance around 6.54 Hz is effectively rejected by the peak filter and the
scanning error is also reduced, as shown in Fig. 7.14(a) and Fig. 7.14(d). From this result, the
effectiveness of the peak filter in disturbance rejection is validated.

On the other hand, the scanning error is not dramatically changed in scan regions 2 and 3,
as shown in Fig. 7.13(b) and Fig. 7.13(c). This is because the frequency of the peak amplitude
of the scanning error spectra in scan region 2 and 3 is around 7.5 Hz, and the disturbance in this
frequency range can not be effectively rejected by the designed peak filter with the resonance
frequency fx = 6.54 Hz.

The Root Mean Square (RMS) errors of a total of four scan regions in 6-DOFs (x, y, θz, z, θx, θy)
are shown in Fig. 7.15. Fig. 7.15(a) shows that the RMS error in translation along the x-axis that
is the main stroke of the scan stage is reduced. It means that the average scan quality is improved
and the effectiveness of the designed peak filter is validated. It is also noteworthy that the RMS
errors in (y, θz, z)-axes are also improved. It is because the interaction of the disturbance from
the x-axis is reduced by the peak filter. On the other hand, the RMS errors in (θx, θy)-axes are
increased. It is because the interaction of the control input from the x-axis is increased by the
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Fig. 7.13: Position error of translation along the x-axis in four scan regions. No peak filter is
used in w/o ( ) and one peak filter of translation along the x-axis is used in w/ ( ).
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Fig. 7.14: Amplitude spectrum of position error of translation along the x-axis in four scan
regions. No peak filter is used in w/o ( ) and one peak filter of translation along the x-axis with
optimized condition is used in w/ ( ). The frequency range around the resonance frequency of
the designed peak filter (6.54 Hz) is highlighted ( ).

feedback controller high-gained by the peak filter. From these discussions, the peak filter has the
advantage to reject the disturbance and to reduce the scanning error in the MIMO high-precision
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Fig. 7.15: Root Mean Square (RMS) errors of a total of four scan regions in 6-DOFs
(x, y, θz, z, θx, θy). No peak filter is used in w/o (red bar ) and one peak filter of transla-
tion along the x-axis with optimized condition is used in w/ (blue bar ).

scan stage.
In this chapter, the feedback controller is designed diagonally as a setup restriction and

human friendliness for manual tuning in the industrial final introduction process. In this case,
the coupling effect cannot be completely suppressed by the feedback controller because of not
enough degree of freedom. Therefore, the disturbance rejection performance of the main scan
x-axis is mainly concerned, and only the MIMO stability condition is comprised in the peak filter
design. Several decoupling control techniques are also proposed from both sides of the linear
and the nonlinear control approach [121, 122]. The physical and mathematical analysis of the
coupling effect by the designed peak filter and decoupling controller design is ongoing study.

Further improvement is possible with additional peak filters in the x-axis or other axes.
The proposed peak filter design method can be applied to other axes with the MIMO stability
condition. However, MIMO robust performance improvement is not guaranteed. Therefore, the
decoupling controller also should be designed at the same time as the designed peak filters in
multi-axes. It also should be concerned that the additional stability margin is needed to design
the additional peak filters because of the phase lag after the resonance frequency. To deal with
this problem, the phase compensator should be designed simultaneously as the peak filter, or all
controllers should be optimized at once.
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7.5 Conclusion
The frequency response data-based peak filter design in this chapter enables reducing tracking
errors in the scanning motion. The main underlying idea of this chapter is the combination of the
frequency response data-based design approach with convex optimization and the robust design
method of the MIMO controlled systems.

The effectiveness of the designed peak filter is demonstrated in the experiment with the in-
dustrial large-scale MIMO high-precision scan stage. The disturbance spectrum of the maximum
error frequency is effectively rejected by the designed peak filter, and as a result, it is confirmed
that the scanning error spectrum of that frequency is reduced.



128 Chapter 7. Disturbance Rejection with Robust Stability in MIMO Motion Systems



Part V

Closing





Chapter 8

Conclusion

In the dissertation, multivariable high-precision motion control with structured modeling and data-
driven convex optimization is presented. The approaches consider the dynamics of multivariable
systems such as multi-modal dynamics and multi-input multi-output (MIMO) interactions to
achieve high-precision tracking performance. The structured parameterization of the controller
enables an intuitive tuning process. In addition, the controllers can be designed by data-driven
convex optimization to overcome the difficulty of tuning many controller parameters. The
approaches are applied to actual setups such as a precision positioning stage, a two-inertia motor
bench, a suspended beam, a hard disk drive, and an industrial scan stage. The effectiveness of
the approaches is validated through simulations and experiments.

In Part I, Chapter 1 clarifies the requirements in the industrial application of mechatronics
systems to achieve higher performance. The performance requirements for advanced motion
control in industrial mechatronics systems are increasing year by year. It is necessary to design
a controller considering the multivariable dynamics. High control performance can be achieved
by effectively utilizing redundancy in multivariable systems such as combining the advantages of
model-based and data-based controller design. From these backgrounds, the goal of the disser-
tation is that “develop a framework for multivariable high-precision motion control combining
model-based and data-based approaches that is suitable for mechatronic systems in industrial
applications”. In the first half of the dissertation (Chapter 2, 3, 4, and 5), the state tracking control
approaches based on multirate feedforward control are used for multi-modal systems and MIMO
systems to improve the continuous-time tracking performance. In the latter half of the disser-
tation (Chapter 4, 5, 6, and 7), the structured controllers are optimized by data-driven convex
optimization to avoid the time-consuming tuning process in multivariable systems and the tuning
parameters are interpretable by physically intuitive meaning.

In Part II, the multirate feedforward control is extended to multi-modeal systems and MIMO
systems to improve the continuous-time tracking performance by effectively using the redundancy
of the multivariable systems. In Chapter 2, multirate feedforward control is generally presented
in multi-modal motion systems. The state trajectory generation is generalized to non-minimum-
phase and MIMO motion systems. The redundancy of the multi-modal system is considered by
the mode selection to improve the continuous-time tracking performance. The effectiveness of
the approach is validated in a high-precision positioning stage with multiple resonant modes. It
constitutes Contribution M-1. In Chapter 3, multirate feedforward control is generally presented
in MIMO motion systems. The challenge in multirate feedforward control for MIMO systems is
that there is redundancy in how to select sampling periods for multiple inputs. The redundancy of
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multirate input sampling is analytically optimized by the state controllability of the generalized
controllability indices. The effectiveness of the approach is validated in a two-inertia system
motor bench for intersample performance and in a 6-DOF high-precision positioning stage for
interaction compensation. It constitutes Contribution M-2.

In Part III, the sampled-data feedforward control based on state tracking is extended to
structured parameterization and data-driven convex optimization. In Chapter 4, the state tracking
sampled-data feedforward control is presented in linearly parameterized feedforward control.
The linear parameterization enables intuitive tuning and ease for the extension to data-driven
parameter updates. The conventional multirate feedforward controllers are designed as the
inverse of the model. It is difficult to update the controller parameters intuitively by using
experimental data. Therefore, to enable the data-driven tuning of the sampled-data feedforward
controller based on state tracking, the feedforward controller is linearly parameterized by basis
functions corresponding to the reference and the physically intuitive tuning parameters. The basis
functions are designed by sampled-data differentiator considering zero-order-hold dynamics to
improve intersample performance. The effectiveness of the approach is validated in a two-inertia
system motor bench compared to the conventional basis function design that does not consider
the zero-order-hold dynamics. It constitutes Contribution M-3. In Chapter 5, the state tracking
sampled-data feedforward control that is presented in Chapter 4 is extended to an iterative
learning control for MIMO motion systems. It enables the data-driven parameter update and
interaction compensation of MIMO systems without the MIMO model. The MIMO feedforward
controller is parameterized by physically intuitive basis functions and tuning parameters as a fixed
structure based on low-frequency error dynamics of MIMO multi-modal systems. The tuning
parameters of the controller are updated by iterative learning control using experimental data and
a diagonal rigid body model to minimize errors. The effectiveness of the approach is validated
in a suspended beam compared to the conventional feedforward controller that does not consider
MIMO interaction. It constitutes Contribution D-1.

In Part IV, the feedback controller design using frequency response data and convex opti-
mization for disturbance rejection in multivariable motion systems is presented. In Chapter 6 the
frequency response data-based disturbance rejection is presented with robust performance in the
system with model variations. In the conventional data-driven feedback controller design, there
is a challenge that the improvement of the error is directly formulated as an objective function.
To improve the disturbance rejection performance, it is necessary to design a feedback controller
that can deal with the variations of models and disturbances. The approach formulates resonant
filters corresponding to multiple disturbance frequencies in structured linear parameterization.
The frequency response data is directly used for the controller design problem that is solved
by an iterative convex optimization using sequential linearization. The multiple resonant filters
enable disturbance rejection in several frequencies and the controller is optimized considering
the model variations to minimize the error. The effectiveness of the approach is validated in a
dual-stage actuator hard disk drive benchmark problem. It constitutes Contribution D-2. In Chap-
ter 7, the frequency response data-based disturbance rejection is presented with robust stability
in MIMO systems. The feedback controller design in MIMO systems has a challenge because
MIMO systems have an interaction that can deteriorate robust stability and the parametric model
identification of the MIMO systems is difficult and time-consuming. The disturbance rejection
at a specific frequency is difficult to ensure robust stability in actual implementation because
the gain of the controller becomes high at that frequency. Therefore, the approach formulates
the robust controller design problem that directly uses the frequency response data considering
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the interaction of the MIMO system. The feedback controller is designed by an iterative convex
optimization using sequential linearization. The effectiveness of the approach is validated in the
experiment and it is the first attempt to apply the high-gain controller to the actual industrial
large-scale MIMO high-precision scan stage. It constitutes Contribution D-3.

In conclusion, the dissertation constructs a general framework of multivariable high-precision
motion control with structured modeling and data-driven convex optimization for industrial ap-
plications. The developed approaches are theoretically novel and the engineering applicability
is successfully demonstrated in simulation and experimental validation including the implemen-
tation in commercial products. The dissertation contributes to both the academic and industrial
fields, and its importance will continue to increase in the future. These facts show that the
dissertation makes a major breakthrough in control engineering about performance improvement
and practical applicability for industrial applications.
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Abstract概要

Multivariable High-Precision Motion Control
with Structured Modeling and Data-Driven Convex Optimization

（構造的モデル化とデータ駆動凸最適化による

多変数超精密位置決め制御）

精密位置決め制御は，半導体や液晶パネルを製造する露光装置，工作機械，産業用ロ
ボット，ハードディスクドライブなどの産業装置に欠かせない技術である。社会を支
える産業装置の高性能化は，我々の豊かな生活に直結している。高性能化の要求に伴
い，制御対象の複数共振モードや複数入出力を考慮した制御手法が必要不可欠である
が，従来の制御手法では複数共振モードを無視した剛体系に基づく制御や，複数入出
力を無視した単入出力系の制御が用いられることが多く，制御性能を悪化させる要因
となっていた。
本論文では，複数共振モードや複数入出力といった多変数系のダイナミクスを考

慮した精密位置決め制御手法を提案した。多変数系を構造的にモデル化することによ
り，制御対象や設計される制御器のダイナミクスを見通し良くエンジニアが解釈でき
る形に定式化する。また，多変数系の制御器に対して凸最適化を用いたデータ駆動の
制御器設計手法を用いることで，多数の制御器パラメータの調整の難しさを解消す
る。これらの制御手法を，精密位置決めステージ，2慣性系モータベンチ，ビーム型
装置，ハードディスクドライブなどの実システムに応用し，計算機シミュレーション
および実験を通じて有効性を明らかにした。
本論文の内容と構成は以下のようになっている。
第I部において，第1章で高性能化するメカトロニクス制御装置の産業応用におけ

る要求と課題を明らかにした。産業界のメカトロニクス制御装置における先進的な
精密位置決め制御の性能要求は年々高まっており，高性能化のために複雑化した制
御装置の多くは，剛体以上の自由度を持つ複数モード系や，複数の入出力を持つ多
入力多出力系であるため，それらのダイナミクスや冗長性を考慮した制御器設計が
必要である。このような背景を踏まえ，多変数系の精密位置決め制御において冗長
性を有効活用することで高い制御性能を実現し，モデルベース制御器設計で培われ
た物理的な意味づけをデータ駆動制御器設計の枠組みに拡張することを本論文の目
標とした。本論文の前半（第2・3・4・5章）では，マルチレートフィードフォワード
制御を用いた連続時間軌道追従性能の改善を複数モード系や多入力多出力系に対す
る枠組みに拡張し，より高い制御性能を実現することを目標とした。本論文の後半
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（第4・5・6・7章）では，多変数系のような複雑でモデル化に手間のかかる制御対象
に対して，設計後の物理的解釈が可能なエンジニアに優しい制御器の設計手法をデー
タ駆動凸最適化で実現することを目標とした。

第II部において，制御対象の状態変数に追従させることにより連続時間軌道追従性
能を改善するマルチレートフィードフォワード制御器を，複数モード系や多入力多出
力系といった冗長性を持つ制御対象のモデルに基づいて設計する手法を提案した。

第2章で，マルチレートフィードフォワード制御を複数モード系に拡張する具体的
な手法を示した。複数モード系のマルチレートフィードフォワード制御では，複数
モード系の冗長性や連続時間の零点のダイナミクスを考慮した制御器設計が必要とな
る。まず，マルチレートフィードフォワード制御で用いる状態変数軌道生成を，多入
力多出力系の一般的な枠組みに拡張した。加えて，和と積の2種類のモード分解によ
り，複数モード系の冗長性を有効に活用したマルチレートフィードフォワード制御器
を設計し，連続時間軌道追従性能を改善した。複数の共振モードを持つ精密位置決め
ステージを制御対象とした検証により，指令値や制御対象に合わせた制御器設計指針
を示した。

第3章で，マルチレートフィードフォワード制御を多入力多出力系に拡張する具体
的な手法を示した。多入力多出力系のマルチレートフィードフォワード制御の課題と
して，複数の入力ごとに用いるサンプリング周期の選び方に冗長性が存在することが
ある。そこで，マルチレートフィードフォワード制御の多入力多出力系への拡張のた
めに，一般化可制御性指数の選び方における可制御性の強さを指標とした，制御対象
のダイナミクスに合わせた適切な入力サンプリング周期の選び方を提案した。2慣性
系モータベンチと6軸の精密位置決めステージで検証を行い，入力サンプリング周期
の適切な選び方による制御性能の改善を確認した。

第III部において，従来はモデルに基づいて設計されてきた状態追従型サンプル値
フィードフォワード制御器をデータ駆動で設計する枠組みを提案した。

第4章で，調整パラメータに対して線形なフィードフォワード制御器において，サ
ンプル値制御に基づいた微分器を導入することにより，連続時間軌道追従性能を改善
する手法を提案した。従来のマルチレートフィードフォワード制御器は，制御対象の
モデルの逆系として設計されるため，実験装置に合わせたパラメータの直感的な調
整，実験データを用いたパラメータの更新が困難であった。そこで，状態追従型サン
プル値フィードフォワード制御をデータ駆動化するために，パラメータに線形な構造
のフィードフォワード制御器を提案した。基底関数型フィードフォワード制御の枠組
みを取り入れることにより，調整パラメータに線形な形でフィードフォワード制御器
を定式化した。零次ホールドのダイナミクスを考慮したサンプル値微分器を導入する
ことにより，連続時間応答を考慮した離散時間の基底関数を設計した。2慣性系モー
タベンチにおける検証により，従来の零次ホールドのダイナミクスを考慮しない基底
関数型フィードフォワード制御器よりも制御性能が改善することを確認した。

第5章で，第4章で提案した調整パラメータに対して線形なサンプル値フィード
フォワード制御器を，多入力多出力系の複数モード系においてパラメータの物理的解
釈が可能な形で定式化し，反復学習制御を用いてパラメータをデータ駆動で更新する
手法を提案した。多入力多出力系のフィードフォワード制御器設計において，干渉を
考慮するためには多入力多出力系のモデルが必要となるが，静的な非干渉化を行った
後の干渉成分のモデリングは物理的解釈も難しく，グレーボックスモデリングにおい
てもパラメータ同定が非常に難しいことが問題とされていた。そこで，多入力多出力
の複数モード系に対する構造化されたフィードフォワード制御を用いることで，位置
決め制御において支配的な低周波数の誤差に着目し，調整パラメータが物理的に解釈
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可能な形でフィードフォワード制御器を定式化した。反復学習制御により，モデリン
グの難しい多入力多出力系に対するフィードフォワード制御器のパラメータを，実験
データと対角の剛体モデルのみから反復的に更新し誤差を最小化した。ビーム型装置
における検証により，干渉を考慮しない従来のフィードフォワード制御器と比較して
制御性能が改善することを確認した。
第IV部において，精密位置決め制御対象の外乱抑圧のために，制御対象のパラメ

トリックモデルを必要とせず周波数応答データを直接用いて構造的なフィードバック
制御器を凸最適化により自動設計する手法を提案した。
第6章で，ロバスト性能に主眼をおいた外乱抑圧のための制御器設計問題に対し

て，周波数応答データを直接用いて凸最適化する手法を提案した。従来のフィード
バック制御器自動設計において，誤差の改善を直接目的関数として定式化した例は多
くは見られなかった。外乱抑圧性能をより向上させるためには，制御対象の複数の変
動モデル，複数周波数の外乱に対処するフィードバック制御器を設計する必要性があ
る。そこで，複数の外乱周波数に合わせたフィードバック制御器を，制御器の構造を
保ったまま調整パラメータに線形な形で定式化した。制御対象と外乱の周波数応答
データを直接用いることで，誤差の改善を目的関数とした制御器設計問題を定式化
し，逐次線形化により凸最適化の繰り返し計算として求解した。ハードディスクドラ
イブのベンチマーク問題における検証により，外乱が抑圧され誤差が改善することを
確認した。
第7章で，ロバスト安定性に主眼をおいた外乱抑圧のための制御器設計問題に対し

て，周波数応答データを直接用いて凸最適化する手法を提案した。露光装置の精密位
置決めステージの外乱抑圧のためのフィードバック制御器設計は，多入力多出力の制
御対象のパラメトリックモデルを同定する難しさと，フィードバック制御器設計にお
いて干渉を考慮してロバスト安定な制御器を設計する難しさを持つ。特定周波数への
外乱抑圧は，その周波数で制御器がハイゲイン化することから，多入力多出力系にお
けるロバスト安定性の保証と実際の装置への実装に課題があった。そこで，多入力多
出力系の軸間の干渉を考慮した周波数応答データを直接用いたロバスト制御器設計問
題を定式化し，逐次線形化により凸最適化の繰り返し計算として求解した。実際に産
業界で使用されている商用の液晶露光装置の精密位置決めステージにおける検証によ
り，自動設計したフィードバック制御器の実装に成功し，誤差の改善を確認した。
第V部において，第8章でまとめとして本論文を振り返り，本論文を通した研究成

果と研究分野における位置づけを述べた。本論文は，多変数系の精密位置決め制御に
おける制御性能と実用性の両立を目標として，「物理的解釈の可能な従来のモデル
ベースの制御器設計」と「制御性能のさらなる向上とモデリングコストの低減を目的
としたデータ駆動制御器設計」の両面を組み合わせた，多変数の精密位置決め制御系
のための制御器設計の枠組みを提案し，実際の実験装置による性能検証を行った。理
論と実験によりその有効性を示した本論文は，学術界と産業界のどちらにも資する価
値を生み出し，その重要性は今後も高まるものであると言える。
なお，本文は英語により記述されていることを付記する。
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